Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Pest Manag Sci ; 80(9): 4199-4206, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38597427

ABSTRACT

BACKGROUND: Most studies on efficacy of fungal pathogens and predatory mites against Tetranychus urticae have been done on individual species in the laboratory. We evaluated fungi and predatory mites separately and together against glasshouse populations of T. urticae on chrysanthemum plants. First, effectiveness of the fungal pathogens Beauveria bassiana (Bb88) and Metarhizium anisopliae (Ma129) was compared; then, effectiveness of the predatory mites Phytoseiulus persimilis and Neoseiulus californicus. Based on the results, N. californicus and isolate Ma129 were selected and evaluated in combination. In all experiments, treatment effects were assessed for eggs and motile stages of T. urticae. RESULTS: The first experiment showed no significant effect of either fungal isolate on T. urticae populations, except on plants initially infested with 20 mites, where more eggs were found in the control compared to the fungal treatments. In the second experiment, both predatory mites were equally effective at reducing T. urticae populations compared with the control, regardless of initial T. urticae population density. The last experiment demonstrated that populations of T. urticae were reduced most when M. anisopliae (Ma129) and N. californicus were applied together, compared with the control and when each natural enemy was applied separately. CONCLUSIONS: Metarhizium anisopliae (Ma129) and B. bassiana (Bb88) isolates did not have a significant effect on reducing T. urticae populations. Both predatory mites reduced T. urticae populations, regardless of T. urticae density. Combined application of M. anisopliae (Ma129) and N. californicus were more effective against T. urticae than the control or when each agent was applied separately. © 2024 Society of Chemical Industry.


Subject(s)
Beauveria , Chrysanthemum , Metarhizium , Mites , Pest Control, Biological , Tetranychidae , Animals , Pest Control, Biological/methods , Beauveria/physiology , Tetranychidae/physiology , Tetranychidae/microbiology , Metarhizium/physiology , Mites/physiology , Mites/microbiology , Chrysanthemum/microbiology , Predatory Behavior
2.
Arq. Inst. Biol ; 86: e0272018, 2019. graf
Article in English | LILACS, VETINDEX | ID: biblio-1045998

ABSTRACT

The use of acaricides is the main control method for Tetranychus ludeni (Acari: Tetranychidae) in horticultural crops. This mite has been recorded causing damage to sweet potato (Ipomoea batatas L.). The use of pathogenic fungi is an alternative to chemical control. The objective was to evaluate the pathogenicity of the fungi Metarhizium anisopliae (Meetch) Sorok, and Beauveria bassiana (Bals.) Vuill. to phytophagous mite T. ludeni in sweet potato plants. Conidial suspensions of M. anisopliae and B. bassiana, at concentrations of 106 and 107 con.mL-1 were applied to sweet potato leaves. After 24 hours, five females of T. ludeni newly emerged were released on the leaves. The bioassay was arranged in a completely randomized design with factorial arrangement 2 × 2 (two species of fungi and two concentrations) plus the control (distilled water), with 10 repetitions per treatment. The evaluation consisted of observing of three biological parameters of the mite: mortality, oviposition, and repellency, after 24, 48, 72, and 96 hours of contact with the fungi. The isolates of M. anisopliae cause high mortality rates of T. ludeni in laboratory. Beauveria bassiana has the potential to suppress future generations of mite, reducing its oviposition rate. Repellency behavior was not observed.(AU)


O uso de acaricidas é o principal método de controle de Tetranychus ludeni (Acari: Tetranychidae) em cultivos hortícolas. Esse ácaro foi registrado causando danos em batata-doce (Ipomoea batatas (L.). A utilização de fungos patogênicos é uma alternativa ao controle químico. O objetivo foi avaliar a patogenicidade dos fungos Metarhizium anisopliae (Meetch) Sorok. e Beauveria bassiana (Bals.) Vuill. ao ácaro fitófago T. ludeni em batata-doce. Suspensões conidiais de M. anisopliae e B. bassiana, nas concentrações de 106 e 107 con.mL-1, foram aplicadas sobre folhas de batata-doce. Após 24 horas, cinco fêmeas recém-emergidas foram liberadas sobre as folhas. O bioensaio foi inteiramente randomizado, com arranjo fatorial 2 × 2 (duas espécies de fungos e duas concentrações) e controle (água destilada), com 10 replicações por tratamento. A avaliação consistiu na observação de três parâmetros biológicos do ácaro: mortalidade, oviposição e repelência, após 24, 48, 72 e 96 horas de contato com os fungos. Os isolados de M. anisopliae causam altas taxas de mortalidade de T. ludeni em laboratório. Beauveria bassiana tem potencial para suprimir futuras gerações do ácaro, reduzindo a taxa de oviposição. Comportamento de repelência nos ácaros não foi observado.(AU)


Subject(s)
Animals , Male , Female , Tetranychidae/microbiology , Beauveria/pathogenicity , Metarhizium/pathogenicity , Random Allocation , Pest Control, Biological , Ipomoea batatas
3.
Arq. Inst. Biol. ; 86: e0272018, 2019. graf
Article in English | VETINDEX | ID: vti-29382

ABSTRACT

The use of acaricides is the main control method for Tetranychus ludeni (Acari: Tetranychidae) in horticultural crops. This mite has been recorded causing damage to sweet potato (Ipomoea batatas L.). The use of pathogenic fungi is an alternative to chemical control. The objective was to evaluate the pathogenicity of the fungi Metarhizium anisopliae (Meetch) Sorok, and Beauveria bassiana (Bals.) Vuill. to phytophagous mite T. ludeni in sweet potato plants. Conidial suspensions of M. anisopliae and B. bassiana, at concentrations of 106 and 107 con.mL-1 were applied to sweet potato leaves. After 24 hours, five females of T. ludeni newly emerged were released on the leaves. The bioassay was arranged in a completely randomized design with factorial arrangement 2 × 2 (two species of fungi and two concentrations) plus the control (distilled water), with 10 repetitions per treatment. The evaluation consisted of observing of three biological parameters of the mite: mortality, oviposition, and repellency, after 24, 48, 72, and 96 hours of contact with the fungi. The isolates of M. anisopliae cause high mortality rates of T. ludeni in laboratory. Beauveria bassiana has the potential to suppress future generations of mite, reducing its oviposition rate. Repellency behavior was not observed.(AU)


O uso de acaricidas é o principal método de controle de Tetranychus ludeni (Acari: Tetranychidae) em cultivos hortícolas. Esse ácaro foi registrado causando danos em batata-doce (Ipomoea batatas (L.). A utilização de fungos patogênicos é uma alternativa ao controle químico. O objetivo foi avaliar a patogenicidade dos fungos Metarhizium anisopliae (Meetch) Sorok. e Beauveria bassiana (Bals.) Vuill. ao ácaro fitófago T. ludeni em batata-doce. Suspensões conidiais de M. anisopliae e B. bassiana, nas concentrações de 106 e 107 con.mL-1, foram aplicadas sobre folhas de batata-doce. Após 24 horas, cinco fêmeas recém-emergidas foram liberadas sobre as folhas. O bioensaio foi inteiramente randomizado, com arranjo fatorial 2 × 2 (duas espécies de fungos e duas concentrações) e controle (água destilada), com 10 replicações por tratamento. A avaliação consistiu na observação de três parâmetros biológicos do ácaro: mortalidade, oviposição e repelência, após 24, 48, 72 e 96 horas de contato com os fungos. Os isolados de M. anisopliae causam altas taxas de mortalidade de T. ludeni em laboratório. Beauveria bassiana tem potencial para suprimir futuras gerações do ácaro, reduzindo a taxa de oviposição. Comportamento de repelência nos ácaros não foi observado.(AU)


Subject(s)
Animals , Male , Female , Tetranychidae/microbiology , Beauveria/pathogenicity , Metarhizium/pathogenicity , Random Allocation , Pest Control, Biological , Ipomoea batatas
4.
Exp Appl Acarol ; 74(2): 139-146, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29411186

ABSTRACT

The two-spotted spider mite Tetranychus urticae is an important pest of strawberry crops in Brazil and many other countries. Focus for biocontrol studies involving entomopathogenic fungi has been on three species from the genus Metarhizium: M. anisopliae sensu stricto (s.s.), M. brunneum and M. robertsii. Also, the species Beauveria bassiana has been studied for spider mite control and one isolate (ESALQPL63) is commercially available in Brazil. New and undescribed Metarhizium species have been found recently in Brazil and provide a pool of isolates with potential for biocontrol in Brazil and probably also elsewhere. The mortality of adult females of T. urticae when exposed to four new Brazilian species of Metarhizium was compared to the mortality when exposed to M. anisopliae s.s., M. brunneum, M. pingshaense, M. robertsii and Beauveria bassiana ESALQPL63. Fungal suspensions were sprayed onto mites at 107 conidia/mL with 0.05% Tween 80 in laboratory bio-assays. We measured total mortality and percentage sporulating cadavers 10 days after exposure and calculated median lethal time (LT50). The lowest LT50 (4.0 ± 0.17) was observed for mites treated with Metarhizium sp. Indet. 1 (ESALQ1638), which also performed well with respect to mortality after 10 days and capacity to sporulate from cadavers. Among the other little studied species tested, M. pingshaense (ESALQ3069 and ESALQ3222) and Metarhizium Indet. 2 (ESALQ1476) performed well and were comparable to B. bassiana (ESALQPL63). The new Metarhizium isolates and species thus showed potential for biological control.


Subject(s)
Metarhizium/physiology , Pest Control, Biological , Tetranychidae/microbiology , Tetranychidae/physiology , Tick Control , Animals , Brazil , Female
5.
Pest Manag Sci ; 72(9): 1752-7, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26662118

ABSTRACT

BACKGROUND: The beneficial fungus Neozygites floridana kills the two-spotted spider mite Tetranychus urticae, which is a serious polyphagous plant pest worldwide. Outbreaks of spider mites in strawberry and soybean have been associated with pesticide applications. Pesticides may affect N. floridana and consequently the natural control of T. urticae. N. floridana is a fungus difficult to grow in artificial media, and for this reason, very few studies have been conducted with this fungus, especially regarding the impact of pesticides. The aim of this study was to conduct a laboratory experiment to evaluate the effect of pesticides used in strawberry and soybean crops on N. floridana. RESULTS: Among the pesticides used in strawberry, the fungicides sulfur and cyprodinil + fludioxonil completely inhibited both the sporulation and conidial germination of N. floridana. The fungicide fluazinam affected N. floridana drastically. The application of the fungicide tebuconazole and the insecticides fenpropathrin and abamectin resulted in a less pronounced negative effect on N. floridana. Except for epoxiconazole and cyproconazole, all tested fungicides used in soybean resulted in a complete inhibition of N. floridana. Among the three insecticides used in soybean, lambda-cyhalothrin and deltamethrin resulted in a significant inhibition of N. floridana. CONCLUSION: The insecticides/ acaricides abamectin and lambda-cyhalothrin at half concentrations and fenpropathrin and permethrin and the fungicide tebuconazole at the recommended concentrations resulted in the lowest impact on N. floridana. The fungicides with the active ingredients sulfur, cyprodinil + fludioxonil, azoxystrobin, azoxystrobin + cyproconazole, trifloxystrobin + tebuconazole and pyraclostrobin + epoxiconazole negatively affected N. floridana. © 2015 Society of Chemical Industry.


Subject(s)
Acaricides/toxicity , Entomophthorales/drug effects , Fungicides, Industrial/toxicity , Insecticides/toxicity , Sulfur Compounds/toxicity , Animals , Biological Control Agents , Brazil , Fragaria/growth & development , Norway , Pest Control, Biological , Glycine max/growth & development , Spores, Fungal/drug effects , Tetranychidae/microbiology
6.
J Invertebr Pathol ; 122: 1-5, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25108135

ABSTRACT

Neozygites floridana is an obligate fungal pathogen of mites in the family Tetranychidae and is an important natural enemy of the two-spotted spider mite (Tetranychus urticae). Until now, information about the formation of azygospores remained to be fully confirmed. In this study, we document the formation of azygospores by a Brazilian N. floridana strain and the formation of azygospores and zygospores by a Norwegian N. floridana strain, both in the host T. urticae. Evidence of both zygosporogenesis and azygosporogenesis was also found in the same individual in the Norwegian stains. Further we report the presence of immature azygospores with 1-3 nuclei for the Norwegian strains, immature resting spores (probably azygospores) with 1-8 nuclei for the Brazilian strain, and mature resting spores with 2 nuclei for both the Norwegian and the Brazilian strains (azygo- or zygospores). Our observations suggest that the immature resting spore (prespore) of both strains begins in a multinucleate condition but that the nuclear number is reduced during maturation until mature resting spore is binucleate regardless of its origin as a zygospore or azygospore.


Subject(s)
Entomophthorales/physiology , Spores, Fungal/physiology , Tetranychidae/microbiology , Animals , Brazil , Norway
7.
J Invertebr Pathol ; 114(3): 230-3, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24007762

ABSTRACT

The objective of this study was to determine the effects of light intensity and duration (photoperiod) on the sporulation (discharge of primary conidia) and conidia germination (from non-infective primary conidia to infective capilliconidia) of Neozygites floridana isolates from Tetranychus urticae originating from Norway and Brazil. Two light intensities (40 and 208 µmolm(-2)s(-1)), three photoperiods (24 h of continuous light (24 h D), 12 h of darkness followed by 12 h of light (12 h D: 12 h L) and 24 h of continuous darkness (24 h D)) and two temperatures (18°C and 23°C) were tested. The fungus produced similar amounts of primary conidia and capilliconidia at 12 h D:12 h and 24 h D, indicating that the fungus discharges almost all of its conidia during the first 12 h of darkness. Light had less of an effect on the production of primary conidia than on capilliconidia formation. At 24 h L, capilliconidia formation was significantly lower for all tested light intensities, temperatures and isolates compared to 12 h D:12 h L and 24 h D. At both light intensities, 24 h L resulted in a significantly lower capilliconidia formation for the Norwegian isolate compared to the Brazilian isolate. Our data suggest that, even though 24 h L reduced sporulation, some capilliconidia formation may occur at the low light intensities found on the underside of strawberry leaves during parts of the day as well as the top of a non-shaded strawberry leaf during the dim evening and morning hours in the tropics and during the dim, long summer days in temperate regions.


Subject(s)
Fungi/radiation effects , Light , Photoperiod , Animals , Brazil , Fragaria/microbiology , Fungi/isolation & purification , Fungi/physiology , Norway , Spores, Fungal/radiation effects , Tetranychidae/microbiology , Time Factors
8.
J Invertebr Pathol ; 107(2): 139-45, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21510956

ABSTRACT

In a series of tritrophic-level interaction experiments, the effect of selected host plants of the spider mites, Tetranychus evansi and Tetranychus urticae, on Neozygites floridana was studied by evaluating the attachment of capilliconidia, presence of hyphal bodies in the infected mites, mortality from fungal infection, mummification and sporulation from fungus-killed mite cadavers. Host plants tested for T. evansi were tomato, cherry tomato, eggplant, nightshade, and pepper while host plants tested for T. urticae were strawberry, jack bean, cotton and Gerbera. Oviposition rate of the mites on each plant was determined to infer host plant suitability while host-switching determined antibiosis effect on fungal activity. T. evansi had a high oviposition on eggplant, tomato and nightshade but not on cherry tomato and pepper. T. urticae on jack bean resulted in a higher oviposition than on strawberry, cotton and Gerbera. Attachment of capilliconidia to the T. evansi body, presence of hyphal bodies in infected T. evansi and mortality from fungal infection were significantly higher on pepper, nightshade and tomato. The highest level of T. evansi mummification was observed on tomato. T. evansi cadavers from tomato and eggplant produced more primary conidia than those from cherry tomato, nightshade and pepper. Switching N. floridana infected T. evansi from one of five Solanaceous host plants to tomato had no prominent effect on N. floridana performance. For T. urticae, strawberry and jack bean provided the best N. floridana performance when considering all measured parameters. Strawberry also had the highest primary conidia production. This study shows that performance of N. floridana can vary with host plants and may be an important factor for the development of N. floridana epizootics.


Subject(s)
Entomophthorales/physiology , Host-Pathogen Interactions , Solanaceae/parasitology , Tetranychidae/microbiology , Animals , Disease Susceptibility , Entomophthorales/pathogenicity , Longevity , Mites , Oviposition/physiology , Pest Control, Biological , Solanaceae/physiology , Species Specificity , Spores, Fungal/pathogenicity , Spores, Fungal/physiology , Tetranychidae/physiology
9.
Exp Appl Acarol ; 53(3): 235-44, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20838883

ABSTRACT

Diagnostic PCR with two specific primer pairs (NEOSSU and 8DDC) were used to monitor the establishment and geographical distribution of Brazilian isolates of Neozygites tanajoae Delalibera, Hajek and Humber (Entomophthorales: Neozygitaceae) released in Benin for the biological control of the cassava green mite, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae). A total of 141 cassava fields were visited and samples of M. tanajoa suspected to be infected by N. tanajoae were collected in 60 fields distributed between the coastal Southern Forest Mosaic (SFM) and the Northern Guinea Savanna (NGS) zones of Benin, West Africa. Analysis of DNA samples of dead mites using the species specific NEOSSU primers revealed the presence of N. tanajoae in 46 fields. The second country specific pair of primers 8DDC revealed the presence of Brazilian isolates of N. tanajoae in 36 fields, representing 78.3% of fields positive for N. tanajoae. Brazilian isolates occurred from SFM to NGS zones in Benin, however, they were concentrated in fields located within former release zones (e.g. Department of Ouémé in the South and Borgou in the North). In contrast, the indigenous African isolates of N. tanajoae were evenly distributed in the sub-humid and humid savannah zones of the country. The mean infection rate of M. tanajoa with indigenous isolates of N. tanajoae was relatively low (5.3%) compared to Brazilian isolates (28%), indicating a higher biocontrol potential of the latter. This first post-release monitoring using PCR techniques showed that the Brazilian strains of N. tanajoae is well established in Benin and spread effectively in this area.


Subject(s)
Entomophthorales/physiology , Manihot/microbiology , Tetranychidae/microbiology , Animals , Benin , Brazil , Ecosystem , Entomophthorales/isolation & purification , Host-Pathogen Interactions , Manihot/parasitology , Pest Control, Biological/methods , Phylogeography , Polymerase Chain Reaction
10.
J Invertebr Pathol ; 103(1): 36-42, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19836399

ABSTRACT

The fungal pathogen Neozygites floridana Weiser and Muma has been evaluated as a classical biological candidate for introduction into Africa against the invasive tomato red spider mite Tetranychus evansi Baker and Pritchard. In this study, the effect of temperature on sporulation, germination and virulence of three isolates of N. floridana collected from T. evansi in three climatically distinct regions of Brazil and Argentina was determined. Six constant temperatures of 13 degrees C, 17 degrees C, 21 degrees C, 25 degrees C, 29 degrees C and 33 degrees C were tested for their effect on the ability of the three fungal isolates to sporulate, germinate and kill the mites. Six alternating-temperature regimes of 17-13 degrees C, 21-13 degrees C, 29-13 degrees C, 33-13 degrees C, 33-23 degrees C, 33-28 degrees C under a 12h photophase were also tested to estimate virulence of the three isolates against T. evansi. The Vipos isolate discharged more conidia than isolates from Recife or Piracicaba at all temperatures and sporulation was strongly temperature dependent. Optimal sporulation rates were observed at 25 degrees C while optimal germination rates were observed at 25 degrees C and 29 degrees C. At 29 degrees C, the shortest mean survival time of T. evansi (3.16 days, 95% CI of 3.05-3.27) was observed for the isolate from Vipos, while the longest LT(50) (3.47 days, 95% CI 3.34-3.59) was observed for the isolate from Piracicaba. Mortality of mites increased as the differences between alternating day and night temperatures increased from 8 degrees C (21-13 degrees C), to 10 degrees C (33-23 degrees C), to 16 degrees C (29-13 degrees C), with smallest and highest temperature differences of 4 degrees C (17-13 degrees C) and 20 degrees C (33-13 degrees C), both producing low mortalities. The overall results suggest that the Vipos isolate is better adapted to a wider range of temperatures than the other isolates tested.


Subject(s)
Climate , Entomophthorales/pathogenicity , Spores, Fungal/physiology , Temperature , Tetranychidae/microbiology , Africa , Animals , Argentina , Brazil , Entomophthorales/physiology , Kaplan-Meier Estimate , Pest Control, Biological , Virulence
11.
J Invertebr Pathol ; 102(3): 196-202, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19699206

ABSTRACT

Neozygites floridana (Weiser & Muma) (Zygomycetes: Entomophthorales) has been reported infecting naturally at least 18 species of tetranychids worldwide. However, the host range of N. floridana is unknown. Epizootics caused by this pathogen to tetranychid populations indicate that N. floridana has the potential to be used as a biological control agent. However, the virulence and specificity of species and strains of Neozygites need to be assessed in the laboratory to reveal its potential as a biological control agent. N. floridana isolates are currently been investigated in Brazil as biological control agents against the tomato red mite, Tetranychus evansi Baker & Pritchard, and the two-spotted spider mite, Tetranychus urticae Koch. The pathogenicity of five strains of N. floridana obtained from T. urticae, T. evansi and T. ludeni Zacher was assessed against populations of Mononychellus tanajoa (Bondar), Schizotetranychus sacharum Flechtmann & Baker, Tetranychus abacae Baker & Pritchard and Tetranychus armipenis Flechtmann & Baker, in addition to the species from which the fungus was obtained. Mummified mites were placed on leaf discs of the host plant of each tetranychid to promote fungal sporulation, and after 24h the mites were transferred to the leaf discs. Contamination, infection and mummification were evaluated daily for seven days after confinement. Each isolate was pathogenic to three or four out of the six spider mite species tested. However, except for isolate ESALQ1421, all isolates caused higher levels of infection and significant mummification only to the tetranychid species from which they were collected. None of the isolates was pathogenic to S. sacharum and only one isolate infected T. abacae. Alternative hosts may be important for N. floridana survival in tropical regions where resting spores are rarely found.


Subject(s)
Entomophthorales/physiology , Tetranychidae/microbiology , Animals , Entomophthorales/isolation & purification , Entomophthorales/pathogenicity , Species Specificity , Virulence
12.
Neotrop Entomol ; 37(3): 312-20, 2008.
Article in Portuguese | MEDLINE | ID: mdl-18641903

ABSTRACT

The virulence of Hirsutella thompsonii (Fischer) to Brevipalpus phoenicis (Geijskes) was evaluated in laboratory, grown on complete and solid culture media (MC-S); complete and liquid culture media (MC-L); rice (APC) and powdered rice (APC-SM). Adults were confined to arenas prepared with citrus leaves in acrylic dishes containing water-agar. Conidial suspensions were prepared at different concentration (3.2 x 10(5) to 1 x 10(7) spores/ml) and applied on mites to establish the table curve-response on fourth day. For field evaluation, adults were maintained in arenas prepared with fruits which were placed in plants. In this test, four treatments were tried: H. thompsonii cultured on rice (APC) at two concentrations (20 kg/ha and 10 kg/ha), H. thompsonii produced by liquid fermentation (MC-L) (5 L/ha) and control (sterile water). Adult survival, number of eggs and nymphs per fruit were observed 10 and 20 days after the fungus application. The lowest LC25 value calculated was from pathogen produced in MC-S (1.9 x 10(5) conidia/ml).The LC25 values calculated to APC and APC-SM did not differ statistically. The LC25 values to MC-L and MC-S were 1.9 x 10(6) infective cells/ml and 2.2 x 10(5) conidia/ml. In the field, concentration and time to death differed between treatments and control. The applications resulted in reduction of adult survival and number of eggs.


Subject(s)
Culture Media/pharmacology , Hypocreales/pathogenicity , Pest Control, Biological/methods , Tetranychidae/microbiology , Animals , Citrus , Female , Plant Diseases/parasitology , Virulence/drug effects
13.
Exp Appl Acarol ; 46(1-4): 211-22, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18665330

ABSTRACT

Monitoring of a population of the phytophagous cassava green mite, Mononychellus tanajoa (Bondar), and its natural enemies was undertaken in central Bahia, Brazil, in mid-1996. In spite of the presence of extremely high densities of the predatory phytoseiid mite Neoseiulus idaeus Denmark & Muma, the phytophagous mite population reached such high densities itself that there was total overexploitation of the cassava plants, leading to total leaf loss. Meanwhile, the mite-pathogenic fungus Neozygites tanajoae Delalibera, Humber & Hajek did not affect the M. tanajoa population in its growth phase as there was no inoculum present, even though we predict from a simple regression model that there was the potential for epizootics at that time. Soon after the M. tanajoa population crashed due to defoliation, there could have been an epizootic but there were simply no mite hosts to infect. These data demonstrate the ineffectiveness of one natural enemy (the predator) in terms of prey population regulation and demonstrate the importance of timing in the possible effectiveness of the other (the pathogen). For the pathogen, this probably explains its sporadic effect on host populations as previously reported. We conclude that the fungus is likely to be most useful as an adjunct to biological control with predatory mites other than N. idaeus.


Subject(s)
Entomophthorales/physiology , Host-Pathogen Interactions , Manihot/parasitology , Pest Control, Biological , Tetranychidae/microbiology , Animals , Food Chain , Predatory Behavior , Regression Analysis
14.
Exp Appl Acarol ; 46(1-4): 287-97, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18584133

ABSTRACT

The tomato red spider mite, Tetranychus evansi Baker and Pritchard, is an invasive species in Africa causing considerable damage to Solanaceous crops. The fungal pathogen Neozygites floridana Weiser and Muma from Brazil has been considered a potential candidate for introduction into Africa for the control of T. evansi. To be incorporated in the tomato production system, N. floridana has to be compatible with the pesticides used for the control of other pests and diseases. Pesticides used in tomatoes that might affect the fungus were therefore studied by the use of different methods. Two insecticides (Lambda-cyhalothrin and Methomyl), two acaricides (Propargite and Abamectin), and two fungicides (Captan and Mancozeb) were tested in two concentrations: the mean commercial rate (CR) and 50% of the mean commercial rate (CR/2). Fungus-killed mite cadavers or the substrates used for sporulation (leaf discs and coverslips) were either immersed or sprayed with the pesticides before testing their effects on sporulation, germination of primary conidia and infectivity of N. floridana. Direct immersion of cadavers, coverslips or leaf discs into pesticides affected sporulation and germination stronger than the spray tower method, although infectivity of capilliconidia was neither affected by the method of application nor the concentration of the pesticides. The fungicides Captan and Mancozeb resulted in a high reduction in sporulation and germination at both concentrations. Propargite did not inhibit sporulation but affected germination of primary conidia. Methomyl and Abamectin resulted in less effects on N. floridana.


Subject(s)
Entomophthorales/drug effects , Fungicides, Industrial/pharmacology , Insecticides/pharmacology , Spores, Fungal/drug effects , Tetranychidae/microbiology , Animals , Entomophthorales/growth & development , Female , Plant Leaves/parasitology , Spores, Fungal/growth & development
15.
Exp Appl Acarol ; 29(3-4): 213-25, 2003.
Article in English | MEDLINE | ID: mdl-14635809

ABSTRACT

The acaricidal mycopathogen Hirsutella thompsonii has been found to secrete metabolites that are active against female Tetranychus urticae. Specifically, the rose-colored exudate produced on sporulating cultures of Mexican HtM120I strain sterilized female spider mites in a dose-dependent fashion. Topical application of the exudate resulted in a 100% reduction in mite fecundity over the initial six days of experimentation. Depending upon the exudate dosage, mites partially recovered within 3 and 6 d post-treatment and produced a limited number of eggs. The spider mite active HtM120I exudate contained less detectable HtA toxin than the HtM120I broth filtrate, and it was innocuous when injected into the greater wax moth Galleria mellonella L. larvae. Broth filtrates of HtM120I cultures, although toxic to assayed G. mellonella larvae, did not inhibit mite oviposition to the degree or duration of the exudate preparations. These findings suggest that the factor responsible for suppressing oviposition in female spider mites is linked to the sporulation process and is distinct from the well-characterized HtA produced by vegetative cells.


Subject(s)
Hypocreales/metabolism , Mite Infestations/prevention & control , Tetranychidae/microbiology , Animals , Cytotoxins/metabolism , Exudates and Transudates/metabolism , Female , Fungal Proteins/metabolism , Oviposition , Pest Control, Biological , Spores, Fungal/metabolism , Tetranychidae/growth & development
16.
Mycol Res ; 107(Pt 7): 872-8, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12967215

ABSTRACT

Entomophthorales pathogenic to insects and mites often cause epizootics in their host populations, but some have been difficult to culture in vitro and, therefore, to develop as biopesticides. Grace's insect cell culture medium supplemented with lactalbumin hydrolysate and yeastolate has allowed growth of several species which until recently were referred to as obligate parasites. The research reported here was designed to evaluate the effects of the salts, vitamins and amino acids used to prepare the insect cell culture medium on in vitro growth of Batkoa sp. and Furia sp., pathogens of the spittlebug pests of pasture and sugar-cane in Brazil, and Neozygites floridana, a pathogen of several mite species. Also, several sources of carbon and nitrogen were examined. Batkoa sp., Furia sp. and N. floridana were similar concerning their growth patterns in a basic medium with added salts, vitamins and amino acids, as well as with a combination of all three compoments. The addition of salts to the basic medium of sugars plus lactalbumen hydrolysate and yeastolate caused a significant increase in biomass production of the three fungal species. The addition of vitamins and amino acids had less effect. Batkoa sp., Furia sp. and N. floridana are similar in growth patterns in media with various sources of carbon, but different in media with different sources of nitrogen. The production of the three fungal species is significantly higher in medium containing 2.66% glucose than in medium with 2.66% sucrose. The addition of 0.1% monossacarides to media containing 2.66% sucrose did not significantly increase biomass production.


Subject(s)
Entomophthorales/growth & development , Animals , Carbohydrate Metabolism , Cells, Cultured , Culture Media/chemistry , Entomophthorales/classification , Hemiptera/microbiology , Microbiological Techniques , Nitrogen/metabolism , Salts/metabolism , Tetranychidae/microbiology , Vitamins/metabolism
17.
J Invertebr Pathol ; 81(2): 70-7, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12445790

ABSTRACT

Beauveria bassiana colonizes insect hosts initially through a yeast phase, which is common in some artificial liquid cultures, but not reported on artificial solid media. We describe a yeast-like phase for B. bassiana isolate 447 (ATCC 20872) on MacConkey agar and its virulence toward Diatraea saccharalis and Tetranychus urticae. The yeast-like cells of B. bassiana developed by budding from germinating conidia after 24-h incubation. Cells were typically 5-10 microm and fungal colonies were initially circular and mucoid, but later were covered with mycelia and conidia. Ability to produce yeast-like cells on MacConkey medium was relatively common among different B. bassiana isolates, but growth rate and timing of yeast-like cell production also varied. Metarhizium anisopliae and Paecilomyces spp. isolates did not grow as yeast-like cells on MacConkey medium. Yeast-like cells of B. bassiana 447 were more virulent against D. saccharalis than conidia when 10(7)cells/ml were used. At 10(8)cells/ml, the estimated mean survival time was 5.4 days for the yeast suspension and 7.7 days for the conidial suspension, perhaps due to faster germination. The LC(50) was also lower for yeast than conidial suspensions. Yeast-like cells and conidia had similar virulence against T. urticae; the average mortalities with yeast-like cells and conidia were, respectively, 42.8 and 45.0%, with 10(7)cells/ml, and 77.8 and 74.4%, with 10(8)cells/ml. The estimated mean survival times were 3.6 and 3.9 for yeast and conidial suspensions, respectively. The bioassay results demonstrate the yeast-like structures produced on MacConkey agar are effective as inoculum for B. bassiana applications against arthropod pests, and possibly superior to conidia against some species. Obtaining well-defined yeast phase cultures of entomopathogenic hyphomycetes may be an important step in studies of the biology and nutrition, pathogenesis, and the genetic manipulation of these fungi.


Subject(s)
Cordyceps/growth & development , Cordyceps/pathogenicity , Life Cycle Stages/physiology , Moths/microbiology , Pest Control, Biological/methods , Tetranychidae/microbiology , Agar , Animals , Cordyceps/ultrastructure , Female , Microscopy, Electron, Scanning , Yeasts/pathogenicity , Yeasts/ultrastructure
18.
Exp Appl Acarol ; 27(1-2): 11-25, 2002.
Article in English | MEDLINE | ID: mdl-12593509

ABSTRACT

The mite-pathogenic fungus Neozygites floridana Fisher (Entomophthorales: Neozygitaceae) is considered to have potential for the biological control of the cassava green mite, Mononychellus tanajoa (Bondar). However, its activity is sporadic and laboratory data suggest a strong dependence on night-time saturation deficits for transmission. We report on an epizootic of this fungus in a mite population in northeastern Brazil. During the epizootic, host populations appeared to he limited by a combination of the pathogen and a predatory mite Neoseiulus idaeus (Acari: Phytoseiidae). When temperatures increased, the epizootic finished and the host population began to grow. Abiotic conditions could not explain the variation in host mortality following pickup of infective propagules in this epizootic. However, night-time saturation did help to explain the variation in transmission from infective cadavers to newly killed hosts. This supports laboratory observations that horizontal transmission between hosts is determined mainly by saturation deficits, while the process of infection is little affected by abiotic conditions. A further field observation was the near-absence of resting spores in dead mites (ca. 0.1% of cadavers), suggesting that the pathogen population was unsuccessful in producing inoculum to infect future M. tanajoa populations. The implications are that this pathogen will only be effective as a biological control agent in periods of high relative humidity, and establishment in new areas may be limited by resting spore formation.


Subject(s)
Entomophthorales/growth & development , Manihot/parasitology , Pest Control, Biological/methods , Tetranychidae/microbiology , Animals , Brazil , Female , Humidity , Linear Models , Mite Infestations , Plant Leaves , Regression Analysis , Tetranychidae/growth & development
19.
Exp Appl Acarol ; 27(3): 169-80, 2002.
Article in English | MEDLINE | ID: mdl-12593583

ABSTRACT

Age-specific effects of invertebrate pathogens on their hosts can greatly influence the population dynamics in such interactions. Explanations for such differences are usually sought within differing intrinsic susceptibilities of the host life stages but we present data which indicate that host size, behaviour and life history may be the overriding factors determining age-specific effects of a fungal pathogen, Neozygitesfloridana (Entomophthorales: Neozygitaceae) on spider mites (Mononychellus tanajoa Bondar, Acari: Tetranychidae). Epizootics of N. floridana in spider mites are characterised by much greater relative mortality of adult females compared with other life stages (ca. 99%), despite similar physiological susceptibilities. We present empirical data that demonstrate encounter rates of mites with N. floridana increasing with life stage during an epizootic on cassava in northeastern Brazil. Estimates of the size, walking speeds and patterns, and life history of different life stages (and adult sexes) were used to calculate expected relative encounter rates which were found not to be different from the observed values (although not testable for larvae). This helps explain the different apparent susceptibility of host life stages in the field. Given the low ecological susceptibility of younger life stages to this pathogen, we predict that the interaction time between host and pathogen, determined by climatic conditions, will be critical in determining the degree of host population control in an epizootic. We further hypothesise that such variation in ecological susceptibility to pathogens can generate selection pressures on basic host traits, contributing to the sessile nature of many microarthropods.


Subject(s)
Aging/physiology , Fungi/physiology , Tetranychidae/microbiology , Tetranychidae/physiology , Animals , Brazil , Disease Susceptibility , Female , Fungi/isolation & purification , Host-Parasite Interactions , Life Cycle Stages , Male , Motor Activity , Seasons , Sex Characteristics , Tetranychidae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL