Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters










Publication year range
1.
mBio ; 15(5): e0321123, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564693

ABSTRACT

Most arthropod-borne viruses produce intermittent epidemics in infected plants. However, the underlying mechanisms of these epidemics are unclear. Here, we demonstrated that rice stripe mosaic virus (RSMV), a viral pathogen, significantly increases the mortality of its overwintering vector, the leafhopper species Recilia dorsalis. Cold-stress assays indicated that RSMV reduces the cold tolerance of leafhoppers, a process associated with the downregulation of leafhopper cuticular protein genes. An RSMV-derived small RNA (vsiR-t00355379) was found to facilitate the downregulation of a leafhopper endocuticle gene that is mainly expressed in the abdomen (named RdABD-5) and is conserved across dipteran species. The downregulation of RdABD-5 expression in R. dorsalis resulted in fewer and thinner endocuticle lamellae, leading to decreased cold tolerance. This effect was correlated with a reduced incidence rate of RSMV in early-planted rice plants. These findings contribute to our understanding of the mechanism by which viral pathogens reduce cold tolerance in arthropod vectors and suggest an approach to managing the fluctuating prevalence of arboviruses. IMPORTANCE: Increasing arthropod vector dispersal rates have increased the susceptibility of crop to epidemic viral diseases. However, the incidence of some viral diseases fluctuates annually. In this study, we demonstrated that a rice virus reduces the cold tolerance of its leafhopper vector, Recilia dorsalis. This effect is linked to the virus-derived small RNA-mediated downregulation of a gene encoding a leafhopper abdominal endocuticle protein. Consequently, the altered structural composition of the abdominal endocuticle reduces the overwinter survival of leafhoppers, resulting in a lower incidence of RSMV infection in early-planted rice plants. Our findings illustrate the important roles of RNA interference in virus-vector insect-environment interactions and help explain the annual fluctuations of viral disease epidemics in rice fields.


Subject(s)
Cold Temperature , Hemiptera , Oryza , Plant Diseases , Animals , Hemiptera/virology , Plant Diseases/virology , Oryza/virology , Tenuivirus/genetics , Tenuivirus/physiology , Insect Vectors/virology , Insect Vectors/physiology
2.
Mol Plant Pathol ; 25(3): e13446, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38502176

ABSTRACT

Animal studies have shown that virus infection causes changes in host chromatin accessibility, but little is known about changes in chromatin accessibility of plants infected by viruses and its potential impact. Here, rice infected by rice stripe virus (RSV) was used to investigate virus-induced changes in chromatin accessibility. Our analysis identified a total of 6462 open- and 3587 closed-differentially accessible chromatin regions (DACRs) in rice under RSV infection by ATAC-seq. Additionally, by integrating ATAC-seq and RNA-seq, 349 up-regulated genes in open-DACRs and 126 down-regulated genes in closed-DACRs were identified, of which 34 transcription factors (TFs) were further identified by search of upstream motifs. Transcription levels of eight of these TFs were validated by reverse transcription-PCR. Importantly, four of these TFs (OsWRKY77, OsWRKY28, OsZFP12 and OsERF91) interacted with RSV proteins and are therefore predicted to play important roles in RSV infection. This is the first application of ATAC-seq and RNA-seq techniques to analyse changes in rice chromatin accessibility caused by RSV infection. Integrating ATAC-seq and RNA-seq provides a new approach to select candidate TFs in response to virus infection.


Subject(s)
Oryza , Respiratory Syncytial Virus Infections , Tenuivirus , Animals , Transcription Factors/genetics , Oryza/genetics , Tenuivirus/genetics , Chromatin Immunoprecipitation Sequencing , RNA-Seq , Chromatin , Data Analysis
3.
Proc Natl Acad Sci U S A ; 121(3): e2315341121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38190519

ABSTRACT

Wing dimorphism of insect vectors is a determining factor for viral long-distance dispersal and large-area epidemics. Although plant viruses affect the wing plasticity of insect vectors, the potential underlying molecular mechanisms have seldom been investigated. Here, we found that a planthopper-vectored rice virus, rice stripe virus (RSV), specifically induces a long-winged morph in male insects. The analysis of field populations demonstrated that the long-winged ratios of male insects are closely associated with RSV infection regardless of viral titers. A planthopper-specific and testis-highly expressed gene, Encounter, was fortuitously found to play a key role in the RSV-induced long-winged morph. Encounter resembles malate dehydrogenase in the sequence, but it does not have corresponding enzymatic activity. Encounter is upregulated to affect male wing dimorphism at early larval stages. Encounter is closely connected with the insulin/insulin-like growth factor signaling pathway as a downstream factor of Akt, of which the transcriptional level is activated in response to RSV infection, resulting in the elevated expression of Encounter. In addition, an RSV-derived small interfering RNA directly targets Encounter to enhance its expression. Our study reveals an unreported mechanism underlying the direct regulation by a plant virus of wing dimorphism in its insect vectors, providing the potential way for interrupting viral dispersal.


Subject(s)
Epidemics , Plant Viruses , Respiratory Syncytial Virus Infections , Tenuivirus , Male , Animals , Plant Viruses/genetics , Tenuivirus/genetics , Insect Vectors , Insulin-Like Peptides
4.
Viruses ; 15(11)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38005916

ABSTRACT

Virus coat protein (CP)-mediated resistance is considered an effective antiviral defense strategy that has been used to develop robust resistance to viral infection. Rice stripe virus (RSV) causes significant losses in rice production in eastern Asia. We previously showed that the overexpression of RSV CP in Arabidopsis plants results in immunity to RSV infection, using the RSV-Arabidopsis pathosystem, and this CP-mediated viral resistance depends on the function of DCLs and is mostly involved in RNA silencing. However, the special role of DCLs in producing t-siRNAs in CP transgenic Arabidopsis plants is not fully understood. In this study, we show that RSV CP transgenic Arabidopsis plants with the dcl2 mutant background exhibited similar virus susceptibility to non-transgenic plants and were accompanied by the absence of transgene-derived small interfering RNAs (t-siRNAs) from the CP region. The dcl2 mutation eliminated the accumulation of CP-derived t-siRNAs, including those generated by other DCL enzymes. In contrast, we also developed RSV CP transgenic Arabidopsis plants with the dcl4 mutant background, and these CP transgenic plants showed immunity to virus infection and accumulated comparable amounts of CP-derived t-siRNAs to CP transgenic Arabidopsis plants with the wild-type background except for a significant increase in the abundance of 22 nt t-siRNA reads. Overall, our data indicate that DCL2 plays an essential, as opposed to redundant, role in CP-derived t-siRNA production and induces virus resistance in RSV CP transgenic Arabidopsis plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Tenuivirus , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/virology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified , RNA Interference , RNA, Double-Stranded/metabolism , RNA, Small Interfering/genetics , Tenuivirus/genetics
5.
Mol Plant Pathol ; 24(11): 1359-1369, 2023 11.
Article in English | MEDLINE | ID: mdl-37404045

ABSTRACT

Our previous study identified an evolutionarily conserved C4HC3-type E3 ligase, named microtubule-associated E3 ligase (MEL), that regulates broad-spectrum plant resistance against viral, fungal and bacterial pathogens in multiple plant species by mediating serine hydroxymethyltransferase (SHMT1) degradation via the 26S proteasome pathway. In the present study, we found that NS3 protein encoded by rice stripe virus could competitively bind to the MEL substrate recognition site, thereby inhibiting MEL interacting with and ubiquitinating SHMT1. This, in turn, leads to the accumulation of SHMT1 and the repression of downstream plant defence responses, including reactive oxygen species accumulation, mitogen-activated protein kinase pathway activation, and the up-regulation of disease-related gene expression. Our findings shed light on the ongoing arms race between pathogens and demonstrate how a plant virus can counteract the plant defence response.


Subject(s)
Oryza , Plant Viruses , Tenuivirus , Tenuivirus/genetics , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Ubiquitin-Protein Ligases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Viruses/metabolism , Oryza/metabolism , Plant Diseases/microbiology
6.
Mol Biol Rep ; 50(9): 7263-7274, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37422539

ABSTRACT

BACKGROUND: Rice stripe virus (RSV) caused a serious disease pandemic in rice in East China between 2001 and 2010. The continuous integrated managements reduced virus epidemic year by year until it was non-epidemic. As an RNA virus, its genetic variability after undergoing a long-term non-epidemic period was meaningful to study. While in 2019, the sudden occurrence of RSV in Jiangsu provided an opportunity for the study. METHODS AND RESULTS: The complete genome of JY2019, an RSV isolate from Jiangyan, was determined. A genotype profile of 22 isolates from China, Japan and Korea indicated that the isolates from Yunnan formed the subtype II, and other isolates clustered the subtype I. RNA 1-3 of JY2019 isolate well-clustered in the subtype I clade, and RNA 4 was also in subtype I, but it had a slight separation from other intra-group isolates. After phylogenetic analyses, it was considered NSvc4 gene contributed to the tendency, because it exhibited an obvious trend towards the subtype II (Yunnan) group. High sequence identity (100%) of NSvc4 between JY2019 and barnyardgrass isolate from different regions demonstrated genetic variation of NSvc4 was consistent in RSV natural populations in Jiangsu in the non-epidemic period. In the phylogenetic tree of all 74 NSvc4 genes, JY2019 belonged to a minor subtype Ib, suggesting the subtype Ib isolates might have existed in natural populations before the non-epidemic period, but not a dominant population. CONCLUSIONS: Our results suggested that NSvc4 gene was susceptible to selection pressure, and the subtype Ib might be more adaptable for the interaction between RSV and hosts in the non-epidemic ecological conditions.


Subject(s)
Oryza , Tenuivirus , Tenuivirus/genetics , Phylogeny , Pandemics , China/epidemiology , RNA , Oryza/genetics
7.
J Virol Methods ; 319: 114757, 2023 09.
Article in English | MEDLINE | ID: mdl-37257758

ABSTRACT

Geminiviruses are a family of single-stranded DNA viruses that cause significant yield losses in crop production worldwide. Transcription start site (TSS) mapping is crucial in understanding the gene expression mechanisms of geminiviruses. However, this often requires costly and laborious experiments. Rice stripe virus (RSV) has a mechanism called cap-snatching, whereby it cleaves cellular mRNAs and uses the 5' cleavage product, a capped-RNA leader (CRL), as primers for transcription. Our previous work demonstrated that RSV snatches CRLs from geminiviral mRNAs in co-infected plants, providing a convenient and powerful approach to map the TSSs of geminiviruses. However, co-infections are not always feasible for all geminiviruses. In this study, we evaluated the use of in vitro cap-snatching of RSV for the same purpose, using tomato yellow leaf curl virus (TYLCV) as an example. We incubated RNA extracted from TYLCV-infected plants with purified RSV ribonucleoproteins in a reaction mixture that supports in vitro cap-snatching of RSV. The RSV mRNAs produced in the reaction were deep sequenced. The CRLs snatched by RSV allowed us to locate 28 TSSs in TYLCV. These results provide support for using RSV's in vitro cap-snatching to map geminiviral TSSs.


Subject(s)
Geminiviridae , Tenuivirus , Tenuivirus/genetics , Tenuivirus/metabolism , Geminiviridae/genetics , RNA, Viral/genetics , Transcription Initiation Site , RNA, Messenger/genetics
8.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36835087

ABSTRACT

MicroRNAs play key regulatory roles in plant development. The changed pattern of miRNA expression is involved in the production of viral symptoms. Here, we showed that a small RNA, Seq119, a putative novel microRNA, is associated with the low seed setting rate, a viral symptom of rice stripe virus (RSV)-infected rice. The expression of Seq 119 was downregulated in RSV-infected rice. The overexpression of Seq119 in transgenic rice plants did not cause any obvious phenotypic changes in plant development. When the expression of Seq119 was suppressed in rice plants either by expressing a mimic target or by CRISPR/Cas editing, seed setting rates were extremely low, similar to the effects of RSV infection. The putative targets of Seq119 were then predicted. The overexpression of the target of Seq119 in rice caused a low seed setting rate, similar to that in Seq119-suppressed or edited rice plants. Consistently, the expression of the target was upregulated in Seq119-suppressed and edited rice plants. These results suggest that downregulated Seq119 is associated with the low seed setting rate symptom of the RSV in rice.


Subject(s)
MicroRNAs , Oryza , Tenuivirus , MicroRNAs/genetics , Tenuivirus/genetics , Oryza/genetics , Plant Diseases/genetics
9.
Virus Res ; 324: 199019, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36496034

ABSTRACT

Rice stripe virus (RSV) causes enormous losses in rice production and is transmitted by the small brown planthopper, Laodelphax striatellus, in a persistent-propagative manner. RSV accumulation within the gut lumen of the vector is indispensable for the successful transmission to rice and insects. In this study, we obtained a 1464 bp full-length cDNA of a voltage-dependent anion channel 2 from L. striatellus (LsVDAC2), which encodes a 283 amino acid protein. RSV infection increased the expression of LsVDAC2 in the midguts and ovaries of L. striatellus by 260% and 228%, respectively. Silencing of LsVDAC2 resulted in a 88% reduction of RSV loads at 24 h after RNAi, indicating that LsVDAC2 facilitates RSV accumulation in the vector. Yeast two-hybrid and GST pulldown assays demonstrated that LsVDAC2 interacted with RSV RNA-dependent RNA polymerase, RdRp. Furthermore, experiments in vivo and in vitro showed that LsVDAC2 induced the apoptotic response in RSV-infected insects and tissues. Silencing of LsVDAC2 via RNAi significantly reduced the expression of genes for apoptosis-related caspases 1a and 1c by 62% and 78%, respectively, in RSV-infected vectors. Whether LsVDAC2-induced RSV accumulation is related to RSV RdRp and LsVDAC2-induced cell apoptosis deserves further investigation.


Subject(s)
Hemiptera , Oryza , Tenuivirus , Animals , Tenuivirus/genetics , Voltage-Dependent Anion Channel 2/metabolism , Insect Vectors , Insecta
10.
Arch Insect Biochem Physiol ; 112(2): e21992, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36575628

ABSTRACT

The small brown planthopper, Laodelphax striatellus, is a destructive pest insect found in rice fields. L. striatellus not only directly feeds on the phloem sap of rice but also transmits various viruses, such as rice stripe virus (RSV) and rice black-streaked dwarf virus, resulting in serious loss of rice production. RSV is a rice-infecting virus that is found mainly in Korea, China, and Japan. To develop novel strategies to control L. striatellus and L. striatellus-transmitted viruses, various studies have been conducted, based on vector biology, interactions between vectors and pathogens, and omics, including transcriptomics, proteomics, and metabolomics. In this review, we discuss the roles of saliva proteins during phloem sap-sucking and virus transmission, the diversity and role of the microbial community in L. striatellus, the profile and molecular mechanisms of insecticide resistance, classification of L. striatellus-transmitted RSV, its host range and symptoms, its genome composition and roles of virus-derived proteins, its distribution, interactions with L. striatellus, and resistance and control, to suggest future directions for integrated pest management to control L. striatellus and L. striatellus-transmitted viruses.


Subject(s)
Hemiptera , Oryza , Tenuivirus , Animals , Tenuivirus/genetics , Insect Vectors/genetics , Hemiptera/genetics , Insecta/genetics , Gene Expression Profiling , Viral Proteins/metabolism
11.
Viruses ; 16(1)2023 12 31.
Article in English | MEDLINE | ID: mdl-38257773

ABSTRACT

Rice stripe disease caused by the rice stripe virus (RSV), which infects many Poaceae species in nature, is one of the most devastating plant viruses in rice that causes enormous losses in production. Ailanthone is one of the typical C20 quassinoids synthesized by the secondary metabolism of Ailanthus altissima, which has been proven to be a biologically active natural product with promising prospects and great potential for use as a lead structure for pesticide development. Based on the achievement of the systemic infection and replication of RSV in Nicotiana benthamiana plants and rice protoplasts, the antiviral properties of Ailanthone were investigated by determining its effects on viral-coding RNA gene expression using reverse transcription polymerase chain reaction, and Western blot analysis. Ailanthone exhibited a dose-dependent inhibitory effect on RSV NSvc3 expression in the assay in both virus-infected tobacco plants and rice protoplasts. Further efforts revealed a potent inhibitory effect of Ailanthone on the expression of seven RSV protein-encoding genes, among which NS3, NSvc3, NS4, and NSvc4 are the most affected genes. These facts promoted an extended and greater depth of understanding of the antiviral nature of Ailanthone against plant viruses, in addition to the limited knowledge of its anti-tobacco mosaic virus properties. Moreover, the leaf disc method introduced and developed in the study for the detection of the antiviral activity of Ailanthone facilitates an available and convenient screening method for anti-RSV natural products or synthetic chemicals.


Subject(s)
Ailanthus , Biological Products , Quassins , Tenuivirus , Tenuivirus/genetics , Nicotiana , Antiviral Agents/pharmacology
12.
Arch Virol ; 168(1): 3, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539651

ABSTRACT

During the 2019 winter wheat season, symptoms of severe chlorosis and stunting were observed on wheat in the irrigation production areas of South Africa. RNAtag-seq data were generated for seven samples from KwaZulu-Natal province and one from Limpopo. Analysis of assembled contigs indicated the presence of a putatively novel member of the genus Tenuivirus, tentatively named "wheat yellows virus" (WhYV). The genome is made up of four segments, which are 8952, 3451, 2338, and 2045 nucleotides in length and code for a total of seven ORFs. Phylogenies of each segment (nucleotide) and the polymerase gene (amino acid), as well as amino acid sequence comparisons of each gene product, showed that WhYV is most closely related to rice stripe virus.


Subject(s)
Tenuivirus , Tenuivirus/genetics , Phylogeny , Triticum , South Africa , Genome, Viral , Genomics , Nucleotides
13.
Viruses ; 14(11)2022 11 17.
Article in English | MEDLINE | ID: mdl-36423156

ABSTRACT

Rice stripe virus (RSV) is one of the most important viral pathogens of rice in East Asia. The origin and dispersal of RSV remain poorly understood, but an emerging hypothesis suggests that: (i) RSV originates from Yunnan, a southwest province of China; and (ii) some places of eastern China have acted as a center for the international dissemination of RSV. This hypothesis, however, has never been tested rigorously. Using a data set comprising more than 200 time-stamped coat protein gene sequences of RSV from Japan, China and South Korea, we reconstructed the phylogeographic history of RSV with Bayesian phylogeographic inference. Unexpectedly, the results did not support the abovementioned hypothesis. Instead, they suggested that RSV originates from Japan and Japan has been the major center for the dissemination of RSV in the past decades. Based on these data and the temporal dynamics of RSV reported recently by another group, we proposed a new hypothesis to explain the origin and dispersal of RSV. This new hypothesis may be valuable for further studies aiming to clarify the epidemiology of RSV. It may also be useful in designing management strategies against this devastating virus.


Subject(s)
Oryza , Tenuivirus , Tenuivirus/genetics , Japan/epidemiology , Bayes Theorem , China
14.
Viruses ; 14(11)2022 10 26.
Article in English | MEDLINE | ID: mdl-36366447

ABSTRACT

Rice stripe virus (RSV) is one of the most devastating viruses affecting rice production. During virus infection, ubiquitination plays an important role in the dynamic regulation of host defenses. We combined the ubiquitomics approach with the label-free quantitation proteomics approach to investigate potential ubiquitination status changes of Nicotiana benthamiana infected with RSV. Bioinformatics analyses were performed to elucidate potential associations between proteins with differentially ubiquitinated sites (DUSs) and various cellular components/pathways during virus infection. In total, 399 DUSs in 313 proteins were identified and quantified, among them 244 ubiquitinated lysine (Kub) sites in 186 proteins were up-regulated and 155 Kub sites in 127 proteins were down-regulated at 10 days after RSV infection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated that proteins with up-regulated Kub sites were significantly enriched in the ribosome. Silencing of 3-isopropylmalate dehydratase large subunit through virus-induced gene silencing delayed RSV infection, while silencing of mRNA-decapping enzyme-like protein promoted RSV symptom in the late stage of infection. Moreover, ubiquitination was observed in all seven RSV-encoded proteins. Our study supplied the comprehensive analysis of the ubiquitination changes in N. benthamiana after RSV infection, which is helpful for understanding RSV pathogenesis and RSV-host interactions.


Subject(s)
Oryza , Tenuivirus , Tenuivirus/genetics , Nicotiana , Plant Diseases , Plant Proteins/genetics , Plant Proteins/metabolism
15.
Viruses ; 14(10)2022 10 19.
Article in English | MEDLINE | ID: mdl-36298853

ABSTRACT

Viruses, as intracellular parasites, rely on the host organism to complete their life cycle. Although over 70% of plant viruses are transmitted by insect vectors, the role of vector energy metabolism on the infection process of insect-borne plant viruses is unclear. In this study, full-length cDNAs of three energy metabolism-related genes (LsATPase, LsMIT13 and LsNADP-ME) were obtained from the small brown planthopper (SBPH, Laodelphax striatellus), which transmits the Rice stripe virus (RSV). Expression levels of LsATPase, LsMIT13 and LsNADP-ME increased by 105%, 1120% and 259%, respectively, due to RSV infection. The repression of LsATPase, LsMIT13 or LsNADP-ME by RNAi had no effect on RSV nucleocapsid protein (NP) transcripts or protein levels. The repression of LsATPase caused a significant increase in LsMIT13 and LsNADP-ME transcript levels by 230% and 217%, respectively, and the repression of LsMIT13 caused a significant increase in LsNADP-ME mRNA levels. These results suggested that the silencing of LsATPase induced compensatory upregulation of LsMIT13 and LsNADP-ME, and silencing LsMIT13 induced compensatory upregulation of LsNADP-ME. Further study indicated that the co-silencing of LsATPase, LsMIT13 and LsNADP-ME in viruliferous SBPHs increased ATP production and RSV loads by 182% and 117%, respectively, as compared with nonviruliferous SBPHs. These findings indicate that SBPH energy metabolism is involved in RSV infection and provide insight into the association between plant viruses and energy metabolism in the insect vector.


Subject(s)
Hemiptera , Oryza , Plant Viruses , Tenuivirus , Animals , Tenuivirus/genetics , Hemiptera/physiology , Insect Vectors , Plant Viruses/genetics , RNA, Messenger/genetics , Energy Metabolism , Nucleocapsid Proteins/metabolism , Adenosine Triphosphate/metabolism , Plant Diseases
16.
Pest Manag Sci ; 78(12): 5325-5333, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36039706

ABSTRACT

BACKGROUND: Plant viruses transmitted by arthropod vectors threaten crop health worldwide. Rice stripe virus (RSV) is one of the most important rice viruses in East Asia and is transmitted by the small brown planthopper (SBPH). Previously, it was demonstrated that the viral glycoprotein NSvs2-N could mediate RSV infection of the vector midgut. Therefore, NSvc2-N protein could potentially be used to reduce RSV transmission by competitively blocking midgut receptors. RESULTS: Here, we report that transgenic rice plants expressing viral glycoprotein can interfere with RSV acquisition and transmission by SBPH. The soluble fraction (30-268 amino acids, designated NSvs2-NS ) of NSvs2-N was transformed into rice calli, which produced plants harboring the exogenous gene. When SBPH was fed on transgenic plants prior to RSV-infected rice (sequential feeding) and when insects were fed on RSV-infected transgenic plants (concomitant feeding), virus acquisition by the insect vector was inhibited, and subsequent viral titers were reduced. Immunofluorescence labeling also indicated that viral infection of the insect midgut was inhibited after SBPH was fed on transgenic plants. The system by which RSV infected insect cells in vitro was used to corroborate the role of NSvc2-NS in reducing viral infection. After the cells were incubated with transgenic rice sap, the virus infection rate of the cells decreased significantly, and viral accumulation in the cells was lower than that in the control group. CONCLUSION: These results demonstrated the negative effect of NSvs2-NS transgenic plants on RSV transmission by insect vectors, which provides a novel and effective way to control plant viral diseases. © 2022 Society of Chemical Industry.


Subject(s)
Hemiptera , Oryza , Tenuivirus , Animals , Tenuivirus/genetics , Hemiptera/genetics , Insect Vectors , Insecta , Glycoproteins , Plant Diseases , Oryza/genetics
17.
Viruses ; 14(8)2022 07 29.
Article in English | MEDLINE | ID: mdl-36016301

ABSTRACT

Most cytoplasmic-replicating negative-strand RNA viruses (NSVs) initiate genome transcription by cap snatching. The source of host mRNAs from which the cytoplasmic NSVs snatch capped-RNA leader sequences has remained elusive. Earlier reports have pointed towards cytoplasmic-RNA processing bodies (P body, PB), although several questions have remained unsolved. Here, the nucleocapsid (N) protein of plant- and animal-infecting members of the order Bunyavirales, in casu Tomato spotted wilt virus (TSWV), Rice stripe virus (RSV), Sin nombre virus (SNV), Crimean-Congo hemorrhagic fever virus (CCHFV) and Schmallenberg virus (SBV) have been expressed and localized in cells of their respective plant and animal hosts. All N proteins localized to PBs as well as stress granules (SGs), but extensively to docking stages of PB and SG. TSWV and RSV N proteins also co-localized with Ran GTPase-activating protein 2 (RanGAP2), a nucleo-cytoplasmic shuttling factor, in the perinuclear region, and partly in the nucleus when co-expressed with its WPP domain containing a nuclear-localization signal. Upon silencing of PB and SG components individually or concomitantly, replication levels of a TSWV minireplicon, as measured by the expression of a GFP reporter gene, ranged from a 30% reduction to a four-fold increase. Upon the silencing of RanGAP homologs in planta, replication of the TSWV minireplicon was reduced by 75%. During in vivo cap-donor competition experiments, TSWV used transcripts destined to PB and SG, but also functional transcripts engaged in translation. Altogether, the results implicate a more complex situation in which, besides PB, additional cytoplasmic sources are used during transcription/cap snatching of cytoplasmic-replicating and segmented NSVs.


Subject(s)
RNA Viruses , Tenuivirus , Tospovirus , Animals , Cytoplasmic Granules/metabolism , Processing Bodies , RNA Caps/metabolism , RNA Viruses/genetics , RNA, Viral/metabolism , Stress Granules , Tenuivirus/genetics , Tospovirus/genetics
18.
J Agric Food Chem ; 70(27): 8469-8480, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35771952

ABSTRACT

The rice stripe virus (RSV) is responsible for devastating effects in East Asian rice-producing areas. The disease-specific protein (SP) level in rice plants determines the severity of RSV symptoms. Isothermal titration calorimetry (ITC) and bimolecular fluorescence complementation (BiFC) assays confirmed the interaction between an R3H domain-containing host factor, OsR3H3, and RSV SP in vitro and in vivo. This study determined the crystal structure of SP at 1.71 Å. It is a monomer with a clear shallow groove to accommodate host factors. Docking OsR3H3 into the groove generates an SP/OsR3H3 complex, which provides insights into the protein-binding mechanism of SP. Furthermore, SP's protein-binding properties and model-defined recognition residues were assessed using mutagenesis, ITC, and BiFC assays. This study revealed the structure and preliminary protein interaction mechanisms of RSV SP, shedding light on the molecular mechanism underlying the development of RSV infection symptoms.


Subject(s)
Oryza , Tenuivirus , Oryza/metabolism , Plant Diseases , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Tenuivirus/genetics , Tenuivirus/metabolism
19.
PLoS Pathog ; 18(5): e1010548, 2022 05.
Article in English | MEDLINE | ID: mdl-35560151

ABSTRACT

NF-Y transcription factors are known to play many diverse roles in the development and physiological responses of plants but little is known about their role in plant defense. Here, we demonstrate the negative roles of rice NF-YA family genes in antiviral defense against two different plant viruses, Rice stripe virus (RSV, Tenuivirus) and Southern rice black-streaked dwarf virus (SRBSDV, Fijivirus). RSV and SRBSDV both induced the expression of OsNF-YA family genes. Overexpression of OsNF-YAs enhanced rice susceptibility to virus infection, while OsNF-YAs RNAi mutants were more resistant. Transcriptome sequencing showed that the expression of jasmonic acid (JA)-related genes was significantly decreased in plants overexpressing OsNF-YA when they were infected by viruses. qRT-PCR and JA sensitivity assays confirmed that OsNF-YAs play negative roles in regulating the JA pathway. Further experiments showed that OsNF-YAs physically interact with JA signaling transcription factors OsMYC2/3 and interfere with JA signaling by dissociating the OsMYC2/3-OsMED25 complex, which inhibits the transcriptional activation activity of OsMYC2/3. Together, our results reveal that OsNF-YAs broadly inhibit plant antiviral defense by repressing JA signaling pathways, and provide new insight into how OsNF-YAs are directly associated with the JA pathway.


Subject(s)
Oryza , Tenuivirus , Virus Diseases , Antiviral Agents/metabolism , Cyclopentanes , Gene Expression Regulation, Plant , Oryza/metabolism , Oxylipins , Plant Diseases , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Tenuivirus/genetics , Tenuivirus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Pest Manag Sci ; 78(8): 3498-3507, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35604851

ABSTRACT

BACKGROUND: Laodelphax striatellus transmits rice stripe virus (RSV) during sap feeding on the rice plant. The insect saliva proteins have direct and indirect roles in mediating RSV transmission; however, the function of most saliva proteins remains unclear. RESULTS: In this study, we sequenced L. striatellus saliva proteins using shotgun liquid chromatography-electrospray ionization-tandem mass spectrometry. We identified 41 secreted saliva proteins, among which a saliva mucin-like protein, designated LssaMP, was the most abundant. In silico analysis revealed the sequence conservation among planthoppers. We revealed that the LssaMP gene is specifically expressed in the salivary glands and the protein is secreted as a component of gel saliva. Using LssaMP-specific double-stranded RNA (dsRNA) to silence gene expression, we revealed that LssaMP is required for formation of the salivary sheath, an important structure for sap feeding. Disrupting LssaMP expression resulted in inefficient formation of the feeding structure, thereby stopping insects from secreting watery saliva and acquiring sufficient nutrients from the phloem sap. We confirmed that RSV is mainly released via the watery saliva, which passes through the salivary sheathes into the plant phloem. An insufficient feeding structure results in decreased release of watery saliva, as well as the arboviruses. CONCLUSION: This study clarified the function of an insect saliva protein in mediating insect feeding, as well as arbovirus transmission. © 2022 Society of Chemical Industry.


Subject(s)
Hemiptera , Oryza , Tenuivirus , Animals , Hemiptera/genetics , Insect Proteins/metabolism , Mucins/analysis , Mucins/metabolism , Oryza/genetics , Saliva/chemistry , Tenuivirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...