Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
1.
CNS Neurosci Ther ; 30(4): e14730, 2024 04.
Article in English | MEDLINE | ID: mdl-38644565

ABSTRACT

BACKGROUND: Besides the hallmark of H3K27M mutation, aberrant amplifications of receptor tyrosine kinases (RTKs) are commonly observed in diffuse midline glioma (DMG), a highly malignant brain tumor with dismal prognosis. Here, we intended to evaluate the efficacy and safety of a multitarget RTK inhibitor anlotinib in patients with H3K27M-DMG. METHODS: A total of 40 newly diagnosed H3K27M-DMG patients including 15 with anlotinib and 25 without anlotinib treatment were retrospectively enrolled in this cohort. Progression-free survival (PFS), overall survival (OS), and toxicities were assessed and compared. RESULTS: The median PFS and OS of all patients in this cohort were 8.5 months (95% CI, 6.5-11.3) and 15.5 months (95% CI, 12.6-17.1), respectively. According to the Response Assessment in Neuro-Oncology (RANO) criteria, the disease control rate in the anlotinib group [93.3%, 95% confidence interval (CI), 70.2-98.8] was significantly higher than those without anlotinib (64%, 95% CI: 40.5-79.8, p = 0.039). The median PFS of patients with and without anlotinib was 11.6 months (95% CI, 7.8-14.3) and 6.4 months (95% CI, 4.3-10.3), respectively. Both the median PFS and OS of DMG patients treated with anlotinib were longer than those without anlotinib in the infratentorial patients (PFS: 10.3 vs. 5.4 months, p = 0.006; OS: 16.6 vs. 8.7 months, p = 0.016). Multivariate analysis also indicated anlotinib (HR: 0.243, 95% CI: 0.066-0.896, p = 0.034) was an independent prognosticator for longer OS in the infratentorial subgroup. In addition, the adverse events of anlotinib administration were tolerable in the whole cohort. CONCLUSIONS: This study first reported that anlotinib combined with Stupp regimen is a safe and feasible regimen for newly diagnosed patients with H3K27M-DMG. Further, anlotinib showed significant efficacy for H3K27M-DMG located in the infratentorial region.


Subject(s)
Brain Neoplasms , Glioma , Indoles , Mutation , Quinolines , Temozolomide , Humans , Male , Indoles/therapeutic use , Indoles/administration & dosage , Quinolines/therapeutic use , Quinolines/administration & dosage , Female , Retrospective Studies , Middle Aged , Adult , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Glioma/drug therapy , Glioma/genetics , Temozolomide/therapeutic use , Temozolomide/administration & dosage , Young Adult , Cohort Studies , Adolescent , Chemoradiotherapy/methods , Aged
2.
In Vivo ; 38(3): 1459-1464, 2024.
Article in English | MEDLINE | ID: mdl-38688589

ABSTRACT

BACKGROUND/AIM: Gliomas are the most common and recalcitrant malignant primary brain tumors. All cancer types are addicted to methionine, which is a fundamental and general hallmark of cancer known as the Hoffman effect. Particularly glioma cells exhibit methionine addiction. Because of methionine addiction, [11C]-methionine positron emission tomography (MET-PET) is widely used for glioma imaging in clinical practice, which can monitor the extent of methionine addiction. Methionine restriction including recombinant methioninase (rMETase) and a low-methionine diet, has shown high efficacy in preclinical models of gliomas, especially in combination with chemotherapy. The aim of the present study was to determine the efficacy of methionine restriction with oral rMETase (o-rMETase) and a low-methionine diet, combined with radiation and temozolomide (TMZ), on a teenage female patient with high-grade glioma. CASE REPORT: A 16-year-old girl was diagnosed with high-grade glioma. Magnetic resonance imaging (MRI) showed a left temporal-lobe tumor with compression to the left lateral ventricle and narrowing of sulci in the left temporal lobe. After the start of methionine restriction with o-rMETase and a low-methionine diet, along with TMZ combined with radiotherapy, the tumor size shrunk at least 60%, with improvement in the left lateral ventricle and sulci. The patient's condition remains stable for 19 months without severe adverse effects. CONCLUSION: Methionine restriction consisting of o-rMETase and a low-methionine diet, in combination with radiation and TMZ as first-line chemotherapy, were highly effective in a patient with high-grade glioma.


Subject(s)
Carbon-Sulfur Lyases , Glioma , Methionine , Temozolomide , Humans , Female , Glioma/pathology , Glioma/drug therapy , Glioma/therapy , Temozolomide/administration & dosage , Temozolomide/therapeutic use , Methionine/administration & dosage , Adolescent , Magnetic Resonance Imaging , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/therapy , Treatment Outcome , Neoplasm Grading , Positron-Emission Tomography , Recombinant Proteins/administration & dosage , Combined Modality Therapy
3.
Childs Nerv Syst ; 40(6): 1671-1680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38478066

ABSTRACT

PURPOSE: Pediatric diffuse intrinsic pontine glioma (DIPG) is a fatal disease associated with a median survival of < 1 year despite aggressive treatments. This retrospective study analyzed the treatment outcomes of patients aged < 18 years who were diagnosed with DIPG between 2012 and 2022 and who received different chemotherapy regimens. METHODS: After radiotherapy, patients with DIPG received nimotuzumab-vinorelbine combination or temozolomide-containing therapy. When nimotuzumab was unavailable, it was replaced by vincristine, etoposide, and carboplatin/cyclophosphamide (VECC). Temozolomide was administered as a single agent or a part of the combination chemotherapy comprising temozolomide, irinotecan, and bevacizumab. Furthermore, 1- and 3-year overall survival (OS), progression-free survival (PFS), and median OS and PFS were analyzed. RESULTS: The median age of 40 patients with DIPG was 97 ± 46.93 (23-213) months; the median follow-up time was 12 months. One and 3-year OS were 35.0% and 7.5%, respectively. Median OS was 12 months in all patients (n = 40), and it was 16, 10, and 11 months in those who received first-line nimotuzumab-vinorelbine combination (n = 13), temozolomide-based (n = 14), and VECC (n = 6) chemotherapy regimens, respectively (p = 0.360). One patient who received gefitinib survived for 16 months. Conversely, patients who never received radiotherapy and any antineoplastic medicamentous therapy (n = 6) had a median OS of 4 months. CONCLUSION: Nimotuzumab-vinorelbine combination therapy prolonged OS by 6 months compared with temozolomide-containing chemotherapy, although the difference was not statistically significant.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Humans , Female , Child , Male , Brain Stem Neoplasms/drug therapy , Child, Preschool , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Adolescent , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Diffuse Intrinsic Pontine Glioma/drug therapy , Temozolomide/therapeutic use , Temozolomide/administration & dosage , Vinblastine/administration & dosage , Vinblastine/therapeutic use , Vinblastine/analogs & derivatives , Infant , Treatment Outcome
4.
Drug Dev Ind Pharm ; 50(5): 420-431, 2024 May.
Article in English | MEDLINE | ID: mdl-38502031

ABSTRACT

OBJECTIVE: The study was aimed at formulating temozolomide (TMZ) loaded gelatin nanoparticles (GNPs) encapsulated into polyvinyl alcohol (PVA) nanofibers (TMZ-GNPs-PVA NFs) as the nano-in-nanofiber delivery system. The secondary objective was to explore the sustained releasing ability of this system and to assess its enhanced cellular uptake against U87MG glioma cells in vitro. SIGNIFICANCE: Nano-in-nanofibers are the emerging drug delivery systems for treating a wide range of diseases including cancers as they overcome the challenges experienced by nanoparticles and nanofibers alone. METHODS: The drug-loaded GNPs were formulated by one-step desolvation method. The Design of Experiments (DoE) was used to optimize nanoparticle size and entrapment efficiency. The optimized drug-loaded nanoparticles were then encapsulated within nanofibers using blend electrospinning technique. The U87MG glioma cells were used to investigate the uptake of the formulation. RESULTS: A 32 factorial design was used to optimize the mean particle size (145.7 nm) and entrapment efficiency (87.6%) of the TMZ-loaded GNPs which were subsequently ingrained into PVA nanofibers by electrospinning technique. The delivery system achieved a sustained drug release for up to seven days (in vitro). The SEM results ensured that the expected nano-in-nanofiber delivery system was achieved. The uptake of TMZ-GNPs-PVA NFs by cells was increased by a factor of 1.964 compared to that of the pure drug. CONCLUSION: The nano-in-nanofiber drug delivery system is a potentially useful therapeutic strategy for the management of glioblastoma multiforme.


Subject(s)
Delayed-Action Preparations , Drug Delivery Systems , Drug Liberation , Nanofibers , Nanoparticles , Particle Size , Polyvinyl Alcohol , Temozolomide , Temozolomide/administration & dosage , Temozolomide/pharmacokinetics , Temozolomide/pharmacology , Humans , Nanofibers/chemistry , Cell Line, Tumor , Polyvinyl Alcohol/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Glioma/drug therapy , Glioma/metabolism , Drug Carriers/chemistry , Gelatin/chemistry , Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Alkylating/pharmacokinetics
5.
Oncologist ; 29(5): e643-e654, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38206830

ABSTRACT

BACKGROUND: In advanced neuroendocrine tumors (NET), antiproliferative treatment options beyond somatostatin analogs remain limited. Temozolomide (TMZ) has shown efficacy in NET alone or combined with other drugs. MATERIALS AND METHODS: SONNET (NCT02231762) was an open, multicenter, prospective, phase II study to evaluate lanreotide autogel 120 mg (LAN) plus TMZ in patients with progressive advanced/metastatic grade 1/2 gastroenteropancreatic (GEP) NET or of unknown primary. Patients could be enrolled at first-line or higher therapy line. The primary endpoint was disease control rate ([DCR], rate of stable disease [SD], partial [PR], and complete response [CR]) at 6 months of LAN and TMZ. Patients with nonfunctioning (NF) NET without progression at 6 months were randomized to 6-month LAN maintenance or watch and wait, patients with functioning (F)-NET with clinical benefit (PR, SD) continued on LAN. RESULTS: Fifty-seven patients were recruited. The majority of patients received the study drug at second or higher treatment line and had an NET G2. DCR at 6 months LAN and TMZ was 73.5%. After 6 months of further LAN maintenance, 54.5% of patients with F-NET and 71.4% with NF-NET had SD or PR vs 41.7% with NF-NET on observation only. LAN and TMZ were effective in all subgroups analyzed. At 12 months of follow-up, median progression-free survival was 11.1 months. Median serum chromogranin A decreased except in NF-NET on observation. O6-methylguanine DNA methyltransferase promoter methylation appeared to better reflect TMZ response than loss of gene expression. During combination therapy, the most frequent treatment-emergent adverse events grade 3/4 reported were nausea (14%), thrombocytopenia (12.3%), and neutropenia (8.8%). Four deaths were reported resulting from severe adverse events not considered related to study medication. CONCLUSIONS: LAN plus TMZ is a treatment option for patients with progressive GEP-NET with more aggressive biological profile showing a manageable safety profile.


Subject(s)
Intestinal Neoplasms , Neuroendocrine Tumors , Pancreatic Neoplasms , Peptides, Cyclic , Somatostatin , Somatostatin/analogs & derivatives , Temozolomide , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Temozolomide/administration & dosage , Somatostatin/therapeutic use , Somatostatin/pharmacology , Somatostatin/administration & dosage , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/pathology , Male , Female , Middle Aged , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Aged , Peptides, Cyclic/therapeutic use , Peptides, Cyclic/pharmacology , Peptides, Cyclic/administration & dosage , Intestinal Neoplasms/drug therapy , Intestinal Neoplasms/pathology , Adult , Prospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Aged, 80 and over
6.
Cancer Chemother Pharmacol ; 93(5): 455-469, 2024 May.
Article in English | MEDLINE | ID: mdl-38280033

ABSTRACT

OBJECTIVE: Glioblastoma multiforme (GBM) is the most aggressive and fatal malignant primary brain tumor. The enhancement of the survival rate for glioma patients remains limited, even with the utilization of a combined treatment approach involving surgery, radiotherapy, and chemotherapy. This study was designed to assess the expression of IDH1, TP53, EGFR, Ki-67, GFAP, H3K27M, MGMT, VEGF, NOS, CD99, and ATRX in glioblastoma tissue from 11 patients. We investigated the anticancer impact and combined effects of cathelicidin (LL-37), protegrin-1 (PG-1), with chemotherapy-temozolomide (TMZ), doxorubicin (DOX), carboplatin (CB), cisplatin (CPL), and etoposide (ETO) in primary GBM cells. In addition, we examined the effect of LL-37, PG-1 on normal human fibroblasts and in the C6/Wistar rat intracerebral glioma model. METHODS: For this study, 11 cases of glioblastoma were evaluated immunohistochemically for IDH1, TP53, EGFR, Ki-67, GFAP, H3K27M, MGMT, VEGF, NOS, CD99, and ATRX. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to study cells viability and to determine cytotoxic effects of LL-37, PG-1 and their combination with chemotherapy in primary GBM cells. Synergism or antagonism was determined using combination index (CI) method. Finally, we established C6 glioblastoma model in Wistar rats to investigate the antitumor activity. RESULTS: Peptides showed a strong cytotoxic effect on primary GBM cells in the MTT test (IC50 2-16 and 1-32 µM) compared to chemotherapy. The dual-drug combinations of LL-37 + DOX, LL-37 + CB (CI 0.46-0.75) and PG-1 + DOX, PG-1 + CB, PG-1 + TMZ (CI 0.11-0.77), demonstrated a synergism in primary GBM cells. In rat C6 intracerebral GBM model, survival of rats in experimental group (66.75 ± 12.6 days) was prolonged compared with that in control cohort (26.2 ± 2.66 days, p = 0.0008). After LL-37 treatment, experimental group rats showed significantly lower tumor volumes (31.00 ± 8.8 mm3) and weight (49.4 ± 13.3 mg) compared with control group rats (153.8 ± 43.53 mg, p = 0.038; 82.50 ± 7.60 mm3, respectively). CONCLUSIONS: The combination of antimicrobial peptides and chemical drugs enhances the cytotoxicity of chemotherapy and exerts synergistic antitumor effects in primary GBM cells. Moreover, in vivo study provided the first evidence that LL-37 could effectively inhibit brain tumor growth in rat C6 intracerebral GBM model. These results suggested a significant strategy for proposing a promising therapy for the treatment of GBM.


Subject(s)
Brain Neoplasms , Drug Synergism , Glioblastoma , Rats, Wistar , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Animals , Rats , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Male , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Female , Middle Aged , Cell Line, Tumor , Biomarkers, Tumor/metabolism , Antimicrobial Cationic Peptides/pharmacology , Aged , Cathelicidins , Adult , Temozolomide/pharmacology , Temozolomide/administration & dosage
7.
Eur J Pharm Biopharm ; 186: 18-29, 2023 May.
Article in English | MEDLINE | ID: mdl-36924995

ABSTRACT

Temozolomide (TMZ) is one of the best choices for treating glioblastoma. However, due to the short plasma half-life, only 20-30 % brain bioavailability can be achieved using traditional formulations. In the present study, PEGylated liposomes and lyotropic liquid crystals (LLCs) were developed and investigated to prolong the plasma circulation time of TMZ. Industrially feasible membrane extrusion and modified hot melt emulsification techniques were utilized during the formulation. Liposomes and LLCs in the particle size range of 80-120 nm were obtained with up to 50 % entrapment efficiency. The nanocarriers were found to show a prolonged release of up to 72 h. The cytotoxicity studies in glioblastoma cell lines revealed a âˆ¼1.6-fold increased cytotoxicity compared to free TMZ. PEGylated liposomes and PEGylated LLCs were found to show a 3.47 and 3.18-fold less cell uptake in macrophage cell lines than uncoated liposomes and LLCs, respectively. A 1.25 and 2-fold increase in the plasma t1/2 was observed with PEGylated liposomes and PEGylated LLCs, respectively, compared to the TMZ when administered intravenously. Extending plasma circulation time of TMZ led to significant increase in brain bioavailability. Overall, the observed improved pharmacokinetics and biodistribution of TMZ revealed the potential of these PEGylated nanocarriers in the efficient treatment of glioblastoma.


Subject(s)
Liposomes , Temozolomide , Temozolomide/administration & dosage , Temozolomide/adverse effects , Temozolomide/pharmacokinetics , Liquid Crystals , Polyethylene Glycols , Humans , Half-Life , Glioblastoma/drug therapy , Brain Neoplasms/drug therapy , Tissue Distribution , Blood-Brain Barrier/metabolism , Nanoparticle Drug Delivery System , Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Alkylating/adverse effects , Antineoplastic Agents, Alkylating/pharmacokinetics , Male , Animals , Rats
8.
Clin Cancer Res ; 29(1): 40-49, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36136304

ABSTRACT

PURPOSE: On the basis of preclinical data, we hypothesized that low doses of chemotherapy (10% of therapeutic doses) with full dose of a PARP inhibitor could have improved efficacy and tolerability. PATIENTS AND METHODS: In this phase I dose-escalation study, patients with BRCA-normal advanced malignancies were assigned to either talazoparib/temozolomide or talazoparib/irinotecan. Talazoparib was dose-escalated from 500 mcg to 1 mg daily before dose escalation of temozolomide/irinotecan. The starting dose of temozolomide was 25 mg/m2/day orally on days 1 to 5 and irinotecan was 25 mg/m2/day intravenously on days 1 and 15. The primary objectives of this trial were safety and tolerability, dose-limiting toxicities (DLT), and maximum tolerated dose (MTD). RESULTS: Of 40 patients enrolled, 18 (mean: 7 prior therapies) were enrolled in talazoparib + temozolomide and 22 in talazoparib + irinotecan. DLTs were hematologic in both arms, but all hematologic adverse events resolved with either treatment interruption and/or dose reductions of talazoparib. The MTDs were talazoparib 1 mg + temozolomide 37.5 mg/m2 and talazoparib 1 mg + irinotecan 37.5 mg/m2. There were four partial responses in the talazoparib + temozolomide arm and five in the talazoparib + irinotecan arm for a response rate of 23% (9/40). The pharmacokinetic profiles of talazoparib + temozolomide/irinotecan were similar to that of talazoparib monotherapy. Responses were seen independent of homologous recombination (HR) status and HR deficiency score. CONCLUSIONS: These results show that talazoparib with low-dose temozolomide or irinotecan is reasonably well tolerated and demonstrates clinical activity in a wide range of cancers. Randomized trials of talazoparib with or without low-dose chemotherapy are ongoing in small cell lung cancer and ovarian cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Neoplasms , Female , Humans , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Irinotecan/administration & dosage , Neoplasms/drug therapy , Temozolomide/administration & dosage
9.
Cancer Chemother Pharmacol ; 89(2): 183-196, 2022 02.
Article in English | MEDLINE | ID: mdl-34997858

ABSTRACT

PURPOSE: Anlotinib protects against carcinogenesis through the induction of autophagy and apoptosis. The current study evaluated the role and molecular mechanisms of anlotinib in glioblastoma, and the effects of anlotinib in combination with temozolomide (TMZ). METHODS: Cell Counting Kit-8 and colony-forming assays were used to evaluate cell viability. Cell migration and invasion were assessed by wound-healing, Transwell migration, and Matrigel invasion assays. Cellular apoptosis and cell cycle analysis were determined by flow cytometry. Angiogenesis was assessed using human umbilical vein endothelial cells (HUVECs). Vascular endothelial growth factor A (VEGFA) was measured by enzyme-linked immunosorbent assay. Protein expression was determined by western blotting or immunofluorescence staining. The in vivo anti-glioblastoma effect was assessed with live imaging of tumor xenografts in nude mice. RESULTS: Anlotinib restricted the proliferation, migration, and invasion of glioblastoma cells in a dose-dependent manner. Tumor supernatant from glioblastoma cells treated with anlotinib inhibited angiogenesis in HUVECs. Anlotinib induced autophagy in glioblastoma cells by increasing Beclin-1 and microtubule-associated protein 1 light chain 3B (LC3B) levels. Mechanistically, anlotinib inhibited the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3)/VEGFA signaling pathway. STAT3 inhibition by S3I-201 decreased VEGFA and suppressed cellular proliferation and movement. TMZ enhanced the anti-glioblastoma ability of anlotinib. Finally, anlotinib inhibited tumor growth and JAK2/STAT3/VEGFA signaling in xenografts. CONCLUSION: Anlotinib exerts anti-glioblastoma activity possibly through the JAK2/STAT3/VEGFA signaling pathway. TMZ potentiated the anti-glioblastoma effect of anlotinib via the same signaling pathway, indicating the potential application of anlotinib as a treatment option for glioblastoma.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Glioblastoma/drug therapy , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Animals , Apoptosis/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Glioblastoma/pathology , Human Umbilical Vein Endothelial Cells , Humans , Indoles/administration & dosage , Male , Mice , Mice, Nude , Quinolines/administration & dosage , Signal Transduction/drug effects , Temozolomide/administration & dosage , Vascular Endothelial Growth Factor A/metabolism , Xenograft Model Antitumor Assays
10.
Endocr Pract ; 28(3): 292-297, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34454077

ABSTRACT

OBJECTIVE: The role of alternate sequential administration of sunitinib and capecitabine/temozolomide (CAPTEM) in metastatic pancreatic neuroendocrine tumors (PanNETs) remains unexplored. We thus aimed to analyze the efficacy and tolerability of this strategy in advanced grade 1/grade 2 PanNETs. METHODS: In total, data of 43 patients with metastatic PanNET were collected from a real-world database of a cancer center. Twenty-four patients were treated with sunitinib followed by CAPTEM (group 1), and 19 patients were treated with CAPTEM followed by sunitinib (group 2). RESULTS: Twenty-three patients were treated with first-line sunitinib or CAPTEM, and 20 patients were pretreated with somatostatin analog (SSA) or SSA in combination with transcatheter arterial chemoembolization. The objective response rate with first-line treatment was similar in both groups, whereas that with second-line treatment was higher in group 1 than in group 2, albeit with no significant differences (21.1% vs 5.3%, respectively; P = .205). Median progression-free survival (mPFS) for first-line and second-line treatments did not differ between the 2 groups (11 and 12 months vs 12 and 8 months, respectively). Following subgroup analyses, treatment with first-line sunitinib and sunitinib after pretreated SSA had a longer mPFS than that with second-line sunitinib after CAPTEM (11 months vs 8 months, respectively; P = .046), whereas treatment with first-line CAPTEM and CAPTEM after pretreated SSA had an mPFS similar to that of second-line CAPTEM after sunitinib treatment. CAPTEM and sunitinib had similar tolerability. CONCLUSION: Alternating sunitinib and CAPTEM were well tolerated and associated with similar mPFS in grade 1/grade 2 PanNETs. However, larger prospective studies are required to investigate the efficacy of alternate sequential therapies for metastatic PanNET.


Subject(s)
Capecitabine , Neuroendocrine Tumors , Pancreatic Neoplasms , Sunitinib , Temozolomide , Antineoplastic Combined Chemotherapy Protocols , Capecitabine/administration & dosage , Capecitabine/therapeutic use , Chemoembolization, Therapeutic , Humans , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Retrospective Studies , Sunitinib/administration & dosage , Sunitinib/therapeutic use , Temozolomide/administration & dosage , Temozolomide/therapeutic use
11.
Eur J Pharm Biopharm ; 170: 179-186, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34968646

ABSTRACT

Glioblastomas have been historically difficult to treat with poor long-term survival. With novel strategies focused on targeting hypoxia-inducible factor (HIF) regulatory pathways, recent evidence has shown that Acriflavine (ACF) can effectively target glioma invasiveness and recurrence. However, local delivery of ACF and its combinatory effects with Temozolomide (TMZ) and radiation therapy (XRT) have not yet been optimized. In this study we test a novel polymeric matrix that can gradually release ACF at the tumor bed site in combination with systemic TMZ and XRT. In vitro cytotoxicity assays of ACF in combination with TMZ and XRT were performed on rodent and human cell lines with CCK-8 and flow cytometry. In vitro drug release was measured and intracranial safety was assessed in tumor-free animals. Finally, efficacy was assessed in an intracranial gliosarcoma model and combination therapy with TMZ and XRT evaluated. Combination therapy of ACF, TMZ, and XRT was able to reduce cell viability and induce apoptosis in glioma cells. In vitro and in vivo release of ACF was measured in benchtop and animal models. Efficacy was established in an in vivo gliosarcoma model in which intracranial ACF (p < 0.01) significantly improved median survival and the combination therapy of ACF, TMZ and XRT (p < 0.01) significantly improved median survival and led to long-term survival (LTS). We provide evidence that ACF, combined with TMZ and XRT, led to LTS in an intracranial model of rat gliosarcoma. These findings, in combination with the use of a novel polymeric matrix that allows more gradual drug delivery, constitute a first step in the translation of this novel strategy to human use.


Subject(s)
Acriflavine/administration & dosage , Brain Neoplasms/therapy , Drug Implants , Glioma/therapy , Radiotherapy Dosage , Temozolomide/administration & dosage , Absorbable Implants , Acriflavine/pharmacology , Animals , Apoptosis , Cell Line, Tumor , Cell Survival , Combined Modality Therapy , Polymers/chemistry , Rats , Rats, Inbred F344 , Survival Rate , Temozolomide/pharmacology , Xenograft Model Antitumor Assays
12.
Anticancer Res ; 42(1): 335-341, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34969742

ABSTRACT

BACKGROUND: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter plays a key role in response to temozolomide chemotherapy and disease prognosis in patients with wild-type isocitrate dehydrogenase (IDH) glioblastoma (GBM). PATIENTS AND METHODS: The MGMT promoter methylation status and its association with clinicopathological parameters were retrospectively analysed in a cohort of 316 patients with GBM with wild-type IDH. RESULTS: MGMT methylation was significantly associated with ATRX chromatin remodeler (ATRX) loss and completion of the standard Stupp protocol. The median durations of overall and progression-free survival for the unmethylated, low-methylated (10-39%), and hypermethylated (≥40%) groups were 15, 23, and 30 months and 11, 18, and 21 months, respectively. However, the improvement in the survival of the hypermethylated group was not statistically significant. CONCLUSION: We suggest a possible association between MGMT methylation status and ATRX mutations in GBM with wild-type IDH.


Subject(s)
DNA Methylation/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioblastoma/drug therapy , Isocitrate Dehydrogenase/genetics , Tumor Suppressor Proteins/genetics , X-linked Nuclear Protein/genetics , Aged , Biomarkers, Tumor/genetics , DNA Methylation/drug effects , Female , Glioblastoma/diagnosis , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Male , Middle Aged , Mutation/drug effects , Prognosis , Progression-Free Survival , Promoter Regions, Genetic/genetics , Retrospective Studies , Temozolomide/administration & dosage , Temozolomide/adverse effects
13.
Front Endocrinol (Lausanne) ; 12: 731631, 2021.
Article in English | MEDLINE | ID: mdl-34858324

ABSTRACT

Nelson's syndrome is considered a severe side effect that can occur after a total bilateral adrenalectomy in patients with Cushing's disease. It usually presents with clinical manifestations of an enlarging pituitary tumor including visual and cranial nerve alterations, and if not treated, can cause death through local brain compression or invasion. The first therapeutic option is surgery but in extreme cases of inaccessible or resistant aggressive pituitary tumors; the off-label use of chemotherapy with capecitabine and temozolomide can be considered. However, the use of this treatment is controversial due to adverse events, lack of complete response, and inability to predict results. We present the case of a 48-year-old man diagnosed with Nelson's syndrome with prolonged partial response and significant clinical benefit to treatment with capecitabine and temozolomide.


Subject(s)
Adenoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Nelson Syndrome/drug therapy , Pituitary Neoplasms/drug therapy , Adenoma/complications , Adenoma/pathology , Capecitabine/administration & dosage , Humans , Male , Middle Aged , Nelson Syndrome/complications , Neoplasm Invasiveness , Pituitary Neoplasms/complications , Pituitary Neoplasms/pathology , Spain , Temozolomide/administration & dosage , Treatment Outcome , Tumor Burden
14.
Nanoscale ; 14(1): 108-126, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34897360

ABSTRACT

The blood-brain barrier (BBB) and tumor heterogeneity have resulted in abysmally poor clinical outcomes in glioblastoma (GBM) with the standard therapeutic regimen. Despite several anti-glioma drug delivery strategies, the lack of adequate chemotherapeutic bioavailability in gliomas has led to a suboptimal therapeutic gain in terms of improvement in survival and increased systemic toxicities. This has paved the way for designing highly specific and non-invasive drug delivery approaches for treating GBM. The intranasal (IN) route is one such delivery strategy that has the potential to reach the brain parenchyma by circumventing the BBB. We recently showed that in situ hydrogel embedded with miltefosine (HePc, proapoptotic anti-tumor agent) and temozolomide (TMZ, DNA methylating agent) loaded targeted nanovesicles prevented tumor relapses in orthotopic GBM mouse models. In this study, we specifically investigated the potential of a non-invasive IN route of TMZ delivered from lipid nanovesicles (LNs) decorated with surface transferrin (Tf) and co-encapsulated with HePc to reach the brain by circumventing the BBB in glioma bearing mice. The targeted nanovesicles (228.3 ± 10 nm, -41.7 ± 4 mV) exhibited mucoadhesiveness with 2% w/v mucin suggesting their potential to increase brain drug bioavailability after IN administration. The optimized TLNs had controlled, tunable and significantly different release kinetics in simulated cerebrospinal fluid and simulated nasal fluid demonstrating efficient release of the payload upon reaching the brain. Drug synergy (combination index, 0.7) showed a 6.4-fold enhanced cytotoxicity against resistant U87MG cells compared to free drugs. In vivo gamma scintigraphy of 99mTc labeled LNs showed 500- and 280-fold increased brain concentration post 18 h of treatment. The efficacy of the TLNs increased by 1.8-fold in terms of survival of tumor-bearing mice compared to free drugs. These findings suggested that targeted drug synergy has the potential to intranasally deliver a high therapeutic dose of the chemotherapy agent (TMZ) and could serve as a platform for future clinical application.


Subject(s)
Brain Neoplasms , Drug Delivery Systems , Drug Resistance, Neoplasm , Glioblastoma , Administration, Intranasal , Animals , Biological Availability , Blood-Brain Barrier , Brain Neoplasms/drug therapy , Cell Line, Tumor , Glioblastoma/drug therapy , Mice , Nanoparticles , Temozolomide/administration & dosage , Transferrin , Xenograft Model Antitumor Assays
15.
Sci Rep ; 11(1): 24067, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911992

ABSTRACT

Asunercept (company code APG101 [Apogenix AG]; company code CAN008 [CANbridge Pharmaceuticals]) is a novel glycosylated fusion protein that has shown promising effectiveness in glioblastoma. This Phase I study was initiated to evaluate the tolerability and safety of asunercept in combination with standard radiotherapy and temozolomide (RT/TMZ) in Asian patients with newly diagnosed glioblastoma. This was the Phase I portion of a Phase I/II open label, multicenter trial of asunercept plus standard RT/TMZ. Adults with newly-diagnosed glioblastoma received surgical resection followed by standard RT/TMZ plus asunercept 200 mg/week (Cohort 1) or 400 mg/week (Cohort 2) by 30-min IV infusion. The primary endpoint was the safety and tolerability of asunercept during concurrent asunercept and RT/TMZ; dose-limiting toxicities were observed for each dose. Secondary endpoints included pharmacokinetics (PK) and 6-month progression-free survival (PFS6). All patients (Cohort 1, n = 3; Cohort 2, n = 7) completed ≥ 7 weeks of asunercept treatment. No DLTs were experienced. Only one possibly treatment-related treatment emergent adverse event (TEAE), Grade 1 gingival swelling, was observed. No Grade > 3 TEAEs were reported and no TEAE led to treatment discontinuation. Systemic asunercept exposure increased proportionally with dose and showed low inter-patient variability. The PFS6 rate was 33.3% and 57.1% for patients in Cohort 1 and 2, respectively. Patients in Cohort 2 maintained a PFS rate of 57.1% at Month 12. Adding asunercept to standard RT/TMZ was safe and well tolerated in patients with newly-diagnosed glioblastoma and 400 mg/week resulted in encouraging efficacy.Trial registration NCT02853565, August 3, 2016.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/therapy , Glioblastoma/therapy , Radiotherapy , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Asian People , Biomarkers , Brain Neoplasms/diagnosis , Brain Neoplasms/etiology , Brain Neoplasms/mortality , Combined Modality Therapy , Disease Management , Drug Monitoring , Glioblastoma/diagnosis , Glioblastoma/etiology , Glioblastoma/mortality , Humans , Immunoglobulin G/administration & dosage , Kaplan-Meier Estimate , Prognosis , Recombinant Fusion Proteins/administration & dosage , Temozolomide/administration & dosage , Treatment Outcome , fas Receptor/administration & dosage
16.
Drug Deliv ; 28(1): 2373-2382, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34747271

ABSTRACT

PURPOSE: To evaluate the enhancement of temozolomide (TMZ) delivery in the rat brain using a triolein emulsion. MATERIALS AND METHODS: Rats were divided into the five groups as following: group 1 (negative control), group 2 (treated with triolein emulsion and TMZ 20 mg/kg), and group 3 (TMZ 20 mg/kg treatment without triolein), group 4 (treated with triolein emulsion and TMZ 10 mg/kg), and group 5 (TMZ 10 mg/kg treatment without triolein). Triolein emulsion was infused into the right common carotid artery. One hour later, the TMZ concentration was evaluated quantitatively and qualitatively using high-performance liquid chromatography (HPLC-MS) and desorption electrospray ionization mass spectrometry (DESI-MS) imaging, respectively. The concentration ratios of the ipsilateral to contralateral hemisphere in each group were determined and the statistical analysis was conducted using an unpaired t-test. RESULTS: Quantitatively, the TMZ concentration ratio of the ipsilateral to the control hemisphere was 2.41 and 1.13 in groups 2 and 3, and were 2.49 and 1.14 in groups 4 and 5, respectively. Thus, the TMZ signal intensities of TMZ in group 2 and 4 were statistically high in the ipsilateral hemispheres. Qualitatively, the signal intensity of TMZ was remarkably high in the ipsilateral hemisphere in group 2 and 4. CONCLUSIONS: The triolein emulsion efficiently opened the blood-brain barrier and could provide a potential new strategy to enhance the therapeutic effect of TMZ. HPLC-MS and DESI-MS imaging were shown to be suitable for analyses of enhancement of brain TMZ concentrations.


Subject(s)
Antineoplastic Agents, Alkylating/administration & dosage , Emulsions/chemistry , Temozolomide/administration & dosage , Triolein/chemistry , Animals , Antineoplastic Agents, Alkylating/pharmacokinetics , Blood-Brain Barrier/metabolism , Brain/metabolism , Chemistry, Pharmaceutical , Dose-Response Relationship, Drug , Drug Delivery Systems/methods , Male , Rats , Rats, Sprague-Dawley , Temozolomide/pharmacokinetics
17.
Cancer Sci ; 112(12): 5020-5033, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34609773

ABSTRACT

INTELLANCE-J was a phase 1/2 study of a potent antibody-drug conjugate targeting epidermal growth factor receptor (EGFR), depatuxizumab mafodotin (Depatux-M), as a second- or first-line therapy, alone or combined with chemotherapy or chemoradiotherapy in 53 Japanese patients with World Health Organization (WHO) grade III/IV glioma. In second-line arms, patients with EGFR-amplified recurrent WHO grade III/IV glioma received Depatux-M plus chemotherapy (temozolomide) or Depatux-M alone regardless of EGFR status. In first-line arms, patients with newly diagnosed WHO grade III/IV glioma received Depatux-M plus chemoradiotherapy. The study was halted following lack of survival benefit with first-line Depatux-M in the global trial INTELLANCE-1. The primary endpoint was 6-month progression-free survival (PFS) in patients with EGFR-amplified tumors receiving second-line Depatux-M plus chemotherapy. Common nonocular treatment-emergent adverse events (TEAEs) with both second-line and first-line Depatux-M included lymphopenia (42%, 33%, respectively), thrombocytopenia (39%, 47%), alanine aminotransferase increase (29%, 47%), and aspartate aminotransferase increase (24%, 60%); incidence of grade ≥3 TEAEs was 66% and 53%, respectively. Ocular side effects (OSEs) occurred in 93% of patients receiving second-line Depatux-M plus chemotherapy and all patients receiving second-line Depatux-M alone or first-line Depatux-M plus chemoradiotherapy. Most OSEs were manageable with dose modifications and concomitant medications. The 6-month PFS estimate was 25.6% (95% confidence interval [CI] 11.4-42.6), and median PFS was 2.1 months (95% CI 1.9-3.9) with second-line Depatux-M plus chemotherapy in the EGFR-amplified subgroup. This study showed acceptable safety profile of Depatux-M alone or plus chemotherapy/chemoradiotherapy in Japanese patients with WHO grade III/IV glioma. The study was registered at ClinicalTrials.gov (NCT02590263).


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Brain Neoplasms/drug therapy , Glioma/drug therapy , Temozolomide/administration & dosage , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Chemoradiotherapy , Drug Therapy , ErbB Receptors/genetics , Female , Gene Amplification , Glioma/genetics , Glioma/pathology , Glioma/radiotherapy , Humans , Japan , Male , Middle Aged , Neoplasm Grading , Survival Analysis , Temozolomide/adverse effects , Treatment Outcome
18.
Eur J Pharm Biopharm ; 169: 297-308, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34678408

ABSTRACT

Glioblastoma is one of the most difficult to treat cancers with poor prognosis and survival of around one year from diagnosis. Effective treatments are desperately needed. This work aims to prepare temozolomide acid (TMZA) loaded albumin nanoparticles, for the first time, to target glioblastoma (GL261) and brain cancer stem cells (BL6). TMZA was loaded into human serum albumin nanoparticles (HSA NPs) using the desolvation method. A response surface 3-level factorial design was used to study the effect of different formulation parameters on the drug loading and particle size of NPs. The optimum conditions were found to be: 4 mg TMZA with 0.05% sodium cholate. This yielded NPs with particle size and drug loading of 111.7 nm and 5.5% respectively. The selected formula was found to have good shelf life and serum stability but with a relatively fast drug release pattern. The optimized NPs showed excellent cellular uptake with âˆ¼ 50 and 100% of cells were positive for NP uptake after 24 h incubation with both GL261 and BL6 glioblastoma cell lines, respectively. The selected formula showed high cytotoxicity with Ì´ 20% cell viability at 1 mM TMZA after 72 h incubation time. Finally, the fluorescently labelled NPs showed co-localization with the bioluminescent syngeneic BL6 intra-cranial tumour mouse model after intravenous administration.


Subject(s)
Glioma , Nanoparticles/therapeutic use , Osteonectin/metabolism , Serum Albumin, Human/pharmacology , Temozolomide , Animals , Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Alkylating/pharmacokinetics , Biological Products/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Compounding/methods , Drug Delivery Systems/methods , Drug Liberation , Drug Stability , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Mice , Particle Size , Temozolomide/administration & dosage , Temozolomide/pharmacokinetics , Tissue Distribution
19.
BMC Cancer ; 21(1): 1105, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34654402

ABSTRACT

BACKGROUND: The current standard treatment for elderly patients with newly diagnosed glioblastoma is surgery followed by short-course radiotherapy with temozolomide. In recent studies, 40 Gy in 15 fractions vs. 60 Gy in 30 fractions, 34 Gy in 10 fractions vs. 60 Gy in 30 fractions, and 40 Gy in 15 fractions vs. 25 Gy in 5 fractions have been reported as non-inferior. The addition of temozolomide increased the survival benefit of radiotherapy with 40 Gy in 15 fractions. However, the optimal regimen for radiotherapy plus concomitant temozolomide remains unresolved. METHODS: This multi-institutional randomized phase III trial was commenced to confirm the non-inferiority of radiotherapy comprising 25 Gy in 5 fractions with concomitant (150 mg/m2/day, 5 days) and adjuvant temozolomide over 40 Gy in 15 fractions with concomitant (75 mg/m2/day, every day from first to last day of radiation) and adjuvant temozolomide in terms of overall survival (OS) in elderly patients with newly diagnosed glioblastoma. A total of 270 patients will be accrued from 51 Japanese institutions in 4 years and follow-up will last 2 years. Patients 71 years of age or older, or 71-75 years old with resection of less than 90% of the contrast-enhanced region, will be registered and randomly assigned to each group with 1:1 allocation. The primary endpoint is OS, and the secondary endpoints are progression-free survival, frequency of adverse events, proportion of Karnofsky performance status preservation, and proportion of health-related quality of life preservation. The Japan Clinical Oncology Group Protocol Review Committee approved this study protocol in April 2020. Ethics approval was granted by the National Cancer Center Hospital Certified Review Board. Patient enrollment began in August 2020. DISCUSSION: If the primary endpoint is met, short-course radiotherapy comprising 25 Gy in 5 fractions with concomitant and adjuvant temozolomide will be a standard of care for elderly patients with newly diagnosed glioblastoma. TRIAL REGISTRATION: Registry number: jRCTs031200099 . Date of Registration: 27/Aug/2020. Date of First Participant Enrollment: 4/Sep/2020.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/therapy , Glioblastoma/therapy , Temozolomide/therapeutic use , Aged , Antineoplastic Agents, Alkylating/administration & dosage , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Combined Modality Therapy/methods , Dose Fractionation, Radiation , Drug Administration Schedule , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Japan , Progression-Free Survival , Quality of Life , Temozolomide/administration & dosage
20.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638987

ABSTRACT

Glioblastoma (GBM) is the most aggressive malignant glioma, with a very poor prognosis; as such, efforts to explore new treatments and GBM's etiology are a priority. We previously described human GBM cells (R2J-GS) as exhibiting the properties of cancer stem cells (growing in serum-free medium and proliferating into nude mice when orthotopically grafted). Sodium selenite (SS)-an in vitro attractive agent for cancer therapy against GBM-was evaluated in R2J-GS cells. To go further, we launched a preclinical study: SS was given orally, in an escalation-dose study (2.25 to 10.125 mg/kg/day, 5 days on, 2 days off, and 5 days on), to evaluate (1) the absorption of selenium in plasma and organs (brain, kidney, liver, and lung) and (2) the SS toxicity. A 6.75 mg/kg SS dose was chosen to perform a tumor regression assay, followed by MRI, in R2J-GS cells orthotopically implanted in nude mice, as this dose was nontoxic and increased brain selenium concentration. A group receiving TMZ (5 mg/kg) was led in parallel. Although not reaching statistical significance, the group of mice treated with SS showed a slower tumor growth vs. the control group (p = 0.08). No difference was observed between the TMZ and control groups. We provide new insights of the mechanisms of SS and its possible use in chemotherapy.


Subject(s)
Brain Neoplasms/drug therapy , Corpus Striatum/surgery , Glioblastoma/drug therapy , Neoplastic Stem Cells/transplantation , Sodium Selenite/adverse effects , Trace Elements/adverse effects , Tumor Burden/drug effects , Xenograft Model Antitumor Assays/methods , Animals , Apoptosis/drug effects , Brain Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Corpus Striatum/metabolism , Glioblastoma/pathology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Selenium/metabolism , Sodium Selenite/administration & dosage , Temozolomide/administration & dosage , Trace Elements/administration & dosage , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...