Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
ACS Appl Mater Interfaces ; 16(17): 21722-21735, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629735

ABSTRACT

While temozolomide (TMZ) has been a cornerstone in the treatment of newly diagnosed glioblastoma (GBM), a significant challenge has been the emergence of resistance to TMZ, which compromises its clinical benefits. Additionally, the nonspecificity of TMZ can lead to detrimental side effects. Although TMZ is capable of penetrating the blood-brain barrier (BBB), our research addresses the need for targeted therapy to circumvent resistance mechanisms and reduce off-target effects. This study introduces the use of PEGylated mesoporous silica nanoparticles (MSN) with octyl group modifications (C8-MSN) as a nanocarrier system for the delivery of docetaxel (DTX), providing a novel approach for treating TMZ-resistant GBM. Our findings reveal that C8-MSN is biocompatible in vitro, and DTX@C8-MSN shows no hemolytic activity at therapeutic concentrations, maintaining efficacy against GBM cells. Crucially, in vivo imaging demonstrates preferential accumulation of C8-MSN within the tumor region, suggesting enhanced permeability across the blood-brain tumor barrier (BBTB). When administered to orthotopic glioma mouse models, DTX@C8-MSN notably prolongs survival by over 50%, significantly reduces tumor volume, and decreases side effects compared to free DTX, indicating a targeted and effective approach to treatment. The apoptotic pathways activated by DTX@C8-MSN, evidenced by the increased levels of cleaved caspase-3 and PARP, point to a potent therapeutic mechanism. Collectively, the results advocate DTX@C8-MSN as a promising candidate for targeted therapy in TMZ-resistant GBM, optimizing drug delivery and bioavailability to overcome current therapeutic limitations.


Subject(s)
Blood-Brain Barrier , Docetaxel , Drug Resistance, Neoplasm , Glioblastoma , Nanoparticles , Silicon Dioxide , Temozolomide , Temozolomide/chemistry , Temozolomide/pharmacology , Temozolomide/therapeutic use , Temozolomide/pharmacokinetics , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Docetaxel/chemistry , Docetaxel/pharmacology , Docetaxel/pharmacokinetics , Docetaxel/therapeutic use , Silicon Dioxide/chemistry , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Animals , Nanoparticles/chemistry , Humans , Mice , Drug Resistance, Neoplasm/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Porosity , Drug Carriers/chemistry , Mice, Nude , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects
2.
ACS Appl Bio Mater ; 7(3): 1810-1819, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38403964

ABSTRACT

Polymer-drug conjugates (PDCs) provide possibilities for the development of multiresponsive drug delivery and release platforms utilized in cancer therapy. The delivery of Temozolomide (TMZ, a DNA methylation agent) by PDCs has been developed to improve TMZ stability under physiological conditions for the treatment of glioblastoma multiforme (GBM); however, with inefficient chemotherapeutic efficacy. In this work, we synthesized an amphiphilic triblock copolymer (P1-SNO) with four pendant functionalities, including (1) a TMZ intermediate (named MTIC) as a prodrug moiety, (2) a disulfide bond as a redox-responsive trigger to cage MTIC, (3) S-nitrosothiol as a light/heat-responsive donor of nitric oxide (NO), and (4) a poly(ethylene glycol) chain to enable self-assembly in aqueous media. P1-SNO was demonstrated to liberate MTIC in the presence of reduced glutathione and release gaseous NO upon exposure to light or heat. The in vitro results revealed a synergistic effect of released MTIC and NO on both TMZ-sensitive and TMZ-resistant GBM cells. The environment-responsive PDC system for codelivery of MTIC and NO is promising to overcome the efficacy issue in TMZ-based cancer therapy.


Subject(s)
Dacarbazine/analogs & derivatives , Glioblastoma , Prodrugs , Humans , Temozolomide/pharmacology , Temozolomide/chemistry , Glioblastoma/drug therapy , Nitric Oxide , Polymers , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Prodrugs/pharmacology , Prodrugs/therapeutic use
3.
Small ; 19(18): e2207248, 2023 05.
Article in English | MEDLINE | ID: mdl-36725316

ABSTRACT

Glioblastoma (GBM) is the most common lethal brain tumor with dismal treatment outcomes and poor response to chemotherapy. As the regulatory center of cytogenetics and metabolism, most tumor chemotherapeutic molecules exert therapeutic effects in the nucleus. Nanodrugs showing the nuclear aggregation effect are expected to eliminate and fundamentally suppress tumor cells. In this study, a nanodrug delivery system based on polyhedral oligomeric silsesquioxane (POSS) is introduced to deliver drugs into the nuclei of GBM cells, effectively enhancing the therapeutic efficacy of chemotherapy. The nanoparticles are modified with folic acid and iRGD peptides molecules to improve their tumor cell targeting and uptake via receptor-mediated endocytosis. Nuclear aggregation allows for the direct delivery of chemotherapeutic drug temozolomide (TMZ) to the tumor cell nuclei, resulting in more significant DNA damage and inhibition of tumor cell proliferation. Herein, TMZ-loaded POSS nanoparticles can significantly improve the survival of GBM-bearing mice. Therefore, the modified POSS nanoparticles may serve as a promising drug-loaded delivery platform to improve chemotherapy outcomes in GBM patients.


Subject(s)
Glioblastoma , Nanoparticles , Mice , Animals , Glioblastoma/pathology , Cell Line, Tumor , Temozolomide/chemistry , Temozolomide/pharmacology , Drug Delivery Systems/methods , Nanoparticles/chemistry
4.
Molecules ; 27(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35209225

ABSTRACT

The solubility parameters, and solution thermodynamics of temozolomide (TMZ) in 10 frequently used solvents were examined at five different temperatures. The maximum mole fraction solubility of TMZ was ascertained in dimethyl sulfoxide (1.35 × 10-2), followed by that in polyethylene glycol-400 (3.32 × 10-3) > Transcutol® (2.89 × 10-3) > ethylene glycol (1.64 × 10-3) > propylene glycol (1.47 × 10-3) > H2O (7.70 × 10-4) > ethyl acetate (5.44 × 10-4) > ethanol (1.80 × 10-4) > isopropyl alcohol (1.32 × 10-4) > 1-butanol (1.07 × 10-4) at 323.2 K. An analogous pattern was also observed for the other investigated temperatures. The quantitated TMZ solubility values were regressed using Apelblat and Van't Hoff models and showed overall deviances of 0.96% and 1.33%, respectively. Apparent thermodynamic analysis indicated endothermic, spontaneous, and entropy-driven dissolution of TMZ in all solvents. TMZ solubility data may help to formulate dosage forms, recrystallize, purify, and extract/separate TMZ.


Subject(s)
Solvents/chemistry , Temozolomide/chemistry , Thermodynamics , Algorithms , Chemical Phenomena , Models, Chemical , Molecular Structure , Pharmaceutical Preparations , Solubility , Spectrum Analysis , Temozolomide/analysis , Temperature
5.
Bioorg Med Chem ; 53: 116533, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34863065

ABSTRACT

Glioblastoma (GBM) is the most aggressive and treatment-refractory malignant adult brain cancer. After standard of care therapy, the overall median survival for GBM is only ∼6 months with a 5-year survival <10%. Although some patients initially respond to the DNA alkylating agent temozolomide (TMZ), unfortunately most patients become resistant to therapy and brain tumors eventually recur. We previously found that knockout of BRG1 or treatment with PFI-3, a small molecule inhibitor of the BRG1 bromodomain, enhances sensitivity of GBM cells to temozolomide in vitro and in vivo GBM animal models. Those results demonstrated that the BRG1 catalytic subunit of the SWI/SNF chromatin remodeling complex appears to play a critical role in regulating TMZ-sensitivity. In the present study we designed and synthesized Structurally Related Analogs of PFI-3 (SRAPs) and tested their bioactivity in vitro. Among of the SRAPs, 9f and 11d show better efficacy than PFI-3 in sensitizing GBM cells to the antiproliferative and cell death inducing effects of temozolomide in vitro, as well as enhancing the inhibitor effect of temozolomide on the growth of subcutaneous GBM tumors.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Azabicyclo Compounds/pharmacology , DNA Helicases/antagonists & inhibitors , Glioblastoma/drug therapy , Nuclear Proteins/antagonists & inhibitors , Pyridines/pharmacology , Temozolomide/pharmacology , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents, Alkylating/chemistry , Azabicyclo Compounds/chemistry , Cell Death/drug effects , Cell Proliferation/drug effects , DNA Helicases/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Mice, Congenic , Mice, Inbred NOD , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Nuclear Proteins/metabolism , Pyridines/chemistry , Structure-Activity Relationship , Temozolomide/chemistry , Transcription Factors/metabolism
6.
ACS Appl Mater Interfaces ; 13(47): 55851-55861, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34788006

ABSTRACT

Temozolomide (TMZ) is a prodrug of 5-(3-methyltriazene-1-yl)imidazole-4-carboxamide (MTIC, short-lived) and used as a first-line therapy drug for glioblastoma multiforme (GBM). However, little progress has been made in regulating the kinetics of TMZ to MTIC degradation to improve the therapeutic effect, particularly in the case of TMZ-resistant GBM. In this work, we introduced a strategy to cage MTIC by N-acylation of the triazene moiety to boost the MTIC stability, designed a diblock copolymer-based MTIC prodrug installed with a disulfide linkage, and achieved self-assembled polymer micelles without the concern of MTIC leakage under physiological conditions. Polymer micelles could be induced to disassemble by stimuli factors such as glutathione (GSH) and visible light irradiation through thiol/sulfide exchange and homolytic sulfide scission mechanisms, which contributed to MTIC release in GSH-dependent and GSH-independent pathways. The in vitro results demonstrated that microenvironment-responsive polymeric micelles benefited the suppression of both TMZ-sensitive and TMZ-resistant GBM cells. The chemistry of polymer-MTIC prodrug provided a new option for TMZ-based glioma treatment.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Glioblastoma/drug therapy , Glutathione/chemistry , Light , Polymers/chemistry , Prodrugs/pharmacology , Temozolomide/pharmacology , Antineoplastic Agents, Alkylating/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Delivery Systems , Drug Liberation , Drug Screening Assays, Antitumor , Glioblastoma/pathology , Humans , Molecular Structure , Particle Size , Prodrugs/chemistry , Surface Properties , Temozolomide/chemistry
7.
PLoS One ; 16(9): e0256920, 2021.
Article in English | MEDLINE | ID: mdl-34469501

ABSTRACT

Microdialysis is a minimally invasive sampling technique which is widely applied in many fields including clinical studies. This technique usually has limitation on sampling hydrophobic compounds as aqueous solutions are commonly used as the perfusates. The relative recovery of hydrophobic compounds is often low and irreproducible because of the non-specific binding to microdialysis membranes or catheter tubing. Carriers such as cyclodextrins have been used to improve the recovery and consistency, however the identification of an optimal carrier can only be achieved after time-consuming and costly microdialysis experiments. We therefore developed a rapid, convenient, and low-cost method to identify the optimal carriers for sampling hydrophobic compounds with the use of centrifugal ultrafiltration. Doxorubicin was used as the model compound and its relative recoveries obtained from centrifugal ultrafiltration and from microdialysis were compared. The results show that the relative recoveries are highly correlated (correlation coefficient ≥ 0.9) between centrifugal ultrafiltration and microdialysis when different types or different concentrations of cyclodextrins were used as the carriers. In addition to doxorubicin, this method was further confirmed on three other drugs with different hydrophobicity. This method may facilitate and broaden the use of microdialysis perfusion on sampling or delivering hydrophobic substances in various applications.


Subject(s)
Cyclodextrins/chemistry , High-Throughput Screening Assays/methods , Microdialysis/methods , Specimen Handling/methods , Doxorubicin/analysis , Doxorubicin/chemistry , Hydrophobic and Hydrophilic Interactions , Temozolomide/analysis , Temozolomide/chemistry , Ultrafiltration
8.
ACS Appl Mater Interfaces ; 13(28): 32845-32855, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34235925

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive glioma. The treatment response is always low, and the condition is typically rapidly fatal. The undifferentiated and self-renewal characteristics of cancer stem cells (CSCs) have been reported, and their potential contribution may cause tumor initiation, recurrence, metastasis, and therapeutic resistance. In particular, glioblastoma stem-like cells exhibit highly invasive properties and drug resistance, serving as a model for the development of novel therapeutic strategies. Induction therapy provides an alternative therapeutic strategy to eliminate the stem cell properties of CSCs and enhance therapeutic sensitivity. The differentiated cells may lose their self-renewal ability, downregulate stem cell-related genes and drug resistance genes, and enhance anticancer drug sensitivity. Therefore, the purpose of this study is to establish a niche for glioblastoma stem-like cell selection as a platform and facilitate the assessment of differentiation therapy on GBM cancer stem-like colonies by retinoic acid (RA) with temozolomide (TMZ)-loaded gold nanoparticles (GNPs) associated with low-intensity ultrasound (LIUS). Herein, a hyaluronic acid-based material system was used to isolate GBM cancer stem-like colonies. Colony formation, size determination, stem cell-related marker expression, and GBM cancer stem-like cell marker expression with the culture period were identified. The effect of TMZ on GBM stem-like colonies on HA-based material systems was also determined, and the results revealed that drug resistance was highly enhanced in GBM colonies compared with that in the control cell population. In addition, GBM colonies also exhibited a significant increase in breast cancer resistance protein expression, which is consistent with the drug resistance effect. Furthermore, several factors, including LIUS, RA, and GNPs, were used to determine the possibility of induction therapy. RA with TMZ-loaded GNP-associated LIUS stimulation exhibited a significant and synergistic effect on the differentiation effect and drug sensitivity enhancement. The GBM cancer stem-like colony system presents an opportunity for the development of new therapeutic strategies, and this study provides an alternative differentiation therapy for malignant tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Glioblastoma/drug therapy , Metal Nanoparticles/chemistry , Temozolomide/pharmacology , Tretinoin/pharmacology , Antineoplastic Agents/chemistry , Cell Differentiation/drug effects , Cell Line, Tumor , Drug Liberation , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Gold/chemistry , Humans , Hyaluronic Acid/chemistry , Induction Chemotherapy , Neoplastic Stem Cells/drug effects , Spheroids, Cellular/drug effects , Temozolomide/chemistry , Tretinoin/chemistry , Ultrasonic Waves
9.
Int J Biol Macromol ; 187: 742-754, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34310997

ABSTRACT

A surface modulated biodegradable transdermal strategy has been exploited for improving the biopharmaceutical properties of Temozolomide augmented in Poly Lactic-co-glycolic acid (PLGA) chitosan double walled nanogel (PCNGL). The PCNGL was synthesized by dual approach methodology showing consistent nanosize particle range of 210 nm and PDI 0.325 ± 0.43 with cationic zeta potential values +29.34 ± 0.79 mV. The PCNGL showed qualitative endothermic & exothermic temperature dependent degradation peaks by thermogravimetry analysis. Blood hemolysis and coagulation assay showed 3.37 ± 0.19 as hemolytic ratio, validating biologically safe margin for transdermal delivery. The in vitro drug release showed 85% transdermal release at slightly acidic pH mimicking skin microenvironment. The ex vivo studies displayed noteworthy penetration potential validated by concentration depth assay and confocal laser scanning microscopy, exhibiting 80% Temozolomide uptake in porcine epidermal tissue. The current research demonstrated the biodegradable controlled delivery of chemotherapeutic Temozolomide leading to biologically safe transdermal therapy.


Subject(s)
Antineoplastic Agents, Alkylating/chemistry , Drug Carriers , Nanogels , Poloxamer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Temozolomide/chemistry , Administration, Cutaneous , Animals , Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Alkylating/metabolism , Delayed-Action Preparations , Drug Compounding , Drug Liberation , Epidermis/metabolism , Hydrogen-Ion Concentration , Nanotechnology , Skin Absorption , Surface Properties , Sus scrofa , Temozolomide/administration & dosage , Temozolomide/metabolism
10.
Bioorg Chem ; 112: 104942, 2021 07.
Article in English | MEDLINE | ID: mdl-33965781

ABSTRACT

Glioma accounts for 40-50% of craniocerebral tumors, whose outcome rarely improves after standard treatment. The development of new therapeutic targets for glioma treatment has important clinical significance. With the deepening of research on gliomas, recent researchers have found that the occurrence and development of gliomas is closely associated with histone modifications, including methylation, acetylation, phosphorylation, and ubiquitination. Additionally, evidence has confirmed the close relationship between histone modifications and temozolomide (TMZ) resistance. Therefore, histone modification-related proteins have been widely recognized as new therapeutic targets for glioma treatment. In this review, we summarize the potential histone modification-associated targets and related drugs for glioma treatment. We have further clarified how histone modifications regulate the pathogenesis of gliomas and the mechanism of drug action, providing novel insights for the current clinical glioma treatment. Herein, we have also highlighted the limitations of current clinical therapies and have suggested future research directions and expected advances in potential areas of disease prognosis. Due to the complicated glioma pathogenesis, in the present review, we have acknowledged the limitations of histone modification applications in the related clinical treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Glioma/drug therapy , Histones/pharmacology , Temozolomide/pharmacology , Antineoplastic Agents/chemistry , Brain Neoplasms/diagnosis , Brain Neoplasms/metabolism , DNA Damage , Drug Resistance, Neoplasm/drug effects , Glioma/diagnosis , Glioma/metabolism , Histones/chemistry , Humans , Temozolomide/chemistry
11.
Eur J Pharm Biopharm ; 161: 29-36, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33567313

ABSTRACT

Glioblastoma multiforme is the most aggressive and lethal form of brain tumour due to the high degree of cancer cells infiltration into surrounding brain tissue. No form of monotherapy can guarantee satisfactory patient outcomes and is only of palliative importance. To find a potential option of glioblastoma treatment the bioresorbable, layer nonwoven mats for controlled temozolomide and nimorazole release were obtained by classical and coaxial electrospinning. Optimization of fibre structure that enables delayed and controlled drug release was performed. The studied bioresorbable polymers were poly(L-lactide-co-ε-caprolactone) and poly(L-lactide-co-glycolide-co-trimethylene carbonate). The physicochemical properties of polymers were determined as well as drug release profiles of nonwoven mats. A combination of coaxial electrospinning and electrospray technique provided three-phased release profiles of temozolomide and nimorazole: the slow release of very low drug doses followed by accelerated release and saturation phase. Results form the basis for further investigation since both studied polymers possess a great potential as nimorazole and temozolomide delivery systems in the form of layered nonwoven implants.


Subject(s)
Absorbable Implants , Drug Carriers/chemistry , Nimorazole/administration & dosage , Temozolomide/administration & dosage , Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Alkylating/chemistry , Brain Neoplasms/drug therapy , Chemistry, Pharmaceutical , Delayed-Action Preparations , Dioxanes/chemistry , Drug Liberation , Glioblastoma/drug therapy , Nimorazole/chemistry , Polyesters/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polymers/chemistry , Radiation-Sensitizing Agents/administration & dosage , Radiation-Sensitizing Agents/chemistry , Temozolomide/chemistry
12.
ACS Appl Mater Interfaces ; 13(5): 6099-6108, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33507729

ABSTRACT

The blood-brain barrier (BBB) is a physical barrier that selectively prevents certain substances from entering the brain through the blood. The BBB protects the brain from germs and causes difficulty in intracranial treatment. The chemotherapy drug temozolomide (TMZ), embedded in nanobubbles (NBs) and combined with persistent luminescent nanoparticles (PLNs), has been used to treat glioblastoma (GBM) effectively through image tracking. Through ultrasound induction, NBs produce cavitation that temporarily opens the BBB. Additionally, the PLNs release near-infrared emission and afterglow, which can penetrate deep tissues and improve the signal-to-noise ratio of bioimages. In this work, the nanosystem crossed the BBB for drug delivery and image tracking over time, allowing the enhancement of the drug's therapeutic effect on GBM. We hope that this nanosystem can be applied to the treatment of different brain diseases by embedding different drugs in NBs.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/therapy , Glioblastoma/therapy , Nanocomposites/chemistry , Temozolomide/pharmacology , Ultrasonic Therapy , Animals , Antineoplastic Agents, Alkylating/chemistry , Blood-Brain Barrier/drug effects , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Glioblastoma/pathology , Humans , Infrared Rays , Molecular Structure , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Particle Size , Surface Properties , Temozolomide/chemistry , Ultrasonic Waves
13.
ACS Appl Bio Mater ; 4(11): 8004-8012, 2021 11 15.
Article in English | MEDLINE | ID: mdl-35006781

ABSTRACT

The short half-life of temozolomide (TMZ) limits its therapeutic effect on highly aggressive glioblastoma (GBM). Few approaches attempting to intervene the metabolic kinetics of TMZ are successful. Herein, we designed anionic copolymers via radical polymerization to prepare polymer-coated small copper nanoclusters, taking advantage of the role of pendent thymine groups as a template. The active and key intermediate of TMZ, typically called 3-methyl-(triazen-1-yl)imidazole-4-carboxamide (MTIC), was stabilized by copper under physiological (slightly alkaline) conditions, alleviating concerns associated with spontaneous drug degradation and nonspecific drug activation. Importantly, the complexes formed by MTIC and copper nanoclusters could catalyze the Fenton reaction to generate hydroxyl radicals and also respond to pH and glutathione to release therapeutic MTIC, which allows combined chemotherapy and chemodynamic therapy against GBM cells and paves a way for circumventing the complication of TMZ resistance.


Subject(s)
Glioblastoma , Nanoparticles , Biomimetics , Copper/therapeutic use , Glioblastoma/drug therapy , Humans , Polymers/therapeutic use , Temozolomide/chemistry
14.
ACS Appl Bio Mater ; 4(3): 2628-2638, 2021 03 15.
Article in English | MEDLINE | ID: mdl-35014379

ABSTRACT

Enhanced drug localization at the tumor sites with minimal toxicity was demonstrated using dendrimer-conjugated temozolomide for treating experimental lymphoma, developed as a solid tumor. Herein, we have constructed a polyamidoamine (PAMAM) dendrimer conjugated with temozolomide to enhance the stability of the active drug metabolites, derived from the prodrug temozolomide. Our results suggest that the active drug (5-(3-methyltriazen-1-yl)imidazole-4-carboxamide) (MTIC) (derived from temozolomide) showed stable and sustained release from the dendrimer-temozolomide conjugate, suggesting the suitability of the construct for therapy. Besides growth inhibition and direct killing, the dendrimer-temozolomide construct induced extensive apoptosis not only in parental Dalton lymphoma tumor cells but also in the doxorubicin-resistant form of the tumor cells. Dendrimer-temozolomide conjugation significantly reduced the solid tumor growth and increased the lifespan with better prognosis, including improved histopathology of the treated mice, while untreated littermates developed extensive metastasis and succumbed to death.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Biocompatible Materials/pharmacology , Dendrimers/pharmacology , Drug Development , Lymphoma/drug therapy , Temozolomide/pharmacology , Animals , Antineoplastic Agents, Alkylating/chemical synthesis , Antineoplastic Agents, Alkylating/chemistry , Apoptosis/drug effects , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dendrimers/chemistry , Drug Liberation , Drug Screening Assays, Antitumor , Female , Humans , Lymphoma/pathology , Materials Testing , Mice , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Particle Size , Temozolomide/chemistry
15.
J Oncol Pharm Pract ; 27(1): 78-87, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32228132

ABSTRACT

BACKGROUND: Temozolomide oral suspension is not commercially available. OBJECTIVE: To evaluate the stability of three temozolomide 10 mg/mL suspensions prepared in Oral Mix SF® in three container types stored at 4°C and 23°C. METHODS: Using commercial capsules, three separate batches of three different temozolomide 10 mg/mL formulations (Oral Mix SF® with PK-30; PK-30 and citric acid; and neither PK-30 nor citric acid) were made and stored in three container types (amber glass bottles, amber polyethylene terephthalate bottles, and polypropylene oral syringes). The aliquots in each container type were stored protected from light, half at 25°C and half at 4°C. On study days 0, 5, 8, 14, 21, 28, 35, 42, and 56, physical properties of samples from each container type at each temperature were assessed, and the temozolomide concentration was determined using a stability-indicating method. The beyond-use-date (time to achieve 90% of initial concentration calculated using the lower limit of the 95% confidence interval of the observed degradation rate) was calculated. RESULTS: Samples stored at 25°C turned from white to orange within seven days. Temozolomide crystals were observed in all samples. Concentration changes due to study day and temperature (p < 0.001) were observed but not due to container (p = 0.991) or formulation (p = 0.987). The beyond-use-date of all formulations in all container types was 56 days at 4°C and 6 days at 23°C. CONCLUSIONS: We recommend that these temozolomide 10 mg/mL formulations be stored at 4°C and be assigned a beyond-use-date of 30 days.


Subject(s)
Antineoplastic Agents, Alkylating/chemistry , Temozolomide/chemistry , Crystallization , Drug Compounding , Drug Packaging , Drug Stability , Drug Storage , Glass , Plastics , Syringes , Temperature
16.
Methods Mol Biol ; 2207: 175-186, 2021.
Article in English | MEDLINE | ID: mdl-33113136

ABSTRACT

Cancer occupies a high rank in the global morbidity and mortality scale with glioblastoma multiforme (GBM) accounting for almost 80% of all primary tumors of the brain. Despite the increasing availability of targeted and immunotherapeutic agents, chemotherapy still plays an important role in the treatment of neoplastic diseases. Limitations to the effective use of chemotherapy such as low aqueous solubility and high toxicity have directed the scientific community's interest to the development of new therapeutic agents with enhanced efficacy and limited toxicity. Supramolecular chemistry has offered an alternative way on the design and development of new therapeutic agents as a result of their unique properties. Supramolecules can be used as drug carriers since their cavities can host a wide range of small drugs and surpass in this way the drawbacks of current therapeutic agents. Herein, we present the principles that should be followed for the encapsulation of small drugs in supramolecules with enhanced physicochemical properties and increased efficacy against glioblastoma multiforme.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Drug Carriers , Glioblastoma , Temozolomide , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Female , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Solubility , Temozolomide/chemistry , Temozolomide/pharmacokinetics , Temozolomide/pharmacology , Xenograft Model Antitumor Assays
17.
Methods Mol Biol ; 2207: 235-246, 2021.
Article in English | MEDLINE | ID: mdl-33113140

ABSTRACT

Many bioactive substances face the problem of limited bioavailability, mainly due to low aqueous solubility and poor metabolic stability. Their complexation with drug delivery systems offers a more optimum pharmacological profile. Some of these drug delivery systems that have promising potential form complexes with bioactive compounds such as cyclodextrins and calixarenes. The monitoring of the success and the type of the complexation are of great importance and two-dimensional diffusion-ordered NMR spectroscopy (2D DOSY) is a valuable tool for the studying of these complexes and described as "NMR chromatography." Herein we report the procedure for the complexation of the natural product quercetin in 2-hydroxypropyl-ß-cyclodextrin and the anticancer drug temozolomide in p-sulfonatocalix[4]arene and the determination of the complexation with 2D DOSY spectroscopy.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/chemistry , Drug Carriers/chemistry , Nuclear Magnetic Resonance, Biomolecular , Temozolomide/chemistry
18.
PLoS One ; 15(7): e0219632, 2020.
Article in English | MEDLINE | ID: mdl-32706829

ABSTRACT

INTRODUCTION: Surgical resection and systemic chemotherapy with temozolomide remain the mainstay for treatment of glioblastoma. However, many patients are not candidates for surgical resection given inaccessible tumor location or poor health status. Furthermore, despite being first line treatment, temozolomide has only limited efficacy. METHODS: The development of injectable hydrogel-based carrier systems allows for the delivery of a wide range of chemotherapeutics that can achieve high local concentrations, thus potentially avoiding systemic side effects and wide-spread neurotoxicity. To test this modality in a realistic environment, we developed a diblock copolypeptide hydrogel (DCH) capable of carrying and releasing paclitaxel, a compound that we found to be highly potent against primary gliomasphere cells. RESULTS: The DCH produced minimal tissue reactivity and was well tolerated in the immune-competent mouse brain. Paclitaxel-loaded hydrogel induced less tissue damage, cellular inflammation and reactive astrocytes than cremaphor-taxol (typical taxol-carrier) or hydrogel alone. In a deep subcortical xenograft model of glioblastoma in immunodeficient mice, injection of paclitaxel-loaded hydrogel led to local tumor control and improved survival. However, the tumor cells were highly migratory and were able to eventually escape the area of treatment. CONCLUSIONS: These findings suggest this technology may be ultimately applicable to patients with deep-seated inoperable tumors, but as currently formulated, complete tumor eradication would be highly unlikely. Future studies should focus on targeting the migratory potential of surviving cells.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Glioblastoma/drug therapy , Hydrogels/chemistry , Paclitaxel/therapeutic use , Peptides/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Central Nervous System/pathology , Drug Carriers/chemistry , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Paclitaxel/chemistry , Survival Rate , Temozolomide/chemistry , Temozolomide/therapeutic use , Xenograft Model Antitumor Assays
19.
Biomolecules ; 10(7)2020 07 09.
Article in English | MEDLINE | ID: mdl-32659914

ABSTRACT

The interaction of temozolomide (TMZ) (the main chemotherapeutic agent for brain tumors) with blood components has not been studied at the molecular level to date, even though such information is essential in the design of dosage forms for optimal therapy. This work explores the binding of TMZ to human serum albumin (HSA) and alpha-1-acid glycoprotein (AGP), as well as to blood cell-mimicking membrane systems. Absorption and fluorescence experiments with model membranes indicate that TMZ does not penetrate into the lipid bilayer, but binds to the membrane surface with very low affinity. Fluorescence experiments performed with the plasma proteins suggest that in human plasma, most of the bound TMZ is attached to HSA rather than to AGP. This interaction is moderate and likely mediated by hydrogen-bonding and hydrophobic forces, which increase the hydrolytic stability of the drug. These experiments are supported by docking and molecular dynamics simulations, which reveal that TMZ is mainly inserted in the subdomain IIA of HSA, establishing π-stacking interactions with the tryptophan residue. Considering the overexpression of albumin receptors in tumor cells, our results propose that part of the administered TMZ may reach its target bound to plasma albumin and suggest that HSA-based nanocarriers are suitable candidates for designing biomimetic delivery systems that selectively transport TMZ to tumor cells.


Subject(s)
Glycoproteins/metabolism , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Temozolomide/pharmacology , Binding Sites , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Circular Dichroism , Glycoproteins/chemistry , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Protein Structure, Secondary , Temozolomide/chemistry
20.
ACS Appl Mater Interfaces ; 12(31): 34599-34609, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32648735

ABSTRACT

We designed a conjugated compound by coupling temozolomide (TMZ) with doxorubicin (DOX) via an acylhydrazone linkage as a potential prodrug used for glioblastoma multiforme (GBM) treatment. Viscosity and spectroscopic studies revealed that the drug conjugate could act as a nonclassical double intercalating agent. Although free TMZ is an inefficient DNA binder in comparison to DOX, the TMZ moiety interacted with DNA as an induced intercalator, arising from the synergistic effect of DOX moiety that mediated conformational changes of the DNA helix. Two binding modes were proposed to interpret the double intercalating effect of the drug conjugate on intra- and inter-DNA interactions that could cause DNA cross-linking and fibril aggregates. We also developed a delivery nanoplatform with a loading efficiency of 83% using copper-bound apoferritin as a nanocarrier. In sharp contrast to the short half-life of free TMZ, the nanocomposite was stable under physiological conditions without detectable drug decomposition after a 2 week storage, and drug release was activatable in the presence of glutathione at millimolar levels. The antitumor effect of the drug conjugate and nanocomposite against GBM cells was reported to demonstrate the potential therapeutic applications of double intercalating materials.


Subject(s)
Antineoplastic Agents/pharmacology , Apoferritins/chemistry , Brain Neoplasms/drug therapy , Doxorubicin/pharmacology , Drug Delivery Systems , Glioblastoma/drug therapy , Temozolomide/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Screening Assays, Antitumor , Glioblastoma/pathology , Humans , Molecular Conformation , Particle Size , Surface Properties , Temozolomide/chemistry , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...