Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 131: 26-37, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25281069

ABSTRACT

For the first time, an analytical methodology based on differential pulse voltammetry (DPV) at a glassy carbon electrode (GCE) and integration of three efficient strategies including variable selection based on ant colony optimization (ACO), mathematical pre-processing selection by genetic algorithm (GA), and sample selection (SS) through a distance-based procedure to improve partial least squares-1 (PLS-1, ACO-GA-SS-PLS-1) multivariate calibration (MVC) for the simultaneous determination of five opium alkaloids including morphine (MOP), noscapine (NOP), thebaine (TEB), codeine (COD), and papaverine (PAP) was used and validated. The baselines of the DPV signals were modeled as a smooth curve, using P-splines, a combination of B-splines and a discrete roughness penalty. After subtraction of the baseline we got a signal with a two-component probability density. One component was for the peaks and it was approximated by a uniform distribution on the potential axis. The other component was for the observed noise around the baseline. Some sources of bi-linearity deviation for electrochemical data were discussed and analyzed. The lack of bi-linearity was tackled by potential shift correction using correlation optimized warping (COW) algorithm. The MVC model was developed as a quinternary calibration model in a blank human serum sample (drug-free) provided by a healthy volunteer to regard the presence of a strong matrix effect which may be caused by the possible interferents present in the serum, and it was validated and tested with two independent sets of analytes mixtures in the blank and actual human serum samples, respectively. Fortunately, the proposed methodology was successful in simultaneous determination of MOP, NOP, TEB, COD, and PAP in both blank and actual human serum samples and its results were satisfactory comparable to those obtained by applying the reference method based on high performance liquid chromatography-ultraviolet detection (HPLC-UV).


Subject(s)
Algorithms , Alkaloids/blood , Chromatography, High Pressure Liquid/methods , Electrochemical Techniques/methods , Neoplasms/blood , Opium/blood , Calibration , Carbon/chemistry , Codeine/blood , Electrodes , Humans , Least-Squares Analysis , Morphine/blood , Noscapine/blood , Papaverine/blood , Thebaine/blood
2.
J AOAC Int ; 88(2): 428-35, 2005.
Article in English | MEDLINE | ID: mdl-15859067

ABSTRACT

A simple and reliable micellar liquid chromatographic method was developed for the simultaneous determination of 3 opiates (codeine, morphine, and thebaine) in serum, using direct injection and ultraviolet detection. The separation of the drugs was optimized on a C18 column, thermostatically controlled at 25 degrees C, by evaluating mobile phases containing sodium dodecyl sulfate (SDS) and various modifiers (propanol, butanol, or pentanol). Adequate resolution of the opiates was obtained with a chemometrics approach, in which retention was modeled as a first step by using the retention factors for several mobile phases. Next, an optimization criterion that takes into account the position and shape of the chromatographic peaks was applied. The 3 opiates were totally resolved and determined in 12 min with the mobile phase 0.15M SDS-7% (v/v) butanol buffered at pH 7. The limits of detection for codeine and morphine were greatly improved by using fluorimetric detection. Repeatability and intermediate precision were tested for 3 different concentrations of the drugs, and the relative standard deviations were <0.8% for most of the assays. Finally, the method was successfully applied to the determination of morphine and codeine in serum samples.


Subject(s)
Codeine/blood , Morphine/blood , Narcotics/blood , Thebaine/blood , Algorithms , Calibration , Chromatography, Micellar Electrokinetic Capillary , Humans , Hydrogen-Ion Concentration , Indicators and Reagents , Reference Standards , Reproducibility of Results , Solutions , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL