Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
J Transl Med ; 22(1): 477, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764038

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a malignant tumor with a poor prognosis. Traditional treatments have limited effectiveness. Regulation of the immune response represents a promising new approach for OSCC treatment. B cells are among the most abundant immune cells in OSCC. However, the role of B cells in OSCC treatment has not been fully elucidated. METHODS: Single-cell RNA sequencing analysis of 13 tissues and 8 adjacent normal tissues from OSCC patients was performed to explore differences in B-cell gene expression between OSCC tissues and normal tissues. We further investigated the relationship between differentially expressed genes and the immune response to OSCC. We utilized tissue microarray data for 146 OSCC clinical samples and RNA sequencing data of 359 OSCC samples from The Cancer Genome Atlas (TCGA) to investigate the role of T-cell leukemia 1 A (TCL1A) in OSCC prognosis. Multiplex immunohistochemistry (mIHC) was employed to investigate the spatial distribution of TCL1A in OSCC tissues. We then investigated the effect of TCL1A on B-cell proliferation and trogocytosis. Finally, lentiviral transduction was performed to induce TCL1A overexpression in B lymphoblastoid cell lines (BLCLs) to verify the function of TCL1A. RESULTS: Our findings revealed that TCL1A was predominantly expressed in B cells and was associated with a better prognosis in OSCC patients. Additionally, we found that TCL1A-expressing B cells are located at the periphery of lymphatic follicles and are associated with tertiary lymphoid structures (TLS) formation in OSCC. Mechanistically, upregulation of TCL1A promoted the trogocytosis of B cells on dendritic cells by mediating the upregulation of CR2, thereby improving antigen-presenting ability. Moreover, the upregulation of TCL1A expression promoted the proliferation of B cells. CONCLUSION: This study revealed the role of B-cell TCL1A expression in TLS formation and its effect on OSCC prognosis. These findings highlight TCL1A as a novel target for OSCC immunotherapy.


Subject(s)
B-Lymphocytes , Carcinoma, Squamous Cell , Gene Expression Regulation, Neoplastic , Mouth Neoplasms , Proto-Oncogene Proteins , Tertiary Lymphoid Structures , Humans , Prognosis , Mouth Neoplasms/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/immunology , Tertiary Lymphoid Structures/pathology , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/metabolism , Female , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Male , Middle Aged , Cell Line, Tumor , Cell Proliferation
2.
Aging (Albany NY) ; 16(8): 6898-6920, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38709170

ABSTRACT

BACKGROUND: Cervical squamous carcinoma (CESC) is the main subtype of cervical cancer. Unfortunately, there are presently no effective treatment options for advanced and recurrent CESC. Tertiary lymphoid structures (TLSs) are clusters of lymphoid cells that resemble secondary lymphoid organs; nevertheless, there is no summary of the clinical importance of TLS in CESC. METHODS: A large set of transcriptomic and single-cell RNA-sequencing (scRNA-seq) datasets were used to analyze the pattern of TLS and its immuno-correlations in CESC. Additionally, an independent in-house cohort was collected to validate the correlation between TLS and TME features. RESULTS: In the current study, we found that the presence of TLS could predict better prognosis in CESC and was correlated with the activation of immunological signaling pathways and enrichment of immune cell subpopulations. In addition, TLS was associated with reduced proliferation activity in tumor cells, indicating the negative correlation between TLS and the degree of malignancy. Last but not least, in two independent immunotherapy cohorts, tumors with the presence of TLS were more sensitive to immunotherapy. CONCLUSION: Overall, TLS is related to an inflamed TME and identified immune-hot tumors, which could be an indicator for the identification of immunological features in CESC.


Subject(s)
Carcinoma, Squamous Cell , Tertiary Lymphoid Structures , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Female , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Prognosis , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Immunotherapy , Transcriptome
3.
Front Immunol ; 15: 1369626, 2024.
Article in English | MEDLINE | ID: mdl-38690273

ABSTRACT

Tertiary lymphoid structure (TLS) is an ectopic lymphocyte aggregate formed in peripheral non-lymphoid tissues, including inflamed or cancerous tissue. Tumor-associated TLS serves as a prominent center of antigen presentation and adaptive immune activation within the periphery, which has exhibited positive prognostic value in various cancers. In recent years, the concept of maturity regarding TLS has been proposed and mature TLS, characterized by well-developed germinal centers, exhibits a more potent tumor-suppressive capacity with stronger significance. Meanwhile, more and more evidence showed that TLS can be induced by therapeutic interventions during cancer treatments. Thus, the evaluation of TLS maturity and the therapeutic interventions that induce its formation are critical issues in current TLS research. In this review, we aim to provide a comprehensive summary of the existing classifications for TLS maturity and therapeutic strategies capable of inducing its formation in tumors.


Subject(s)
Neoplasms , Tertiary Lymphoid Structures , Humans , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Animals , Tumor Microenvironment/immunology , Germinal Center/immunology
4.
Mol Cancer ; 23(1): 75, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582847

ABSTRACT

Tertiary lymphoid structures (TLS) are clusters of immune cells that resemble and function similarly to secondary lymphoid organs (SLOs). While TLS is generally associated with an anti-tumour immune response in most cancer types, it has also been observed to act as a pro-tumour immune response. The heterogeneity of TLS function is largely determined by the composition of tumour-infiltrating lymphocytes (TILs) and the balance of cell subsets within the tumour-associated TLS (TA-TLS). TA-TLS of varying maturity, density, and location may have opposing effects on tumour immunity. Higher maturity and/or higher density TLS are often associated with favorable clinical outcomes and immunotherapeutic response, mainly due to crosstalk between different proportions of immune cell subpopulations in TA-TLS. Therefore, TLS can be used as a marker to predict the efficacy of immunotherapy in immune checkpoint blockade (ICB). Developing efficient imaging and induction methods to study TA-TLS is crucial for enhancing anti-tumour immunity. The integration of imaging techniques with biological materials, including nanoprobes and hydrogels, alongside artificial intelligence (AI), enables non-invasive in vivo visualization of TLS. In this review, we explore the dynamic interactions among T and B cell subpopulations of varying phenotypes that contribute to the structural and functional diversity of TLS, examining both existing and emerging techniques for TLS imaging and induction, focusing on cancer immunotherapies and biomaterials. We also highlight novel therapeutic approaches of TLS that are being explored with the aim of increasing ICB treatment efficacy and predicting prognosis.


Subject(s)
Neoplasms , Tertiary Lymphoid Structures , Humans , Artificial Intelligence , Prognosis , Neoplasms/therapy , B-Lymphocytes/pathology , Phenotype , Tumor Microenvironment , Tertiary Lymphoid Structures/genetics , Tertiary Lymphoid Structures/pathology
5.
Front Immunol ; 15: 1364506, 2024.
Article in English | MEDLINE | ID: mdl-38571938

ABSTRACT

Introduction: Tertiary lymphoid structures (TLSs) are ectopic lymphoid formations that arise in non-lymphoid tissues due to chronic inflammation. The pivotal function of TLSs in regulating tumor invasion and metastasis has been established across several cancers, such as lung cancer, liver cancer, and melanoma, with a positive correlation between increased TLS presence and improved prognosis. Nevertheless, the current research about the clinical significance of TLSs in breast cancer remains limited. Methods: In our investigation, we discovered TLS-critical genes that may impact the prognosis of breast cancer patients, and categorized breast cancer into three distinct subtypes based on critical gene expression profiles, each exhibiting substantial differences in prognosis (p = 0.0046, log-rank test), with Cluster 1 having the best prognosis, followed by Cluster 2, and Cluster 3 having the worst prognosis. We explored the impact of the heterogeneity of these subtypes on patient prognosis, the differences in the molecular mechanism, and their responses to drug therapy and immunotherapy. In addition, we designed a machine learning-based classification model, unveiling highly consistent prognostic distinctions in several externally independent cohorts. Results: A notable marker gene CXCL13 was identified in Cluster 3, potentially pivotal in enhancing patient prognosis. At the single-cell resolution, we delved into the adverse prognosis of Cluster 3, observing an enhanced interaction between fibroblasts, myeloid cells, and basal cells, influencing patient prognosis. Furthermore, we identified several significantly upregulated genes (CD46, JAG1, IL6, and IL6R) that may positively correlate with cancer cells' survival and invasive capabilities in this subtype. Discussion: Our study is a robust foundation for precision medicine and personalized therapy, presenting a novel perspective for the contemporary classification of breast cancer.


Subject(s)
Breast Neoplasms , Liver Neoplasms , Lung Neoplasms , Tertiary Lymphoid Structures , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Tertiary Lymphoid Structures/pathology , Prognosis , Lung Neoplasms/pathology
6.
Clin Chim Acta ; 557: 117888, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38527714

ABSTRACT

BACKGROUND: Renal tertiary lymphoid structures (TLSs) are involved in renal pathology and prognosis of IgA nephropathy (IgAN). CD30 and its ligands participate in the formation of renal TLSs. However, the relationship between circulating CD30 and renal prognosis is unclear. The objective of this study was to evaluate the relationship between circulating CD30 and prognosis in patients with IgAN. METHODS: We conducted a retrospective study including 351 patients with biopsy proved IgAN. We collected clinical and pathologic features at the time of biopsy and recorded renal follow-up outcomes. Circulating CD30 levels in IgAN patients at the time of biopsy were measured via enzyme-linked immunosorbent assay (ELISA). The association between elevated CD30 levels and the composite endpoint (defined as a ≥ 50 % decline in eGFR from baseline, end-stage renal disease, or death) was investigated using Cox regression analysis. RESULTS: During a median follow-up period of 5.12 years, 44 (12.5 %) patients in the cohort reached the composite endpoint. Kaplan-Meier survival curve analysis revealed a significant association between higher circulating CD30 levels and a poorer renal prognosis (log-rank P < 0.001). Cox regression analysis showed that high CD30 was an independent factor for the composite endpoints in multivariable-adjusted models (HR 3.397, 95 % CI: 1.230-9.384, P = 0.018). These associations were also observed in a subgroup of patients with concomitant renal TLSs formation (10.443, 95 % CI: 1.680-65.545, P = 0.012), proteinuria > 1 g/d (HR 12.287, 95 % CI: 1.499-100.711, P = 0.019), and female patients (HR 22.372, 95 % CI: 1.797-278.520, P = 0.016). CONCLUSION: Elevated level of circulating CD30 is an independent risk factor for renal disease progression in patients with IgAN.


Subject(s)
Glomerulonephritis, IGA , Tertiary Lymphoid Structures , Humans , Female , Glomerulonephritis, IGA/diagnosis , Glomerulonephritis, IGA/pathology , Retrospective Studies , Tertiary Lymphoid Structures/pathology , Disease Progression , Kidney/pathology , Prognosis , Glomerular Filtration Rate
7.
JCI Insight ; 9(8)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38478516

ABSTRACT

Both anaplastic thyroid cancer (ATC) and papillary thyroid cancer (PTC) originate from thyroid follicular epithelial cells, but ATC has a significantly worse prognosis and shows resistance to conventional therapies. However, clinical trials found that immunotherapy works better in ATC than late-stage PTC. Here, we used single-cell RNA sequencing (scRNA-Seq) to generate a single-cell atlas of thyroid cancer. Differences in ATC and PTC tumor microenvironment components (including malignant cells, stromal cells, and immune cells) leading to the polarized prognoses were identified. Intriguingly, we found that CXCL13+ T lymphocytes were enriched in ATC samples and might promote the development of early tertiary lymphoid structure (TLS). Last, murine experiments and scRNA-Seq analysis of a treated patient's tumor demonstrated that famitinib plus anti-PD-1 antibody could advance TLS in thyroid cancer. We displayed the cellular landscape of ATC and PTC, finding that CXCL13+ T cells and early TLS might make ATC more sensitive to immunotherapy.


Subject(s)
Chemokine CXCL13 , Immunotherapy , Thyroid Cancer, Papillary , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Carcinoma, Anaplastic/immunology , Animals , Mice , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/immunology , Thyroid Neoplasms/therapy , Thyroid Neoplasms/genetics , Immunotherapy/methods , Chemokine CXCL13/metabolism , Chemokine CXCL13/genetics , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Single-Cell Analysis , Prognosis , T-Lymphocytes/immunology , Female , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Male
8.
Gastroenterology ; 166(6): 1069-1084, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38445519

ABSTRACT

BACKGROUND & AIMS: Although the presence of tertiary lymphoid structures (TLS) correlates with positive responses to immunotherapy in many solid malignancies, the mechanism by which TLS enhances antitumor immunity is not well understood. The present study aimed to investigate the underlying cross talk circuits between B cells and tissue-resident memory T (Trm) cells within the TLS and to understand their role in the context of immunotherapy. METHODS: Immunostaining and H&E staining of TLS and chemokine (C-X-C motif) ligand 13 (CXCL13)+ cluster of differentiation (CD)103+CD8+ Trm cells were performed on tumor sections from patients with gastric cancer (GC). The mechanism of communication between B cells and CXCL13+CD103+CD8+ Trm cells was determined in vitro and in vivo. The effect of CXCL13+CD103+CD8+ Trm cells in suppressing tumor growth was evaluated through anti-programmed cell death protein (PD)-1 therapy. RESULTS: The presence of TLS and CXCL13+CD103+CD8+ Trm cells in tumor tissues favored a superior response to anti-PD-1 therapy in patients with GC. Additionally, our research identified that activated B cells enhanced CXCL13 and granzyme B secretion by CD103+CD8+ Trm cells. Mechanistically, B cells facilitated the glycolysis of CD103+CD8+ Trm cells through the lymphotoxin-α/tumor necrosis factor receptor 2 (TNFR2) axis, and the mechanistic target of rapamycin signaling pathway played a critical role in CD103+CD8+ Trm cells glycolysis during this process. Moreover, the presence of TLS and CXCL13+CD103+CD8+ Trm cells correlated with potent responsiveness to anti-PD-1 therapy in a TNFR2-dependent manner. CONCLUSIONS: This study further reveals a crucial role for cellular communication between TLS-associated B cell and CXCL13+CD103+CD8+ Trm cells in antitumor immunity, providing valuable insights into the potential use of the lymphotoxin-α/TNFR2 axis within CXCL13+CD103+CD8+ Trm cells for advancing immunotherapy strategies in GC.


Subject(s)
Antigens, CD , B-Lymphocytes , CD8-Positive T-Lymphocytes , Chemokine CXCL13 , Immune Checkpoint Inhibitors , Integrin alpha Chains , Memory T Cells , Programmed Cell Death 1 Receptor , Stomach Neoplasms , Tertiary Lymphoid Structures , Chemokine CXCL13/metabolism , Humans , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/drug effects , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Stomach Neoplasms/therapy , Stomach Neoplasms/drug therapy , Antigens, CD/metabolism , Integrin alpha Chains/metabolism , Integrin alpha Chains/immunology , Memory T Cells/immunology , Memory T Cells/metabolism , Animals , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Granzymes/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Immunologic Memory , Signal Transduction/immunology , Tumor Microenvironment/immunology , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Mice , Immunotherapy/methods , Cell Line, Tumor
9.
Prostate ; 84(8): 709-716, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38544351

ABSTRACT

OBJECTIVE: To morphologically describe tertiary lymphoid structures (TLS) in prostatectomy specimens and correlate them with clinical and transcriptomic features. METHODOLOGY: A total of 72 consecutive cases of entirely submitted radical prostatectomy (RP) patients tested with the Decipher Genomic Classifier were included in the study. Images were manually annotated using QuPath tools to denote tumor regions and each cluster of TLS. Clusters of lymphocytes that were surrounded on all four sides by tumor were defined as intra-tumor TLS (IT-TLS). Clusters of lymphocytes at the leading edge of carcinoma with either the prostatic pseudocapsule or benign parenchyma at one end were defined as peri-tumor TLS (PT-TLS). A classification algorithm to distinguish lymphocytes from non-lymphocytic cells using a supervised machine learning model was used. The associations between TLS formation and 265 gene expression-based signatures were examined. RESULTS: The magnitude of total TLS correlations with primary tumor gene expression signatures was moderate (~0.35-0.5) with several HLA, T-cell and B-cell Cluster signatures, showing positive correlation with various metrics for quantification of TLS. On the other hand, immune suppressive signatures (Treg, MDSC) were negatively correlated. While signatures for macrophages, NK cells and other immune cell types were uncorrelated for the most part. PT-TLS was associated with MHC signatures while IT TLS correlated with MHC and T-cell signatures. CONCLUSIONS: Clusters of inflammatory cells in the RP specimen can be divided spatially into PT TLS and IT-TLS, each with its unique molecular correlates of tumor immune microenvironment. The presence of TLS is positively correlated with MHC signatures, T- cell and B-cell cluster signatures but, negatively correlated with immune suppressive signatures. A subset of prostate cancer demonstrate a robust inflammatory response, and warrant further characterization in larger cohorts.


Subject(s)
Prostatectomy , Prostatic Neoplasms , Tertiary Lymphoid Structures , Humans , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/surgery , Tertiary Lymphoid Structures/pathology , Tertiary Lymphoid Structures/immunology , Middle Aged , Aged , Transcriptome , Prostate/pathology , Prostate/immunology , Tumor Microenvironment/immunology
10.
Cell Rep Med ; 5(3): 101448, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38458196

ABSTRACT

The immune responses during the initiation and invasion stages of human lung adenocarcinoma (LUAD) development are largely unknown. Here, we generated a single-cell RNA sequencing map to decipher the immune dynamics during human LUAD development. We found that T follicular helper (Tfh)-like cells, germinal center B cells, and dysfunctional CD8+ T cells increase during tumor initiation/invasion and form a tertiary lymphoid structure (TLS) inside the tumor. This TLS starts with an aggregation of CD4+ T cells and the generation of CXCL13-expressing Tfh-like cells, followed by an accumulation of B cells, and then forms a CD4+ T and B cell aggregate. TLS and its associated cells are correlated with better patient survival. Inhibiting TLS formation by Tfh or B cell depletion promotes tumor growth in mouse models. The anti-tumoral effect of the Tfh-dependent TLS is mediated through interleukin-21 (IL-21)-IL-21 receptor signaling. Our study establishes an anti-tumoral role of the Tfh-dependent TLS in the development of LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Tertiary Lymphoid Structures , Animals , Mice , Humans , T-Lymphocytes, Helper-Inducer , Tertiary Lymphoid Structures/pathology , CD8-Positive T-Lymphocytes/pathology
11.
Ann Diagn Pathol ; 70: 152294, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513466

ABSTRACT

BACKGROUND: Triple Negative Breast Cancer (TNBC) presents diagnostic complexities, particularly in evaluating Tumor-Infiltrating Lymphocytes (TILs) and Programmed Death-Ligand 1 (PD-L1) expression. This study aimed to identify optimal TILs percentage cut-offs predictive of PD-L1 expression and to investigate the relationship between TILs, PD-L1, and tertiary lymphoid structures (TLSs). METHOD: Analyzing 141 TNBC cases, we assessed TILs, PD-L1 expression (clones 22C3 and SP142), and TLS presence. RESULTS: We identified TILs cut-offs (<20 %, 20-60 %, ≥60 %) correlating with PD-L1 expression. TILs <20 % rarely express PD-L1 with either 22C3 or SP142 clones. TILs ≥60 % demonstrate PD-L1 expression across both clones. TILs within the 20-60 % range correlate with PD-L1 expression using the SP142 clone, but not 22C3. Evaluating TILs solely at the tumor edge led to inaccuracies, highlighting the need for overall assessment of TILs throughout the entire lesion. TLS presence correlated with higher TIL percentages and PD-L1 expression, particularly with SP142. Discrepancies between 22C3 and SP142 clones (15 % vs. 50 % positivity, respectively) underscored the variability in PD-L1 detection. CONCLUSION: This study identifies TILs cut-offs predictive of PD-L1 positivity, suggesting the need for institutions to tailor these thresholds based on the selected PD-L1 clone and treatment. Evaluating TILs solely at the tumor edge may overlook the complexity of tumor immune infiltration. While TLS presence correlates with higher PD-L1 expression, particularly with the SP142 clone, its exact predictive value for PD-L1 remains to be clarified. The SP142 clone exhibits higher positivity rates compared to 22C3.


Subject(s)
B7-H1 Antigen , Biomarkers, Tumor , Lymphocytes, Tumor-Infiltrating , Triple Negative Breast Neoplasms , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/immunology , B7-H1 Antigen/metabolism , Female , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Adult , Aged , Immunohistochemistry/methods , Tertiary Lymphoid Structures/pathology , Tertiary Lymphoid Structures/immunology
12.
BMC Pulm Med ; 24(1): 155, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532454

ABSTRACT

BACKGROUND & AIMS: Tertiary lymphoid structures (TLSs) are predictive biomarkers of favorable clinical outcomes and immunotherapy response in several solid malignancies, including non-small cell lung cancer (NSCLC). However, the relationship between TLSs and NSCLC prognosis has not been eludicated from the aspects of location, density, and maturity. This study aimed to investigate the clinicopathological and prognostic significance of TLSs in NSCLC. METHODS: A collection of 151 resected pulmonary nodules in patients with NSCLC was retrospectively analyzed. Two experienced pathologists reviewed hematoxylin-eosin (H&E) slides and assessed TLS scores at different anatomic subregions. Then, we analyzed their correlation with clinicopathologic parameters and CD8 staining intensity and assessed multiple clinicopathological factors affecting patient prognosis. RESULTS: CD8 expression was correlated with total (TLS-CT) (P = 0.000), aggregates (Agg) (TLS-CT) (P = 0.001), follicles (FOL)-I (TLS-CT) (P = 0.025), and TLS(overall) (P = 0.013). TLS scores in the central tumor (CT) and invasion margin (IM) areas were negatively correlated with distant metastasis and Union for International Cancer Control (UICC) stage in NSCLC patients, while TLS score in the CT area was positively correlated with CD8 expression. TLS (overall), Agg (TLS-CT), and FOL-I (TLS-CT) were positively correlated with distant metastasis, UICC stage, and CD8 expression in NSCLC patients. Agg (TLS-IM) was positively correlated with distant metastasis and UICC stage. FOL-I (TLS-IM) was positively correlated with UICC stage. FOL-II (TLS-IM) was positively correlated with distant metastasis (P < 0.05). Multivariate Cox regression analysis showed that unfavorable independent prognostic factors were associated with metastasis status and UICC stage. Independent prognostic factors with protective effects included Agg (TLS-CT), FOL-I (TLS-CT), total (TLS-CT), and overall TLS (P < 0.05). CONCLUSION: Histological score assessment of H&E sections of Agg (TLS-CT), FOL-I (TLS-CT), total (TLS-CT), and overall TLS levels in NSCLC has prognostic value.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Tertiary Lymphoid Structures , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Retrospective Studies , Tertiary Lymphoid Structures/pathology , Prognosis
13.
Front Immunol ; 15: 1302751, 2024.
Article in English | MEDLINE | ID: mdl-38384466

ABSTRACT

Background: The infiltration and activation of immune cells in the tumor microenvironment (TIME) affect the prognosis of patients with cancer. Tertiary lymphoid structure (TLS) formation favors tumour- infiltrating-lymphocyte (TIL) recruitment and is regarded as an important indicator of good prognosis associated with immunotherapy in patients with tumors. Chemotherapy is currently one of the most commonly used clinical treatment methods. However, there have been no clear report to explore the effects of different types of chemotherapy on TLS formation in the TIME. This study examined the effects of immunogenic cell death (ICD)-inducing chemotherapeutics on immune cells, high-endothelial venules (HEV), and TLSs in mouse melanomas. Methods: Doxorubicin (an ICD inducer), gemcitabine (non-ICD inducer), and a combination of the two drugs was delivered intra-peritoneally to B16F1-loaded C57BL/6 mice. The infiltration of immune cells into tumor tissues was evaluated using flow cytometry. HEV and TLS formation was assessed using immunohistochemistry and multiple fluorescent immunohistochemical staining. Results: Doxorubicin alone, gemcitabine alone, and the two-drug combination all slowed tumor growth, with the combined treatment demonstrating a more pronounced effect. Compared with the control group, the doxorubicin group showed a higher infiltration of CD8+ T cells and tissue-resident memory T cells (TRM) and an increase in the secretion of interferon-γ, granzyme B, and perforin in CD8+ T subsets and activation of B cells and dendritic cells. Doxorubicin alone and in combination with gemcitabine decreased regulatory T cells in the TIME. Moreover, doxorubicin treatment promoted the formation of HEV and TLS. Doxorubicin treatment also upregulated the expression of programmed cell death protein (PD)-1 in CD8+ T cells and programmed cell death protein ligand (PD-L)1 in tumor cells. Conclusions: These results indicate that doxorubicin with an ICD reaction promotes TLS formation and increases PD-1/PD-L1 expression in tumor tissues. The results demonstrate the development of a therapeutic avenue using combined immune checkpoint therapy.


Subject(s)
Melanoma , Tertiary Lymphoid Structures , Humans , Animals , Mice , Melanoma/drug therapy , Melanoma/metabolism , CD8-Positive T-Lymphocytes , Gemcitabine , Tertiary Lymphoid Structures/pathology , Immunogenic Cell Death , Mice, Inbred C57BL , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/metabolism , Deoxycytidine , Apoptosis Regulatory Proteins/metabolism , Tumor Microenvironment
14.
Liver Int ; 44(5): 1202-1218, 2024 May.
Article in English | MEDLINE | ID: mdl-38363048

ABSTRACT

BACKGROUND & AIMS: Lymphocyte-rich hepatocellular carcinoma (LR-HCC) is largely unknown and a rare subtype of HCC with immune-rich stroma. Tertiary lymphoid structures (TLS), frequently observed in LR-HCC, are known to be prognostically significant in various malignancies; however, their significance in HCC remains unevaluated. METHODS: Clinicopathologic data of 191 cases of surgically resected conventional HCC (C-HCC, n = 160) and LR-HCC (n = 31) were retrieved. Immunohistochemistry, multiplex immunofluorescence staining, RNA sequencing and proteomic analysis were conducted. Differences between the subtypes were statistically evaluated. RESULTS: LR-HCC was significantly correlated to larger tumour size, higher Edmondson-Steiner grade, presence of TLS and higher CD3-, CD8- and FOXP3-positive T cell, high PD-1 and PD-L1 expression (p < .001 for all) compared to C-HCC. Patients with LR-HCC exhibited significantly better overall survival (OS) (p = .044) and recurrence-free survival (RFS) (p = .025) than C-HCC. LR-HCC demonstrated TLS signatures with significantly higher proteomic-based immune scores in 14 of 17 types of tumour-infiltrating immune cells. Furthermore, C-HCC with secondary follicles, the most mature form of TLS, exhibited significantly better OS (p = .031) and RFS (p = .033) than those without. Across the global proteome, LR-HCC was well-differentiated from C-HCC and a map of protein-protein interactions between tumour-infiltrating lymphocytes and HCC in tumour microenvironment was completed. CONCLUSION: LR-HCC is clinicopathologically and molecularly distinct and shows better prognosis compared to C-HCC. Also, the presence of secondary follicle can be an important prognostic marker for better prognosis in both LR-HCC and C-HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Tertiary Lymphoid Structures , Humans , Carcinoma, Hepatocellular/pathology , Prognosis , Liver Neoplasms/pathology , Tertiary Lymphoid Structures/pathology , Proteomics , Biomarkers, Tumor/analysis , Lymphocytes, Tumor-Infiltrating , Tumor Microenvironment
16.
Cancer ; 130(S8): 1499-1512, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38422056

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is a highly heterogeneous and clinically aggressive disease. Accumulating evidence indicates that tertiary lymphoid structures (TLSs) and tumor budding (TB) are significantly correlated with the outcomes of patients who have TNBC, but no integrated TLS-TB profile has been established to predict their survival. The objective of this study was to investigate the relationship between the TLS/TB ratio and clinical outcomes of patients with TNBC using artificial intelligence (AI)-based analysis. METHODS: The infiltration levels of TLSs and TB were evaluated using hematoxylin and eosin staining, immunohistochemistry staining, and AI-based analysis. Various cellular subtypes within TLS were determined by multiplex immunofluorescence. Subsequently, the authors established a nomogram model, conducted calibration curve analyses, and performed decision curve analyses using R software. RESULTS: In both the training and validation cohorts, the antitumor/protumor model established by the authors demonstrated a positive correlation between the TLS/TB index and the overall survival (OS) and relapse-free survival (RFS) of patients with TNBC. Notably, patients who had a high percentage of CD8-positive T cells, CD45RO-positive T cells, or CD20-positive B cells within the TLSs experienced improved OS and RFS. Furthermore, the authors developed a comprehensive TLS-TB profile nomogram based on the TLS/TB index. This novel model outperformed the classical tumor-lymph node-metastasis staging system in predicting the OS and RFS of patients with TNBC. CONCLUSIONS: A novel strategy for predicting the prognosis of patients with TNBC was established through integrated AI-based analysis and a machine-learning workflow. The TLS/TB index was identified as an independent prognostic factor for TNBC. This nomogram-based TLS-TB profile would help improve the accuracy of predicting the prognosis of patients who have TNBC.


Subject(s)
Tertiary Lymphoid Structures , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Tertiary Lymphoid Structures/pathology , Artificial Intelligence , Neoplasm Recurrence, Local , Prognosis
17.
Pathol Res Pract ; 254: 155171, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38306861

ABSTRACT

BACKGROUND: Stromal tumour infiltrating lymphocytes (sTILs) and presence of tertiary lymphoid structures have been proposed as indicators of tumour-related immune response in breast cancer. An increased number of germinal centres (GCs) in lymph nodes is considered a sign of humoral immune reactivity. AIMS: It is unclear whether a relationship exists between number and size of GCs within tumour positive sentinel lymph nodes (SLNpos), sTILs and tertiary lymphoid structures within matched primary breast cancer and breast cancer subtype. METHODS: Axillary SLNpos from 175 patients with breast cancer were manually contoured in digitized haematoxylin and eosin stained sections. Total SLN area, GC number and GC area were measured in SLNpos with the largest metastatic area. To correct for SLN size, GC number and GC area were divided by SLN area. sTILs and presence of tertiary lymphoid structures were assessed in the primary breast cancer. RESULTS: A higher GC number and larger GC area were found in patients with high sTILs (≥2%) (both P < 0.001) and in patients with presence of tertiary lymphoid structures (PGC number = 0.034 and PGC area = 0.016). Triple negative and HER2-positive (N = 45) breast cancer subtypes had a higher GC number and higher sTILs compared to hormone receptor positive, HER2-negative breast cancer (N = 130) (PGC number < 0.001 and PsTILs= 0.001). CONCLUSION: This study suggests GCs measured within SLNpos might be useful indicators of the humoral anti-tumour immune response in breast cancer. Future studies are needed investigating underlying biological mechanisms and prognostic value of GCs in SLNs.


Subject(s)
Breast Neoplasms , Sentinel Lymph Node , Tertiary Lymphoid Structures , Humans , Female , Breast Neoplasms/pathology , Sentinel Lymph Node/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Tertiary Lymphoid Structures/pathology , Lymph Nodes/pathology , Germinal Center/pathology , Axilla/pathology
18.
Adv Mater ; 36(15): e2308760, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38306610

ABSTRACT

Bioengineering strategies for the fabrication of implantable lymphoid structures mimicking lymph nodes (LNs) and tertiary lymphoid structures (TLS) could amplify the adaptive immune response for therapeutic applications such as cancer immunotherapy. No method to date has resulted in the consistent formation of high endothelial venules (HEVs), which is the specialized vasculature responsible for naïve T cell recruitment and education in both LNs and TLS. Here orthogonal induced differentiation of human pluripotent stem cells carrying a regulatable ETV2 allele is used to rapidly and efficiently induce endothelial differentiation. Assembly of embryoid bodies combining primitive inducible endothelial cells and primary human LN fibroblastic reticular cells results in the formation of HEV-like structures that can aggregate into 3D organoids (HEVOs). Upon transplantation into immunodeficient mice, HEVOs successfully engraft and form lymphatic structures that recruit both antigen-presenting cells and adoptively-transferred lymphocytes, therefore displaying basic TLS capabilities. The results further show that functionally, HEVOs can organize an immune response and promote anti-tumor activity by adoptively-transferred T lymphocytes. Collectively, the experimental approaches represent an innovative and scalable proof-of-concept strategy for the fabrication of bioengineered TLS that can be deployed in vivo to enhance adaptive immune responses.


Subject(s)
Tertiary Lymphoid Structures , Mice , Humans , Animals , Tertiary Lymphoid Structures/pathology , Venules , Endothelial Cells , Lymph Nodes , Organoids , Transcription Factors
19.
J Oral Pathol Med ; 53(2): 124-132, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183312

ABSTRACT

BACKGROUND: Tertiary lymphoid structures (TLSs) are observed in cancer-invasive sites of various organs, and show evidence of tumor-specific B and/or T cells, suggesting an active humoral antitumor response. The aim of this study was to evaluate the relationship between TLSs and prognosis in patients with tongue squamous cell carcinoma (TSCC) after preoperative S-1 chemotherapy. METHODS: Among 196 TSCC cases, 111 patients who received preoperative S-1 chemotherapy were compared to 85 patients who did not receive chemotherapy. We investigated the incidence of TLSs in both preoperative biopsy and resected specimens. RESULTS: TLSs were present in 24 (12%) biopsy specimens and 31 (16%) resected specimens. TLSs were associated with clinicopathologically advanced cases and positivity for lymphatic invasion. None of the cases with pStage 0 (i.e., noninvasive cancer) showed TLSs. In preoperative S-1 chemotherapy cases, TLSs were significantly more common in those treated with S-1 for more than 21 days and in those with treatment effects 0, Ia, and Ib. TLSs may not be a favorable prognostic factor by themselves but maybe a prognostic factor when combined with preoperative S-1 treatment. CONCLUSION: The presence of TLSs was suggested to be a factor indicating a favorable prognosis when considering the indication for preoperative S-1 chemotherapy. The synergistic effect of S-1 by activating antitumor immunity may be associated with a better prognosis in TSCC patients with TLSs.


Subject(s)
Carcinoma, Squamous Cell , Tertiary Lymphoid Structures , Tongue Neoplasms , Humans , Tongue Neoplasms/drug therapy , Tongue Neoplasms/surgery , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/surgery , Tertiary Lymphoid Structures/pathology , Prognosis
20.
J Allergy Clin Immunol ; 153(4): 1025-1039, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38072196

ABSTRACT

BACKGROUND: Ectopic lymphoid tissues (eLTs) and associated follicular helper T (TFH) cells contribute to local immunoglobulin hyperproduction in nasal polyps (NPs). Follicular regulatory T (TFR) cells in secondary lymphoid organs counteract TFH cells and suppress immunoglobulin production; however, the presence and function of TFR cells in eLTs in peripheral diseased tissues remain poorly understood. OBJECTIVE: We sought to investigate the presence, phenotype, and function of TFR cells in NPs. METHODS: The presence, abundance, and phenotype of TFR cells in NPs were examined using single-cell RNA sequencing, immunofluorescence staining, and flow cytometry. Sorted polyp and circulating T-cell subsets were cocultured with autologous circulating naïve B cells, and cytokine and immunoglobulin production were measured by ELISA. RESULTS: TFR cells were primarily localized within eLTs in NPs. TFR cell frequency and TFR cell/TFH cell ratio were decreased in NPs with eLTs compared with NPs without eLTs and control inferior turbinate tissues. TFR cells displayed an overlapping phenotype with TFH cells and FOXP3+ regulatory T cells in NPs. Polyp TFR cells had reduced CTLA-4 expression and decreased capacity to inhibit TFH cell-induced immunoglobulin production compared with their counterpart in blood and tonsils. Blocking CTLA-4 abolished the suppressive effect of TFR cells. Lower vitamin D receptor expression was observed on polyp TFR cells compared with TFR cells in blood and tonsils. Vitamin D treatment upregulated CTLA-4 expression on polyp TFR cells and restored their suppressive function in vitro. CONCLUSIONS: Polyp TFR cells in eLTs have decreased CLTA-4 and vitamin D receptor expression and impaired capacity to suppress TFH cell-induced immunoglobulin production, which can be reversed by vitamin D treatment in vitro.


Subject(s)
Nasal Polyps , Tertiary Lymphoid Structures , Humans , T-Lymphocytes, Regulatory/pathology , T-Lymphocytes, Helper-Inducer/pathology , CTLA-4 Antigen/metabolism , Receptors, Calcitriol/metabolism , Nasal Polyps/pathology , Tertiary Lymphoid Structures/pathology , Immunoglobulins/metabolism , Vitamin D/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...