Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
J Cell Biol ; 220(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34241635

ABSTRACT

Here we introduce zapalog-mediated endoplasmic reticulum trap (zapERtrap), which allows one to use light to precisely trigger forward trafficking of diverse integral membrane proteins from internal secretory organelles to the cell surface with single cell and subcellular spatial resolution. To demonstrate its utility, we use zapERtrap in neurons to dissect where synaptic proteins emerge at the cell surface when processed through central (cell body) or remote (dendrites) secretory pathways. We reveal rapid and direct long-range trafficking of centrally processed proteins deep into the dendritic arbor to synaptic sites. Select proteins were also trafficked to the plasma membrane of the axon initial segment, revealing a novel surface trafficking hotspot. Proteins locally processed through dendritic secretory networks were widely dispersed before surface insertion, challenging assumptions for precise trafficking at remote sites. These experiments provide new insights into compartmentalized secretory trafficking and showcase the tunability and spatiotemporal control of zapERtrap, which will have broad applications for regulating cell signaling and function.


Subject(s)
Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Neurons/metabolism , Secretory Pathway/genetics , Synapses/metabolism , Synaptic Transmission/genetics , Animals , Animals, Newborn , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Membrane/ultrastructure , Endoplasmic Reticulum/ultrastructure , Female , Fluorescent Dyes/chemistry , Gene Expression , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Hippocampus/cytology , Hippocampus/metabolism , Light , Male , Molecular Imaging/methods , Neurons/cytology , Primary Cell Culture , Protein Transport , Rats , Rats, Sprague-Dawley , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Synapses/ultrastructure , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
2.
Am J Trop Med Hyg ; 104(5): 1811-1813, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782210

ABSTRACT

In November 2018, we diagnosed a cluster of falciparum malaria cases in three Chilean travelers returning from Nigeria. Two patients were treated with sequential intravenous artesunate plus oral atovaquone/proguanil (AP) and one with oral AP. The third patient, a 23-year-old man, presented with fever on day 29 after oral AP treatment and was diagnosed with recrudescent falciparum malaria. The patient was then treated with oral mefloquine, followed by clinical recovery and resolution of parasitemia. Analysis of day 0 and follow-up blood samples, collected on days 9, 29, 34, 64, and 83, revealed that parasitemia had initially decreased but then increased on day 29. Sequencing confirmed Tyr268Cys mutation in the cytochrome b gene, associated with atovaquone resistance, in isolates collected on days 29 and 34 and P. falciparum dihydrofolate reductase mutation Asn51Ile, associated with proguanil resistance in all successfully sequenced samples. Molecular characterization of imported malaria contributes to clinical management in non-endemic countries, helps ascertain the appropriateness of antimalarial treatment policies, and contributes to the reporting of drug resistance patterns from endemic regions.


Subject(s)
Antimalarials/therapeutic use , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Parasitemia/drug therapy , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Adult , Artesunate/therapeutic use , Atovaquone/therapeutic use , Chile , Cytochromes b/genetics , Drug Combinations , Female , Gene Expression , Humans , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Male , Mefloquine/therapeutic use , Mutation , Nigeria , Parasitemia/diagnosis , Parasitemia/parasitology , Parasitemia/pathology , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Plasmodium falciparum/pathogenicity , Proguanil/therapeutic use , Recurrence , Tetrahydrofolate Dehydrogenase/genetics , Travel
3.
Asian Pac J Cancer Prev ; 21(12): 3751-3759, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33369477

ABSTRACT

BACKGROUND: Folate is essential for DNA synthesis, repair, and methylation. Polymorphisms in genes associated with folate metabolism may alter these processes and, consequently, modulate cancer development. AIM: We aimed to assess DNMT3B -149C/T (rs2424913), DNMT3B -283T/C (rs6087990), DNMT3B -579G/T (rs2424909), DHFR 19-pb ins/del (rs70991108), SHMT1 1420C/T (rs1979277), and TYMS 28-bp tandem repeat (rs34743033) polymorphisms with risk of head and neck cancer. METHODS: A case-control study was conducted in 1,086 Brazilian individuals. Real-time and conventional polymerase chain reactions-PCR were performed for genotyping the polymorphisms. RESULTS: The single nucleotide polymorphism (SNP), DNMT3B -283T/C, revealed a higher risk of head and neck squamous cell carcinoma (HNSCC) when compared with the C group in the codominant (p < 0.001), dominant (p <0.001), and overdominant (p= 0.001) models for T/C and C/C genotypes. DNMT3B -149C/T and DNMT3B -579G/T revealed no association between groups in any model. The DHFR 19-pb ins/del polymorphism protected against HNSCC development compared to the C group by the codominant (p < 0.001), dominant (p < 0.001), and overdominant (p < 0.001) models. In the TYMS, the 3R/3R genotype had a protective effect against HNSCC development compared with the C group by the recessive models (p= 0.009). In contrast, SHMT1 1420 C/T presented no association between the HNSCC and C groups. DHFR 19-pb ins/del polymorphisms protected against oral cavity cancer (p= 0.003), and only TYMS-28 3R/3R decreased the risk of tumor progression (p= 0.023). In the Kaplan-Meier curve, an association was found between DHFR ins/ins and TYMS -28 3R carriers with respect to relapse-free time; further, DNMT3B -579 T and TYMS-28 2R/2R carriers had longer survival times. CONCLUSION: DNMT3B -283T/C is associated with higher risk, whereas DHFR 19-pb ins/del and TYMS 28 3R/3R protect against head and neck cancer. We also highlighted the association of TYMS 3R/3R genotype carriers with relapse-free cancer protection and survival time.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , Folic Acid/metabolism , Head and Neck Neoplasms/epidemiology , Tetrahydrofolate Dehydrogenase/genetics , Thymidylate Synthase/genetics , Biomarkers, Tumor/analysis , Brazil/epidemiology , Case-Control Studies , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Prognosis , Promoter Regions, Genetic , Risk Factors , Survival Rate , DNA Methyltransferase 3B
4.
Salud pública Méx ; 62(4): 364-371, jul.-ago. 2020. tab
Article in English | LILACS | ID: biblio-1377327

ABSTRACT

Abstract: Objective: To research mutations associated to pyrimethamine resistance in dihydrofolate reductase (pvdhfr) of Plasmodium vivax from Mexico and Nicaragua and compare it to that reported in the rest of America. Materials and methods: Genomic DNA was obtained from P. vivax-infected blood samples. A pvdhfr gene fragment was amplified and sequenced. The identified gene variations were compared to those observed in other affected sites of America. Results: No mutations in pvdhfr were detected in P. vivax from Mexico and Nicaragua. One synonymous change and variation in the repeat domain was detected in Nicaraguan parasites. In South America, a high frequency of variant residues 58R and 117N associated to pyrimethamine resistance was reported. Conclusions: The lack of polymorphisms associated with pyrimethamine resistance suggests that drug-resistant P. vivax has not penetrated Mesoamerica, nor have local parasites been under selective pressure. These data contribute to establish the basis for the epidemiological surveillance of drug resistance.


Resumen: Objetivo: Determinar mutaciones en la dihydrofolato reductasa deP. vivax (Pvdhfr) en parásitos de México y Nicaragua, y comparar con lo reportado en América. Material y métodos: Del ADN de sangres infectadas con P. vivax de pacientes, el gen pvdhfr se amplifico y secuenció, y se contrastócon lo observado en América. Resultados: No se detectaron mutaciones asociadas con la resistencia debida a pirimetamina. Los parásitos de Nicaragua tuvieron una mutación sinónima y variación en la región repetida. Se reportaron frecuentes mutaciones asociadas con la resistencia a la pirimetamina en Sudamérica. Conclusiones: La ausencia de polimorfismos en Pvdhfr sugiere que no se han seleccionado ni introducido parásitos resistentes en la zona de estudio, lo que resulta muy útil para la vigilancia epidemiológica.


Subject(s)
Humans , Plasmodium vivax/genetics , Tetrahydrofolate Dehydrogenase/genetics , Genetic Variation , Plasmodium vivax/enzymology , Pyrimethamine/pharmacology , South America , Brazil , Insecticide Resistance/genetics , Colombia , French Guiana , Honduras , Mexico , Mutation , Nicaragua , Antiprotozoal Agents/pharmacology
5.
ACS Infect Dis ; 6(8): 2192-2201, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32603583

ABSTRACT

Dihydrofolate reductase (DHFR), a key enzyme involved in folate metabolism, is a widely explored target in the treatment of cancer, immune diseases, bacteria, and protozoa infections. Although several antifolates have proved successful in the treatment of infectious diseases, they have been underexplored to combat tuberculosis, despite the essentiality of M. tuberculosis DHFR (MtDHFR). Herein, we describe an integrated fragment-based drug discovery approach to target MtDHFR that has identified hits with scaffolds not yet explored in any previous drug design campaign for this enzyme. The application of a SAR by catalog strategy of an in house library for one of the identified fragments has led to a series of molecules that bind to MtDHFR with low micromolar affinities. Crystal structures of MtDHFR in complex with compounds of this series demonstrated a novel binding mode that considerably differs from other DHFR antifolates, thus opening perspectives for the development of relevant MtDHFR inhibitors.


Subject(s)
Folic Acid Antagonists , Mycobacterium tuberculosis , Tuberculosis , Drug Design , Folic Acid Antagonists/pharmacology , Humans , Tetrahydrofolate Dehydrogenase/genetics , Tuberculosis/drug therapy
6.
Salud Publica Mex ; 62(4): 364-371, 2020.
Article in English | MEDLINE | ID: mdl-32516871

ABSTRACT

OBJECTIVE: To research mutations associated to pyrimethamine resistance in dihydrofolate reductase (pvdhfr) of Plasmodium vivax from Mexico and Nicaragua and compare it to that reported in the rest of America. MATERIALS AND METHODS: Genomic DNA was obtained from P. vivax-infected blood samples. A pvdhfr gene fragment was amplified and sequenced. The identified gene variations were compared to those observed in other affected sites of America. RESULTS: No mutations in pvdhfr were detected in P. vivax from Mexico and Nicaragua. One synonymous change and variation in the repeat domain was detected in Nicaraguan parasites. In South America, a high frequency of variant residues 58R and 117N associated to pyrimethamine resistance was reported. CONCLUSIONS: The lack of polymorphisms associated with pyrimethamine resistance suggests that drug-resistant P. vivax has not penetrated Mesoamerica, nor have local parasites been under selective pressure. These data contribute to establish the basis for the epidemiological surveillance of drug resistance.


OBJETIVO: Determinar mutaciones en la dihydrofolato reductasa de P. vivax (Pvdhfr) en parásitos de México y Nicaragua, y comparar con lo reportado en América. MATERIAL Y MÉTODOS: Del ADN de sangres infectadas con P. vivax de pacientes, el gen pvdhfr se amplifico y secuenció, y se contrastócon lo observado en América. RESULTADOS: No se detectaron mutaciones asociadas con la resistencia debida a pirimetamina. Los parásitos de Nicaragua tuvieron una mutación sinónima y variación en la región repetida. Se reportaron frecuentes mutaciones asociadas con la resistencia a la pirimetamina en Sudamérica. CONCLUSIONES: La ausencia de polimorfismos en Pvdhfr sugiere que no se han seleccionado ni introducido parásitos resistentes en la zona de estudio, lo que resulta muy útil para la vigilancia epidemiológica.


Subject(s)
Genetic Variation , Plasmodium vivax/genetics , Tetrahydrofolate Dehydrogenase/genetics , Antiprotozoal Agents/pharmacology , Brazil , Colombia , French Guiana , Honduras , Humans , Insecticide Resistance/genetics , Mexico , Mutation , Nicaragua , Plasmodium vivax/enzymology , Pyrimethamine/pharmacology , South America
7.
Methods Mol Biol ; 2151: 159-172, 2020.
Article in English | MEDLINE | ID: mdl-32452003

ABSTRACT

Dihydrofolate reductase (DHFR) is an essential enzyme for nucleotide metabolism used to obtain energy and structural nucleic acids. Schistosoma mansoni has all the pathways for pyrimidine biosynthesis, which include the thymidylate cycle and, consequentially, the DHFR enzyme. Here, we describe the characterization of Schistosoma mansoni DHFR (SmDHFR) using isothermal titration calorimetry for the enzymatic activity and thermodynamic determination, also the folate analogs inhibition. Moreover, X-ray crystallography was used to determine the enzyme atomic model at 1.95 Å.


Subject(s)
Schistosoma mansoni/enzymology , Tetrahydrofolate Dehydrogenase/metabolism , Animals , Calorimetry , Crystallography, X-Ray , Enzyme Assays , Folic Acid/analogs & derivatives , Freezing , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Synchrotrons , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/isolation & purification
8.
J Mol Neurosci ; 70(9): 1410-1414, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32445071

ABSTRACT

Down syndrome (DS) is the most common form of mental disability of genetic etiology. Nondisjunction of chromosome 21 is the leading cause of the syndrome. In general, free trisomy 21 cases originate from missegregation in maternal meiosis. Several reports have suggested an association between genetic variants in genes encoding folate metabolizing enzymes and the predisposition to chromosome missegregation. We have conducted a case-control study of 109 DS case mothers (MDS) and 248 control mothers (CM) to assess the association between DHFR del19bp polymorphism and an increased risk of bearing a DS child. Genomic DNA was extracted from buccal cells, and molecular analysis of DHFR del19pb polymorphism was performed by polymerase chain reaction (PCR). Both MDS and CM allelic and genotypic distributions were in Hardy-Weinberg equilibrium. The frequency of DHFR del19pb-mutated allele was 0.54 in MDS and 0.46 in CM. Overall analysis showed that the mutant allele was borderline associated with DS risk (OR 1.38; 95% CI 1.00-1.89; P = 0.05) and a weak positive association for del/del and/or wt/del genotypes of DHFR del19pb polymorphism compared to homozygous wt/wt genotype was identified (OR = 1.75; 95% CI 1.01-3.03; P = 0.05). When we have analyzed data stratified by age, there is an increased risk of bearing a DS child associated with the polymorphic allele (OR = 1.49; 95% CI 1.03-2.16; P = 0.03), suggesting that DHFR del 19-bp polymorphism could be an independent risk factor for DS in women aged < 40 years old.


Subject(s)
Down Syndrome/genetics , Polymorphism, Genetic , Tetrahydrofolate Dehydrogenase/genetics , Adolescent , Adult , Age Factors , Down Syndrome/epidemiology , Female , Gene Deletion , Humans , Middle Aged
9.
J Enzyme Inhib Med Chem ; 34(1): 1439-1450, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31409157

ABSTRACT

Leishmaniasis is a tropical disease found in more than 90 countries. The drugs available to treat this disease have nonspecific action and high toxicity. In order to develop novel therapeutic alternatives to fight this ailment, pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHF-TS) have been targeted, once Leishmania is auxotrophic for folates. Although PTR1 and DHFR-TS from other protozoan parasites have been studied, their homologs in Leishmania chagasi have been poorly characterized. Hence, this work describes the optimal conditions to express the recombinant LcPTR1 and LcDHFR-TS enzymes, as well as balanced assay conditions for screening. Last but not the least, we show that 2,4 diaminopyrimidine derivatives are low-micromolar competitive inhibitors of both enzymes (LcPTR1 Ki = 1.50-2.30 µM and LcDHFR Ki = 0.28-3.00 µM) with poor selectivity index. On the other hand, compound 5 (2,4-diaminoquinazoline derivative) is a selective LcPTR1 inhibitor (Ki = 0.47 µM, selectivity index = 20).


Subject(s)
Enzyme Inhibitors/pharmacology , Leishmania infantum/enzymology , Multienzyme Complexes/antagonists & inhibitors , Oxidoreductases/antagonists & inhibitors , Thymidylate Synthase/antagonists & inhibitors , Catalysis , Chromatography, Affinity , Cloning, Molecular , Drug Evaluation, Preclinical , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Inhibitory Concentration 50 , Multienzyme Complexes/genetics , Multienzyme Complexes/isolation & purification , Multienzyme Complexes/metabolism , Oxidoreductases/genetics , Oxidoreductases/isolation & purification , Oxidoreductases/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/isolation & purification , Tetrahydrofolate Dehydrogenase/metabolism , Thymidylate Synthase/genetics , Thymidylate Synthase/isolation & purification , Thymidylate Synthase/metabolism
10.
Genet Test Mol Biomarkers ; 23(3): 223-227, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30758239

ABSTRACT

AIM: The present study looked for variation in the miRNA-24 sequence, and evaluated the associations between the dihydrofolate reductase (DHFR) gene-829 C-T polymorphism and plasma DHFR concentrations with response to methotrexate (MTX) treatment in Mexican patients with rheumatoid arthritis (RA). METHODS: A total of 135 women with RA were classified as responders (disease activity score [DAS28] <3.2) or nonresponders to MTX (DAS28 > 3.2). We determined the genotype of the patients using the polymerase chain reaction-restriction fragment length polymorphism method. Plasma DHFR enzyme levels and mi-RNA24 sequences were assessed by enzyme-linked immunosorbent assay (ELISA) and Sanger sequencing, respectively. Allelic frequencies and the genotypic distribution of the polymorphism were analyzed by the chi-square test. RESULTS: The genotype frequencies of the DHFR -829C-T polymorphism among responders were 37.0% CC, 52.1% CT, and 10.9% TT and for nonresponders were 33.9% CC, 56.4% CT, and 9.7% TT. No significant differences in genotype frequencies were found between the groups (p = 0.88). The DHFR levels relative to genotype for responders were 6.8 ± 2.7, 6.1 ± 2.7, and 6.5 ± 1.5 ng/mL for CC, CT, and TT, respectively, and for nonresponders were 6.5 ± 2.0, 6.1 ± 3.1, and 7.4 ± 1.8 ng/mL for CC, CT, and TT, respectively. No significant differences were found between the two groups. Similarly, both groups showed no sequence variations in miRNA-24 gene. CONCLUSION: The -829C-T polymorphism of DHFR gene was not associated with response to MTX by RA patients, and no variations were found in the miRNA-24 sequence that might modify the response to treatment or DHFR enzyme levels in a Mexican population with RA.


Subject(s)
Arthritis, Rheumatoid/genetics , MicroRNAs/genetics , Tetrahydrofolate Dehydrogenase/genetics , Adult , Aged , Alleles , Biomarkers, Pharmacological/blood , Female , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genotype , Humans , Methotrexate/pharmacology , Methotrexate/therapeutic use , Mexico , MicroRNAs/physiology , Middle Aged , Polymorphism, Single Nucleotide/genetics , Tetrahydrofolate Dehydrogenase/physiology
11.
Eur J Pharm Sci ; 109: 480-485, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28887233

ABSTRACT

BACKGROUND: Individual variability is among the causes of toxicity and interruption of treatment in acute lymphoblastic leukemia (ALL) and severe non-Hodgkin lymphoma (NHL) patients under protocols including Methotrexate (MTX): 2,4-diamino-N10-methyl propyl-glutamic acid. METHODS: 41 Uruguayan patients were recruited. Gene polymorphisms involved in MTX pathway were analyzed and their association with treatment toxicities and outcome was evaluated. RESULTS: Genotype distribution and allele frequency were determined for SLC19A1 G80A, MTHFR C677T and A1298C, TYMS 28bp copy number variation, SLCO1B1 T521C, DHFR C-1610G/T, DHFR C-680A, DHFR A-317G and DHFR 19bp indel. Multivariate analysis showed that DHFR-1610G/T (OR=0.107, p=0.018) and MTHFR677T alleles (OR=0.12, p=0.026) had a strong protective effect against hematologic toxicity, while DHFR-1610CC genotype increased this toxicity (OR=9, p=0.045). No more associations were found. CONCLUSIONS: The associations found between gene polymorphisms and toxicities in this small cohort are encouraging for a more extensive research to gain a better dose individualization in adult ALL and NHL patients. Besides, genotype distribution showed to be different from other populations, reinforcing the idea that genotype data from other populations should not be extrapolated to ours.


Subject(s)
Antimetabolites, Antineoplastic/adverse effects , Antimetabolites, Antineoplastic/therapeutic use , Lymphoma, Non-Hodgkin/genetics , Methotrexate/adverse effects , Methotrexate/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Adult , Aged , Female , Genotype , Humans , Liver-Specific Organic Anion Transporter 1/genetics , Lymphoma, Non-Hodgkin/drug therapy , Male , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Middle Aged , Polymorphism, Genetic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Reduced Folate Carrier Protein/genetics , Tetrahydrofolate Dehydrogenase/genetics , Thymidylate Synthase/genetics , Young Adult
12.
J Nutr ; 147(9): 1677-1685, 2017 09.
Article in English | MEDLINE | ID: mdl-28724658

ABSTRACT

Background: The effects of high-dose folic acid (FA) supplementation in healthy individuals on blood folate concentrations and immune response are unknown.Objective: The aim of the study was to evaluate the effects of daily consumption of a tablet containing 5 mg FA on serum folate; number and cytotoxicity of natural killer (NK) cells; mRNA expression of dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR), interferon γ (IFNG), tumor necrosis factor α (TNFA), and interleukin 8 (IL8) genes; and concentrations of serum inflammatory markers.Methods: This prospective clinical trial was conducted in 30 healthy Brazilian adults (15 women), aged 27.7 y (95% CI: 26.4, 29.1 y), with a body mass index (in kg/m2) of 23.1 (95% CI: 22.0, 24.3). Blood was collected at baseline and after 45 and 90 d of the intervention. Serum folate concentrations were measured by microbiological assay and HPLC-tandem mass spectrometry [folate forms, including unmetabolized folic acid (UMFA)]. We used real-time polymerase chain reaction to assess mononuclear leukocyte mRNA expression and flow cytometry to measure the number and cytotoxicity of NK cells.Results: Serum folate concentrations increased by ∼5-fold after the intervention (P < 0.001), and UMFA concentrations increased by 11.9- and 5.9-fold at 45 and 90 d, respectively, when compared with baseline (P < 0.001). UMFA concentrations increased (>1.12 nmol/L) in 29 (96.6%) participants at day 45 and in 26 (86.7%) participants at day 90. We observed significant reductions in the number (P < 0.001) and cytotoxicity (P = 0.003) of NK cells after 45 and 90 d. Compared with baseline, DHFR mRNA expression was higher at 90 d (P = 0.006) and IL8 and TNFA mRNA expressions were higher at 45 and 90 d (P = 0.001 for both).Conclusion: This noncontrolled intervention showed that healthy adults responded to a high-dose FA supplement with increased UMFA concentrations, changes in cytokine mRNA expression, and reduced number and cytotoxicity of NK cells. This trial was registered at www.ensaiosclinicos.gov.br as RBR-2pr7zp.


Subject(s)
Dietary Supplements/adverse effects , Folic Acid/adverse effects , Inflammation Mediators/blood , Interleukin-8/blood , Killer Cells, Natural , Tumor Necrosis Factor-alpha/blood , Adult , Brazil , Female , Folic Acid/administration & dosage , Folic Acid/blood , Humans , Immunity/drug effects , Male , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Nutritional Status , Prospective Studies , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Reference Values , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Tumor Necrosis Factor-alpha/genetics , Vitamin B Complex/administration & dosage , Vitamin B Complex/adverse effects , Vitamin B Complex/blood
13.
Mol Biochem Parasitol ; 214: 62-64, 2017 06.
Article in English | MEDLINE | ID: mdl-28373094

ABSTRACT

Targeted regulation of protein levels is an important tool to investigate the role of proteins essential for cell function and development. In recent years, methods based on the Escherichia coli dihydrofolate reductase destabilization domain (ecDHFR DD) have been established and used in various cell types. ecDHFR DD destabilizes the fused protein of interest and causes its degradation by proteasomes, unless it is stabilized by a specific ligand, trimethoprim. In this work we developed an inducible protein stabilization system in Leishmania mexicana based on ecDHFR DD.


Subject(s)
Gene Expression Regulation , Leishmania mexicana/genetics , Leishmania mexicana/metabolism , Molecular Biology/methods , Parasitology/methods , Transcriptional Activation , Escherichia coli/enzymology , Escherichia coli/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Trimethoprim/metabolism
14.
Article in English | MEDLINE | ID: mdl-27489797

ABSTRACT

The most common mechanism of trimethoprim (TMP)-resistance is the acquisition of dihydrofolate reductase enzyme resistant to this drug. Previous molecular characterization of TMP-genes resistance in Chilean isolates of Shigella sonnei searching for dfrA1 and dfrA8, showed solely the presence of dfrA8 (formerly dhfrIIIc). However, these genetic markers were absent in S. sonnei strains further isolated during an outbreak in 2009. To identify the TMP-resistance gene in these strains, a genomic DNA library from a TMP-resistant (TMP(R)) S. sonnei representative strain for the outbreak was used to clone, select and identify a TMP-resistance marker. The TMP(R) clone was sequenced by primer walking, identifying the presence of the dfrA14 gene in the sul2-strA'-dfrA14-'strA-strB gene arrangement, harbored in a native 6779-bp plasmid. The same plasmid was isolated by transforming with a ~4.2 MDa plasmid extracted from several TMP(R) S. sonnei strains into Escherichia coli. This plasmid, named pABC-3, was present only in dfrA14-positive strains and was homologous to a previously described pCERC-1, but different due to the absence of an 11-bp repetitive unit. The distribution of dfrA1, dfrA8, and dfrA14 TMP-resistance genes was determined in 126 TMP(R) S. sonnei isolates. Most of the strains (96%) carried only one of the three TMP-resistance genes assessed. Thus, all strains obtained during the 2009-outbreak harbored only dfrA14, whereas, dfrA8 was the most abundant gene marker before outbreak and, after the outbreak dfrA1 seems have appeared in circulating strains. According to PFGE, dfrA14-positive strains were clustered in a genetically related group including some dfrA1- and dfrA8-positive strains; meanwhile other genetic group included most of the dfrA8-positive strains. This distribution also correlated with the isolation period, showing a dynamics of trimethoprim genetic markers prevalent in Chilean S. sonnei strains. To our knowledge, dfrA14 gene associated to a small non-conjugative plasmid was detected for the first time in Shigella. Apparently, the strain causing the outbreak must have been introduced, changing drastically the genetic distribution of trimethoprim resistance in Chilean S. sonnei strains.


Subject(s)
Genes, Bacterial , Plasmids , Shigella sonnei/drug effects , Shigella sonnei/genetics , Tetrahydrofolate Dehydrogenase/genetics , Trimethoprim Resistance , Chile/epidemiology , Cloning, Molecular , Disease Outbreaks , Dysentery, Bacillary/epidemiology , Dysentery, Bacillary/microbiology , Gene Order , Gene Transfer, Horizontal , Humans , Sequence Analysis, DNA , Shigella sonnei/isolation & purification
15.
Malar J ; 15: 309, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27267365

ABSTRACT

BACKGROUND: Malaria is a major parasitic disease, affecting millions of people in endemic areas. Plasmodium falciparum parasites are responsible for the most severe cases and its resistance to anti-malarial drugs is notorious. This is a possible obstacle to the effectiveness of intermittent preventive treatment (IPT) based on sulfadoxine-pyrimethamine (SP) cures administrated to pregnant women (IPTp) during their pregnancy. As this intervention is recommended in Angola since 2006, it has assessed, in this country, the molecular profiles in P. falciparum dhfr and dhps, two polymorphic genes associated to pyrimethamine and sulfadoxine resistance, respectively. METHODS: Blood samples from 52 falciparum patients were collected in Lubango, Angola and pfdhfr and pfdhps polymorphisms were analysed using nested-PCR and DNA sequencing. RESULTS: In the pfdhfr gene, the 108N mutation was almost fixed (98 %), followed by 59R (63 %), 51I (46 %), 50R and 164L (2 %, respectively). No 16V/S mutations were found. The most common double mutant genotype was CNRN (59 + 108; 46 %), followed by CICN (51 + 108; 29 %) whereas IRN (51 + 59 + 108; 15 %), CNRNVL (59 + 108 + 164; 2 %) and RICN (50 + 51 + 108; 2 %) triple mutant genotypes were detected. Investigations of the pfdhps gene showed that the 437G mutation was the most prevalent (97 %). Only two and one samples disclosed the 540E (7 %) and the 436A (3 %), respectively. Single mutant SGKAA (437; 86 %) was higher than SGEAA (437 + 540; 7 %) or AGKAA (436 + 437; 3 %) double mutants genotypes. No polymorphism was detected at codons 581G and 613T/S. Combining pfdhfr and pfdhps alleles two triple mutant haplotypes (double mutant in dhfr and single mutant in dhps) were observed: the ACICNVI/SGKAA in 14 (56 %) samples and the ACNRNVI/SGKAA in five (20 %) samples. One quadruple mutant haplotype was detected (ACIRNVI/SGKAA) in six (24 %) P. falciparum samples. No quintuple pfdhfr-pfdhps mutant was noted. CONCLUSION: pfdhfr and pfdhps gene mutations in isolates from Lubango are suggestive of a low-grade SP resistance and IPT for pregnant women and infant based on SP treatment could be effective. Routine molecular studies targeting polymorphism in these two genes need to be routinely conducted at country level.


Subject(s)
Antimalarials/pharmacology , Dihydropteroate Synthase/genetics , Drug Resistance , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Angola , Drug Combinations , Humans , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Polymerase Chain Reaction , Polymorphism, Genetic , Protozoan Proteins/genetics , Sequence Analysis, DNA
16.
Article in English | MEDLINE | ID: mdl-27007559

ABSTRACT

In Iran, both Plasmodium vivax and P. falciparum malaria have been detected, but P. vivax is the predominant species. Point mutations in dihydrofolate reductase (dhfr) gene in both Plasmodia are the major mechanisms of pyrimethamine resistance. From April 2007 to June 2009, a total of 134 blood samples in two endemic areas of southern Iran were collected from patients infected with P. vivax and P. falciparum. The isolates were analyzed for P. vivax dihydrofolate reductase (pvdhfr) and P. falciparum dihydrofolate reductase (pfdhfr) point mutations using various PCR-based methods. The majority of the isolates (72.9%) had wild type amino acids at five codons of pvdhfr. Amongst mutant isolates, the most common pvdhfr alleles were double mutant in 58 and 117 amino acids (58R-117N). Triple mutation in 57, 58, and 117 amino acids (57L/58R/117N) was identified for the first time in the pvdhfr gene of Iranian P. vivax isolates. All the P. falciparumsamples analyzed (n = 16) possessed a double mutant pfdhfrallele (59R/108N) and retained a wild-type mutation at position 51. This may be attributed to the fact that the falciparum malaria patients were treated using sulfadoxine-pyrimethamine (SP) in Iran. The presence of mutant haplotypes in P. vivax is worrying, but has not yet reached an alarming threshold regarding drugs such as SP. The results of this study reinforce the importance of performing a molecular surveillance by means of a continuous chemoresistance assessment.


Subject(s)
Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Plasmodium vivax/enzymology , Plasmodium vivax/genetics , Point Mutation/genetics , Tetrahydrofolate Dehydrogenase/genetics , Humans , Iran , Molecular Sequence Data , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Polymerase Chain Reaction , Sequence Analysis, DNA
17.
Biotechniques ; 60(2): 69-74, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26842351

ABSTRACT

Manipulation of protein stability with ligand-regulated degron fusions is a powerful method for investigating gene function. We developed a selectable cassette for easy C-terminal tagging of endogenous human proteins with the E. coli dihydrofolate reductase (eDHFR) degron using CRISPR/Cas9 genome editing. This cassette permits high-efficiency recovery of correct integration events using an in-frame self-cleaving 2A peptide and the puromycin resistance gene. PCR amplified donor eDHFR cassette fragments with 100 bases of homology on each end are integrated by homology-directed repair (HDR) of guide RNA (gRNA)-targeted double-stranded DNA breaks at the 3' ends of open reading frames (ORFs). As proof of principle, we generated cell lines in which three endogenous proteins were tagged with the eDHFR degron. When the antibiotic trimethoprim is removed from the media, each of the eDHFR-tagged proteins was depleted by >90% within 2-4 h, and this depletion was reversed by re-addition of trimethoprim. Since puromycin selection permits recovery of in-frame degron fusions with high efficiency using only 100-bp long regions of homology, this method should be applicable on a genome-wide scale for generating libraries of conditional mutant cell lines.


Subject(s)
Polymerase Chain Reaction/methods , Protein Engineering/methods , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , CRISPR-Cas Systems , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Humans , Recombinant Fusion Proteins/metabolism , Tetrahydrofolate Dehydrogenase/genetics
18.
Am J Clin Nutr ; 102(5): 1279-88, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26354538

ABSTRACT

BACKGROUND: Folate status has been positively associated with cognitive function in many studies; however, some studies have observed associations of poor cognitive outcomes with high folate. In search of an explanation, we hypothesized that the association of folate with cognition would be modified by the interaction of high-folate status with a common 19-bp deletion polymorphism in the dihydrofolate reductase (DHFR) gene. To our knowledge, the cognitive effects of this gene have not been studied previously. OBJECTIVE: We examined the association between cognitive outcomes with the 19-bp deletion DHFR polymorphism, folate status, and their interaction with high or normal plasma folate. DESIGN: This was a pooled cross-sectional study of the following 2 Boston-based cohorts of community living adults: the Boston Puerto Rican Health Study and the Nutrition, Aging, and Memory in Elders study. Individuals were genotyped for the DHFR 19-bp deletion genotype, and plasma folate status was determined. Cognitive outcomes included the Mini-Mental State Examination, Center for Epidemiologic Studies Depression Scale, and factor scores for the domains of memory, executive function, and attention from a set of cognitive tests. RESULTS: The prevalence of the homozygous deletion (del/del) genotype was 23%. In a multivariable analysis, high folate status (>17.8 ng/mL) was associated with better memory scores than was normal-folate status (fourth-fifth quintiles compared with first-third quintiles: ß ± SE = -0.22 ± 0.06, P < 0.01). Carriers of the DHFR del/del genotype had worse memory scores (ß ± SE = -0.24 ± 0.10, P < 0.05) and worse executive scores (ß = -0.19, P < 0.05) than did those with the del/ins and ins/ins genotypes. Finally, we observed an interaction such that carriers of the del/del genotype with high folate had significantly worse memory scores than those of both noncarriers with high-folate and del/del carriers with normal-folate (ß-interaction = 0.26 ± 0.13, P < 0.05). CONCLUSIONS: This study identifies a putative gene-nutrient interaction that, if confirmed, would predict that a sizable minority carrying the del/del genotype might not benefit from high-folate status and could see a worsening of memory. An understanding of how genetic variation affects responses to high-folate exposure will help weigh risks and benefits of folate supplementation for individuals and public health.


Subject(s)
Folic Acid Deficiency/genetics , Gene Deletion , Memory Disorders/etiology , Nutritional Status , Polymorphism, Genetic , Tetrahydrofolate Dehydrogenase/genetics , Black or African American , Aged , Aged, 80 and over , Boston/epidemiology , Cohort Studies , Cross-Sectional Studies , Female , Folic Acid/poisoning , Folic Acid Deficiency/enzymology , Folic Acid Deficiency/physiopathology , Genetic Association Studies , Hispanic or Latino , Humans , Male , Memory Disorders/epidemiology , Middle Aged , Nutrigenomics/methods , Prevalence , Puerto Rico/ethnology , Tetrahydrofolate Dehydrogenase/metabolism , White People
19.
J Appl Oral Sci ; 23(3): 272-8, 2015.
Article in English | MEDLINE | ID: mdl-26221921

ABSTRACT

OBJECTIVE: Nonsyndromic cleft lip with or without cleft palate (NS-CL/P) are among the most common congenital birth defects worldwide. Several lines of evidence point to the involvement of folate, as well as folate metabolizing enzymes in risk reduction of orofacial clefts. Dihydrofolate reductase (DHFR) enzyme participates in the metabolic cycle of folate and has a crucial role in DNA synthesis, a fundamental feature of gestation and development. A functional polymorphic 19-bp deletion within intron-1 of DHFR has been associated with the risk of common congenital malformations. The present study aimed to evaluate the possible association between DHFR 19-bp deletion polymorphism and susceptibility to NS-CL/P in an Iranian population. MATERIAL AND METHODS: The current study recruited 100 NS-CL/P patients and 100 healthy controls. DHFR 19-bp deletion was determined using an allele specific-PCR method. RESULTS: We observed the DHFR 19-bp homozygous deletion genotype (D/D) vs. homozygous wild genotype (WW) was more frequent in controls than in NS-CL/P patients (25% vs. 13%), being associated with a reduced risk of NS-CL/P in both codominant (OR=0.33, P=0.027) and recessive (OR=0.45, P=0.046) tested inheritance models. We also stratified the cleft patients and reanalyzed the data. The association trend for CL+CL/P group compared to the controls revealed that the DD genotype in both codominant (OR=0.30, P=0.032) and recessive models (OR=0.35, P=0.031) was associated with a reduced risk of CL+CL/P. CONCLUSIONS: Our results for the first time suggested the DHFR 19-bp D/D genotype may confer a reduced risk of NS-CL/P and might act as a protective factor against NS-CL/P in the Iranian subjects.


Subject(s)
Brain/abnormalities , Cleft Lip/genetics , Cleft Palate/genetics , Gene Deletion , Polymorphism, Genetic/genetics , Tetrahydrofolate Dehydrogenase/genetics , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Female , Gene Frequency , Genetic Association Studies , Humans , Infant , Logistic Models , Male , Middle Aged , Polymerase Chain Reaction , Reference Values , Risk Assessment , Young Adult
20.
J. appl. oral sci ; J. appl. oral sci;23(3): 272-278, May-Jun/2015. tab, graf
Article in English | LILACS, BBO - Dentistry | ID: lil-752426

ABSTRACT

Objective Nonsyndromic cleft lip with or without cleft palate (NS-CL/P) are among the most common congenital birth defects worldwide. Several lines of evidence point to the involvement of folate, as well as folate metabolizing enzymes in risk reduction of orofacial clefts. Dihydrofolate reductase (DHFR) enzyme participates in the metabolic cycle of folate and has a crucial role in DNA synthesis, a fundamental feature of gestation and development. A functional polymorphic 19-bp deletion within intron-1 of DHFR has been associated with the risk of common congenital malformations. The present study aimed to evaluate the possible association between DHFR 19-bp deletion polymorphism and susceptibility to NS-CL/P in an Iranian population. Material and Methods The current study recruited 100 NS-CL/P patients and 100 healthy controls. DHFR 19-bp deletion was determined using an allele specific-PCR method. Results We observed the DHFR 19-bp homozygous deletion genotype (D/D) vs. homozygous wild genotype (WW) was more frequent in controls than in NS-CL/P patients (25% vs. 13%), being associated with a reduced risk of NS-CL/P in both codominant (OR=0.33, P=0.027) and recessive (OR=0.45, P=0.046) tested inheritance models. We also stratified the cleft patients and reanalyzed the data. The association trend for CL+CL/P group compared to the controls revealed that the DD genotype in both codominant (OR=0.30, P=0.032) and recessive models (OR=0.35, P=0.031) was associated with a reduced risk of CL+CL/P. Conclusions Our results for the first time suggested the DHFR 19-bp D/D genotype may confer a reduced risk of NS-CL/P and might act as a protective factor against NS-CL/P in the Iranian subjects. .


Subject(s)
Humans , Male , Female , Infant , Child, Preschool , Child , Adolescent , Adult , Middle Aged , Young Adult , Brain/abnormalities , Cleft Lip/genetics , Cleft Palate/genetics , Gene Deletion , Polymorphism, Genetic/genetics , Tetrahydrofolate Dehydrogenase/genetics , Case-Control Studies , Gene Frequency , Genetic Association Studies , Logistic Models , Polymerase Chain Reaction , Reference Values , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL