Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Commun Biol ; 7(1): 1010, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154098

ABSTRACT

Fungus-growing termites, like Odontotermes obesus, cultivate Termitomyces as their sole food source on fungus combs which are continuously maintained with foraged plant materials. This necessary augmentation also increases the threat of introducing non-specific fungi capable of displacing Termitomyces. The magnitude of this threat and how termites prevent the invasion of such fungi remain largely unknown. This study identifies these non-specific fungi by establishing the pan-mycobiota of O. obesus from the fungus comb and termite castes. Furthermore, to maximize the identification of such fungi, the mycobiota of the decaying stages of the unattended fungus comb were also assessed. The simultaneous assessment of the microbiota and the mycobiota of these stages identified possible interactions between the fungal and bacterial members of this community. Based on these findings, we propose possible interactions among the crop fungus Termitomyces, the weedy fungus Pseudoxylaria and some bacterial symbiotes. These possibilities were then tested with in vitro interaction assays which suggest that Termitomyces, Pseudoxylaria and certain potential bacterial symbiotes possess anti-fungal capabilities. We propose a multifactorial interaction model of these microbes, under the care of the termites, to explain how their interactions can maintain a predominantly Termitomyces monoculture.


Subject(s)
Isoptera , Symbiosis , Termitomyces , Isoptera/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Mycobiome , Fungi/physiology , Fungi/classification
2.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000541

ABSTRACT

Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia and dyslipidemia. The termite fungus comb is an integral component of nests of termites, which are a global pest. Termite fungus comb polysaccharides (TFCPs) have been identified to possess antioxidant, anti-aging, and immune-enhancing properties. However, their physicochemical characteristics and their role in fighting diabetes have not been previously reported. In the current study, TFCPs were isolated and structurally characterized. The yield of TFCPs was determined to be 2.76%, and it was found to be composed of a diverse array of polysaccharides with varying molecular weights. The hypoglycemic and hypolipidemic effects of TFCPs, as well as their potential mechanisms of action, were investigated in a T2D mouse model. The results demonstrated that oral administration of TFCPs could alleviate fasting blood glucose levels, insulin resistance, hyperlipidemia, and the dysfunction of pancreatic islets in T2D mice. In terms of mechanisms, the TFCPs enhanced hepatic glycogenesis and glycolysis while inhibiting gluconeogenesis. Additionally, the TFCPs suppressed hepatic de novo lipogenesis and promoted fatty acid oxidation. Furthermore, the TFCPs altered the composition of the gut microbiota in the T2D mice, increasing the abundance of beneficial bacteria such as Allobaculum and Faecalibaculum, while reducing the levels of pathogens like Mailhella and Acetatifactor. Overall, these findings suggest that TFCPs may exert anti-diabetic effects by regulating hepatic glucose and lipid metabolism and the composition of the gut microbiota. These findings suggest that TFCPs can be used as a promising functional ingredient for the prevention and treatment of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Hyperglycemia , Hyperlipidemias , Lipid Metabolism , Liver , Animals , Gastrointestinal Microbiome/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Mice , Hyperlipidemias/drug therapy , Hyperlipidemias/metabolism , Lipid Metabolism/drug effects , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Liver/metabolism , Liver/drug effects , Fungal Polysaccharides/pharmacology , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Termitomyces/metabolism , Blood Glucose/metabolism , Polysaccharides/pharmacology , Mice, Inbred C57BL
3.
Biol. Res ; 47: 1-8, 2014. ilus, graf, tab
Article in English | LILACS | ID: biblio-950726

ABSTRACT

BACKGROUND: Termitomyces heimii is a basidiomycete fungus that has a symbiotic relationship with termites, and it is an edible mushroom with a unique flavour and texture. T. heimii is also one of the most difficult mushrooms to cultivate throughout the world. Little is known about the growth and development of these mushrooms, and the available information is insufficient or poor. The purpose of this study was to provide a base of knowledge regarding the biological processes involved in the development of T. heimii. The proteomic method of 2 dimensional difference gel electrophoresis 2D-DIGE was used to determine and examine the protein profiles of each developmental stage (mycelium, primordium and fruiting body). Total proteins were extracted by TCA-acetone precipitation. RESULTS: A total of 271 protein spots were detected by electrophoresis covering pH 3 - 10 and 10 - 250 kDa. Selected protein spots were subjected to mass spectrometric analyses with matrix-assisted laser desorption/ionisation (MALDI TOF/TOF). Nineteen protein spots were identified based on peptide mass fingerprinting by matching peptide fragments to the NCBI non-redundant database using MASCOT software. The 19 protein spots were categorised into four major groups through KEGG pathway analysis, as follows: carbohydrate metabolism, energy metabolism, amino acid metabolism and response to environmental stress. CONCLUSIONS: The results from our study show that there is a clear correlation between the changes in protein expression that occur during different developmental stages. Enzymes related to cell wall synthesis were most highly expressed during fruiting body formation compared to the mycelium and primordial stages. Moreover, enzymes involved in cell wall component degradation were up-regulated in the earlier stages of mushroom development.


Subject(s)
Proteome/isolation & purification , Termitomyces/growth & development , Termitomyces/chemistry , Chemical Precipitation , Mass Spectrometry , Mycelium/metabolism , Databases, Protein , Fruiting Bodies, Fungal/metabolism , Two-Dimensional Difference Gel Electrophoresis , Fluorescent Dyes
4.
Mycobiology ; : 103-108, 2011.
Article in English | WPRIM (Western Pacific) | ID: wpr-729402

ABSTRACT

Amylases and cellulases are important enzymes that can be utilized for various biological activities. Ten different wild Nigerian mushrooms (Agaricus blazei, Agaricus sp., Corilopsis occidentalis, Coriolus versicolor, Termitomyces clypeatus, Termitomyces globulus, Pleurotus tuber-regium, Podoscypha bolleana, Pogonomyces hydnoides, and Nothopanus hygrophanus) were assayed for production of these secondary metabolites. The results revealed that most of the tested wild fungi demonstrated very good amylase and cellulase activities. With the incorporation of carboxymethyl-cellulose (a carbon source) into the culture medium, Agaricus blazei had the highest amylolytic activity of 0.60 unit/mL (at 25degrees C, pH 6.8). This was followed in order by P. tuber-regium and Agaricus sp. with 0.42 and 0.39 unit/mL, respectively (p < or = 0.05). Maltose and sucrose supplementation into the submerged liquid medium made N. hygrophanus and P. hydnoides to exhibit very low amylase activities of 0.09 and 0.11 unit/mL, respectively. Introducing peptone (an organic nitrogen source) into the basal medium enhanced the ability of C. versicolor to produce a cellulase value of 0.74 unit/mL. Other organic nitrogen sources that supported good cellulase activities were yeast extract and urea. Sodium nitrate (inorganic nitrogen source) generally inhibited cellulase production in all mushrooms. The best carbon source was carboxymethyl-cellulose, which promoted very high cellulase activity of 0.67 unit/mL in C. versicolor, which was followed in order by P. tuber-regium, T. chypeatus, and C. occidentalis (p < or = 0.05). Sucrose was the poorest carbon compound, supporting the lowest values of 0.01, 0.01, and 0.14 unit/mL in P. hydnoides, A. blazei, and Agaricus sp., respectively.


Subject(s)
Agaricales , Agaricus , Amylases , Carbon , Cellulase , Cellulases , Fungi , Hydrogen-Ion Concentration , Maltose , Nigeria , Nitrates , Nitrogen , Peptones , Pleurotus , Sodium , Sucrose , Termitomyces , Urea , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL