Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.155
Filter
1.
Physiology (Bethesda) ; 39(4): 0, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38536114

ABSTRACT

Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.


Subject(s)
Body Temperature Regulation , Brain , Cues , Thermosensing , Humans , Animals , Thermosensing/physiology , Brain/physiology , Body Temperature Regulation/physiology , Pain/physiopathology , Thermogenesis/physiology
2.
Int J Biometeorol ; 68(5): 965-977, 2024 May.
Article in English | MEDLINE | ID: mdl-38441666

ABSTRACT

The Universal Thermal Climate Index (UTCI) is a thermal comfort index that describes how the human body experiences ambient conditions. It has units of temperature and considers physiological aspects of the human body. It takes into account the effect of air temperature, humidity, wind, radiation, and clothes. It is increasingly used in many countries as a measure of thermal comfort for outdoor conditions, and its value is calculated as part of the operational meteorological forecast. At the same time, forecasts of outdoor UTCI tend to have a relatively large error caused by the error of meteorological forecasts. In Slovenia, there is a relatively dense network of meteorological stations. Crucially, at these stations, global solar radiation measurements are performed continuously, which makes estimating the actual value of the UTCI more accurate compared to the situation where no radiation measurements are available. We used seven years of measurements in hourly resolution from 42 stations to first verify the operational UTCI forecast for the first forecast day and, secondly, to try to improve the forecast via post-processing. We used two machine-learning methods, linear regression, and neural networks. Both methods have successfully reduced the error in the operational UTCI forecasts. Both methods reduced the daily mean error from about 2.6 ∘ C to almost zero, while the daily mean absolute error decreased from 5 ∘ C to 3 ∘ C for the neural network and 3.5 ∘ C for linear regression. Both methods, especially the neural network, also substantially reduced the dependence of the error on the time of the day.


Subject(s)
Forecasting , Neural Networks, Computer , Humans , Slovenia , Machine Learning , Climate , Linear Models , Temperature , Thermosensing , Humidity , Wind
3.
Biophys J ; 123(8): 947-956, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38449311

ABSTRACT

The ability to perceive temperature is crucial for most animals. It enables them to maintain their body temperature and swiftly react to noxiously cold or hot objects. Caenorhabditis elegans is a powerful genetic model for the study of thermosensation as its simple nervous system is well characterized and its transparent body is suited for in vivo functional imaging of neurons. The behavior triggered by experience-dependent thermosensation has been well studied in C. elegans under temperature-gradient environments. However, how C. elegans senses temperature via its nervous system is not well understood due to the limitations of currently available technologies. One major bottleneck is the difficulty in creating fast temperature changes, especially cold stimuli. Here, we developed a microfluidic-based platform that allowed the in vivo functional imaging of C. elegans responding to well-controlled temporally varying temperature stimulation by rapidly switching fluid streams at different temperatures. We used computational models to enable rational design and optimization of experimental conditions. We validated the design and utility of our system with studies of the functional role of thermosensory neurons. We showed that the responses of PVD polymodal nociceptor neurons observed in previous studies can be recapitulated. Further, we highlighted how this platform may be used to dissect neuronal circuits with an example of activity recording in PVC interneurons. Both of these neuron types show sensitization phenotypes. We envision that both the engineered system and the findings in this work will spur further studies of molecular and cellular mechanisms underlying cold-sensing through the nervous system.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Temperature , Caenorhabditis elegans/genetics , Microfluidics , Thermosensing/physiology , Cold Temperature , Caenorhabditis elegans Proteins/genetics
4.
Int J Biometeorol ; 68(4): 777-793, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38427096

ABSTRACT

To adapt to Earth's rapidly changing climate, detailed modelling of thermal stress is needed. Dangerous stress levels are becoming more frequent, longer, and more severe. While traditional measurements of thermal stress have focused on air temperature and humidity, modern measures including radiation and wind speed are becoming widespread. However, projecting such indices has presented a challenging problem, due to the need for appropriate bias correction of multiple variables that vary on hourly timescales. In this paper, we aim to provide a detailed understanding of changing thermal stress patterns incorporating modern measurements, bias correction techniques, and hourly projections to assess the impact of climate change on thermal stress at human scales. To achieve these aims, we conduct a case study of projected thermal stress in central Hobart, Australia for 2040-2059, compared to the historical period 1990-2005. We present the first hourly metre-scale projections of thermal stress driven by multivariate bias-corrected data. We bias correct four variables from six dynamically downscaled General Circulation Models. These outputs drive the Solar and LongWave Environmental Irradiance Geometry model at metre scale, calculating mean radiant temperature and the Universal Thermal Climate Index. We demonstrate that multivariate bias correction can correct means on multiple time scales while accurately preserving mean seasonal trends. Changes in mean air temperature and UTCI by hour of the day and month of the year reveal diurnal and annual patterns in both temporal trends and model agreement. We present plots of future median stress values in the context of historical percentiles, revealing trends and patterns not evident in mean data. Our modelling illustrates a future Hobart that experiences higher and more consistent numbers of hours of heat stress arriving earlier in the year and extending further throughout the day.


Subject(s)
Heat Stress Disorders , Models, Theoretical , Humans , Temperature , Humidity , Wind , Thermosensing
5.
Article in English | MEDLINE | ID: mdl-38541322

ABSTRACT

The consequences of climate change are already visible, and yet, its effect on psychosocial factors, including the expression of empathy, affect, and social disconnection, is widely unknown. Outdoor conditions are expected to influence indoor conditions. Therefore, the aim of this study was to investigate the effect of indoor air temperature during work hours on empathy, positive and negative affect, and social disconnection. Participants (N = 31) were exposed, in a cross-over design, to two thermal conditions in a simulated office environment. Questions on empathy and social disconnection were administered before and after the exposure to each condition, while affect was measured throughout the day. Subjective thermal sensation and objective measures of mean skin temperature were considered. The results indicated a significant difference in empathy (F(1, 24) = 5.37, p = 0.03, with an η2 = 0.126) between conditions. Participants reported increases in empathy after exposure to the warm condition compared to the cool condition, in which reductions in empathy were reported. Although the same pattern was observed for positive affect, the difference was smaller and the results were not significant. Thermal sensation had a significant effect on changes in empathy too (F(1, 54) = 7.015, p = 0.01, with an R2 = 0.115), while mean skin temperature had no effect on empathy (F(1, 6) = 0.53, p = 0.89, with an R2 = 0.81). No effects were observed for positive and negative affect and social disconnection. Longitudinal studies are needed to support these findings.


Subject(s)
Air Pollution, Indoor , Empathy , Humans , Temperature , Cold Temperature , Thermosensing , Skin Temperature
6.
Int J Occup Saf Ergon ; 30(2): 587-598, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38509715

ABSTRACT

Objectives. This study explores the effects of temperature steps on thermal responses to understand abrupt temperature shifts faced by heat-exposed workers during winter. Methods. Three temperature step changes with three phases (S20: 20-40-20 °C, S30: 10-40-10 °C, S40: 0-40-0 °C) were conducted. Phase 1 took 30 min, phase 2 took 60 min and phase 3 took 40 min. Eleven participants remained sedentary throughout the experiment, and physiological responses, thermal perception and self-reported health symptoms were recorded. Results. In temperature up steps, steady skin temperature and sweating onset were delayed, and heart rate dropped by 10 bpm from S20 to S40. In temperature down steps to cold conditions, individuals transitioned from thermal comfort to discomfort and eventually cold strain. Blood pressure increased in temperature down steps, correlating with temperature step magnitudes. Thermal responses to temperature steps of equal magnitude but opposite directions were asymmetries, which weakened as step magnitude increased. Thermal perceptions responded faster than physiological changes after temperature steps, while self-reported health symptoms lagged behind physiological responses. Conclusions. These findings contribute to expanding basic data to understand the effects of temperature step magnitude and direction.


Subject(s)
Cold Temperature , Heart Rate , Hot Temperature , Skin Temperature , Humans , Male , Skin Temperature/physiology , Heart Rate/physiology , Adult , Blood Pressure/physiology , Sweating/physiology , Female , Perception/physiology , Thermosensing/physiology , Young Adult
7.
Nature ; 628(8009): 826-834, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538787

ABSTRACT

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Subject(s)
Brain Stem , Ependymoglial Cells , Feeding Behavior , Hot Temperature , Hypothalamus , Neural Pathways , Neurons , Animals , Female , Male , Mice , Agouti-Related Protein/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/cytology , Brain Stem/cytology , Brain Stem/physiology , Dopamine/metabolism , Eating/physiology , Ependymoglial Cells/cytology , Ependymoglial Cells/physiology , Feeding Behavior/physiology , Glutamic Acid/metabolism , Hypothalamus/cytology , Hypothalamus/physiology , Neural Pathways/metabolism , Neurons/metabolism , Parabrachial Nucleus/cytology , Parabrachial Nucleus/metabolism , Parabrachial Nucleus/physiology , Thermosensing/physiology , Time Factors , Vascular Endothelial Growth Factor A/cerebrospinal fluid , Vascular Endothelial Growth Factor A/metabolism
8.
Plant Sci ; 342: 112025, 2024 May.
Article in English | MEDLINE | ID: mdl-38354752

ABSTRACT

Plants dynamically regulate their genes expression and physiological outputs to adapt to changing temperatures. The underlying molecular mechanisms have been extensively studied in diverse plants and in multiple dimensions. However, the question of exactly how temperature is detected at molecular level to transform the physical information into recognizable intracellular signals remains continues to be one of the undetermined occurrences in plant science. Recent studies have provided the physical and biochemical mechanistic breakthrough of how temperature changes can influence molecular thermodynamically stability, thus changing molecular structures, activities, interaction and signaling transduction. In this review, we focus on the thermosensing mechanisms of recognized and potential plant thermosensors, to describe the multi-level thermal input system in plants. We also consider the attributes of a thermosensor on the basis of thermal-triggered changes in function, structure, and physical parameters. This study thus provides a reference for discovering more plant thermosensors and elucidating plant thermal adaptive mechanisms.


Subject(s)
Plants , Thermosensing , Temperature , Plants/genetics , Thermosensing/physiology , Adaptation, Physiological , Acclimatization
9.
J Neurosci ; 44(11)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38316563

ABSTRACT

Cooling sensations arise inside the mouth during ingestive and homeostasis behaviors. Oral presence of cooling temperature engages the cold and menthol receptor TRPM8 (transient receptor potential melastatin 8) on trigeminal afferents. Yet, how TRPM8 influences brain and behavioral responses to oral temperature is undefined. Here we used in vivo neurophysiology to record action potentials stimulated by cooling and warming of oral tissues from trigeminal nucleus caudalis neurons in female and male wild-type and TRPM8 gene deficient mice. Using these lines, we also measured orobehavioral licking responses to cool and warm water in a novel, temperature-controlled fluid choice test. Capture of antidromic electrophysiological responses to thalamic stimulation identified that wild-type central trigeminal neurons showed diverse responses to oral cooling. Some neurons displayed relatively strong excitation to cold <10°C (COLD neurons) while others responded to only a segment of mild cool temperatures below 30°C (COOL neurons). Notably, TRPM8 deficient mice retained COLD-type but lacked COOL cells. This deficit impaired population responses to mild cooling temperatures below 30°C and allowed warmth-like (≥35°C) neural activity to pervade the normally innocuous cool temperature range, predicting TRPM8 deficient mice would show anomalously similar orobehavioral responses to warm and cool temperatures. Accordingly, TRPM8 deficient mice avoided both warm (35°C) and mild cool (≤30°C) water and sought colder temperatures in fluid licking tests, whereas control mice avoided warm but were indifferent to mild cool and colder water. Results imply TRPM8 input separates cool from warm temperature sensing and suggest other thermoreceptors also participate in oral cooling sensation.


Subject(s)
TRPM Cation Channels , Mice , Male , Animals , Female , TRPM Cation Channels/genetics , Cold Temperature , Neurons , Temperature , Thermosensing/physiology , Water
10.
Appl Ergon ; 117: 104241, 2024 May.
Article in English | MEDLINE | ID: mdl-38354553

ABSTRACT

This study assessed the effect of season on cognitive function and psycho-physiological responses during a 14-day swing in mine-service workers. Cognitive function, thermal sensation and comfort, rating of perceived exertion, fatigue, hydration, core temperature and heart rate were assessed throughout a shift, on three separate days over a swing. Working memory and processing efficiency did not differ between seasons (p > 0.05), however counting and recall latencies improved throughout the swing (p < 0.05). Participants reported greater fatigue post-shift compared to pre-shift (p < 0.05). Thermal sensation, thermal comfort, and hydration were significantly elevated in summer compared to winter (p < 0.05). Specifically, workers were significantly/minimally dehydrated in summer/winter (urinary specific gravity = 1.025 ± 0.007/1.018 ± 0.007). Although cognitive function and thermal strain were not impaired in summer compared to winter, it is essential to reinforce worker's knowledge regarding hydration requirements. Additional education and/or incorporating scheduled rest breaks for hydration should be considered to ensure the health and safety of mine workers.


Subject(s)
Dehydration , Fatigue , Humans , Seasons , Thermosensing , Cognition
11.
Int J Biometeorol ; 68(5): 909-925, 2024 May.
Article in English | MEDLINE | ID: mdl-38363363

ABSTRACT

Intensive urban development has resulted in the degradation of the urban thermal environment in most regions. There is a growing consensus on the need to enhance urban thermal comfort through well-designed forms, especially in open spaces like urban canyons. To address this, our study focuses on Xi'an's commercial pedestrian streets, employing K-means clustering analysis to create 32 representative models based on actual scenes, capturing their textural characteristics. Simultaneously, 11 geometric indicators (2D/3D) were chosen to quantify the canyon's geometric form. We assessed the spatial and temporal distribution differences in the thermal environment across these models using Envi-met simulation. Finally, Spearman correlation analysis was employed to examine the correlation and significance of the two sets of indicators, culminating in formulating an ideal model. The findings reveal that (1) wind conditions are predominantly influenced by the canyon's geometric form, followed by solar radiation and temperature, with the lowest relative humidity change amplitude among the assessed thermal parameters. (2) Among the 11 geometric form indicators, 3D indicators correlate more significantly with thermal environment parameters than 2D indicators. Specifically, street orientation significantly impacts the thermal environment, Build-To-Line Rat holds greater significance than interface density, and both building shape coefficient and block surface ratio are significantly correlated with air temperature and wind speed, with a weaker correlation to solar radiation. (3) In the Xi'an region, courtyards oriented north-south demonstrate a more favorable trend in the thermal environment.


Subject(s)
Cities , Pedestrians , Seasons , Humans , China , Temperature , Models, Theoretical , Built Environment , Wind , Thermosensing , Humidity , Cluster Analysis
12.
PLoS One ; 19(2): e0299036, 2024.
Article in English | MEDLINE | ID: mdl-38412198

ABSTRACT

Thermal comfort of humans depends on the surrounding environment and affects their productivity. Several environmental factors, such as air temperature, relative humidity, wind or airflow, and radiation, have considerable influence on the thermal comfort or pleasantness; hence, these are generally controlled by electrical devices. Lately, the development of objective measurement methods for thermal comfort or pleasantness using physiological signals is receiving attention to realize a personalized comfortable environment through the automatic control of electrical devices. In this study, we focused on electroencephalography (EEG) and investigated whether EEG signals contain information related to the pleasantness of ambient airflow reproducing natural wind fluctuations using machine learning methods. In a hot and humid artificial climate chamber, we measured EEG signals while the participants were exposed to airflow at four different velocities. Based on the reported pleasantness levels, we performed within-participant classification from the source activity of the EEG and obtained a classification accuracy higher than the chance level using both linear and nonlinear support vector machine classifiers as well as an artificial neural network. The results of this study showed that EEG is useful in identifying people's transient pleasantness when exposed to wind.


Subject(s)
Thermosensing , Wind , Humans , Climate , Temperature , Electroencephalography
13.
Int J Biometeorol ; 68(5): 949-963, 2024 May.
Article in English | MEDLINE | ID: mdl-38374295

ABSTRACT

In this initial study of a research project, this paper seeks to understand the thermal conditions in the cities of Lisbon and Munich, specifically focusing on Urban Heat Island intensity and on thermal comfort using the Universal Thermal Climate Index modeling data at the Local Climate Zone scale. Based on these datasets, Munich has exhibited more unfavourable thermal conditions than Lisbon. In terms of UHII, both cities have shown that low, medium, and high rise compact urban areas and bare rock or paved areas have the highest values, while sparsely built areas have the lowest. These results differ from the UTCI, which indicates that in Lisbon and Munich, these sparsely built areas as well as areas with low plants and vegetation are the most uncomfortable. In Munich, the population was exposed to very strong heat stress, while Lisbon experienced strong heat stress conditions. Conversely, low, medium, and high rise compact urban areas and densely wooded areas in Munich, and scattered trees areas and large low-rise urban areas in Lisbon, have demonstrated the lowest monthly mean and average maximum values. These results will be further explored in future studies in the city of Lisbon and cross-checked with data obtained from roving missions. This will enable a more detailed temporal and local analysis.


Subject(s)
Cities , Climate Change , Microclimate , Humans , Germany , Portugal , Models, Theoretical , Thermosensing , Hot Temperature
14.
Sci Total Environ ; 918: 170683, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38325465

ABSTRACT

The real indoor environment involves the comprehensive interaction of multiple factors, and human subjective responses to different factors are influenced by various aspects such as physics, physiology, and psychology. The relative significance of various factors influencing different types of human subjective thermal perception, as well as the extent of their interactions, remains somewhat unclear. This investigation, leveraging the "Chinese Thermal Comfort Dataset," analyzed the integrated impact of basic thermal perception factors-temperature, humidity, air speed, as well as clothing insulation and metabolic rate-on subjective thermal perception. The findings underscored the definitive role of air temperature as the primary determinant of thermal sensation, with the impact of other factors generally remaining below 15 % of temperature. Nonetheless, the sensitivity of thermal sensation to temperature is significantly affected by other factors, demonstrating a significant interaction between temperature and different factors in influencing temperature sensation. Additionally, it was observed that significant differences (p < 0.001) in thermal comfort levels existed even at the same thermal sensation. For instance, in the state of thermal neutrality, occupants with relatively higher clothing insulation reported higher thermal comfort level (d = 0.40, p < 0.001) during the cooling season but lower thermal comfort level (d = 0.54, P < 0.001) during the heating season. Consequently, it can be deduced that when comprehensively considering the impact of multiple factors, evaluating the environment solely based on thermal sensation or thermal neutrality may prove insufficient.


Subject(s)
Cold Temperature , Thermosensing , Humans , Humidity , Temperature , Perception
15.
Int J Biometeorol ; 68(4): 675-690, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38180571

ABSTRACT

This study aims to evaluate agreement among subjective thermal comfort, thermal sensation, thermal perception, and thermal tolerance indices, according to pedestrians in downtown Santa Maria, southern Brazil, which has a humid subtropical climate (Cfa). Between August 2015 and July 2016 (three periods), 1728 questionnaires were applied. Evaluation of the dependence of statistical variables was based on gender and age, at three periods of time: August 2015 (864 respondents), January 2016 (432 respondents), and July 2016 (432 respondents). Statistical evaluation was based on Pearson's chi-square test using RStudio software, and a significance level (α) of 5% for thermal comfort, thermal sensation, thermal preference, and thermal tolerance was used. Results indicated that age and gender affect the relationship between the variables. Thermal comfort and thermal tolerance presented the best correlation and coherence, regardless of age or gender. This study contributes to knowledge on the local microclimate and can contribute to urban planning to implement strategies that improve pedestrians' thermal comfort.


Subject(s)
Pedestrians , Humans , Climate , Microclimate , Thermosensing , Perception , Cities
16.
Int J Biometeorol ; 68(4): 807-810, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38246896

ABSTRACT

Wind speed is an important variable in the assessment of thermal comfort. Different types of meteorological devices provide different accuracy of air velocity (va) measurements, which under limited air flow conditions, may result in a discrepancy in actual thermal stress level. Simultaneous measurements on warm summer days, performed with a cup anemometer and hot-wire probe, prove that too high starting threshold of the first of these sensors can lead to a discrepancy of actual wind speed, and as a consequence can distort MRT (estimated with globe thermometers) and PET values on average up to 10 °C and 1 °C, respectively.


Subject(s)
Thermosensing , Wind , Sunlight , Seasons , Positron-Emission Tomography , Temperature
17.
Int J Biometeorol ; 68(3): 463-477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38189989

ABSTRACT

Here, we evaluated the influence of outdoor environmental conditions (synoptic weather conditions) on human thermal discomfort in the five macro-regions of Pelotas city, located in the southernmost region of Brazil. To do this, meteorological sensors (HOBO MX2301A) were installed outside the residences to measure the air temperature, dew point temperature, and relative humidity between 18 January and 20 August 2019. Two well-established simplified biometeorological indices were examined seasonally: (i) humidex for the summer months and (ii) effective temperature as a function of wind for the autumn and winter months. Our findings showed seasonal differences related to human thermal discomfort and outdoor environmental conditions. The thermal discomfort was highest in the afternoons during the summer months and at night during the winter months. The seasonal variation in human thermal discomfort was highly associated with the meteorological conditions. In summer, the presence of the South Atlantic Subtropical Anticyclone (SASA) contributed to heat stress. The SASA combined with the continent's low humidity contributed to the perceived sensation of thermal discomfort. In the winter, thermal discomfort was associated with the decrease in air humidity caused by high atmospheric pressure systems, which led to a decrease in both air temperature and air moisture content. Our findings suggest that a better understanding of the complex interplay between outdoor environmental factors and human thermal comfort is needed in order to mitigate the negative effects of thermal discomfort.


Subject(s)
Thermosensing , Weather , Humans , Brazil/epidemiology , Humidity , Temperature , Seasons
18.
Article in English | LILACS, BDENF - Nursing, COLNAL | ID: biblio-1553374

ABSTRACT

A popular belief states that if frog is submerged in a container and gradually heats it up, it will try to adapt until it dies; this is probably the situation faced by more and more human populations. As stated by thousands of scientists, academics, and researchers worldwide, the planet's warming is directly related to climate change.


Subject(s)
Thermosensing , Climate Change , Caribbean Region , Infrared Rays
19.
J Therm Biol ; 119: 103758, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070272

ABSTRACT

L-menthol is a cyclic monoterpene derived from aromatic plants, which gives a cooling sensation upon application. With this in mind, L-menthol is beginning to be considered as a potential ergogenic aid for exercise and sporting competitions, particularly in hot environments, however female-specific research is lacking. The aim of this narrative review is to summarize available literature relating to topical application of L-menthol and provide commentary on avenues of consideration relating to future research developments of topical L-menthol in female athletes. From available studies in male participants, L-menthol topical application results in no endurance exercise performance improvements, however decreases in thermal sensation are observed. Mixed results are observed within strength performance parameters. Several genetic variations and single nucleotide polymorphisms have been identified in relation to sweat production, fluid loss and body mass changes - factors which may influence topical application of L-menthol. More specifically to female athletes, genetic variations relating to sweat responses and skin thickness, phases of the menstrual cycle, and body composition indices may affect the ergogenic effects of L-menthol topical application, via alterations in thermogenic responses, along with differing tissue distribution compared to their male counterparts. This narrative review concludes that further development of female athlete research and protocols for topical application of L-menthol is warranted due to physiological and genetic variations. Such developments would benefit research and practitioners alike with further personalized sport science strategies around phases of the menstrual cycle and body composition indices, with a view to optimize ergogenic effects of L-menthol.


Subject(s)
Anesthetics , Performance-Enhancing Substances , Female , Humans , Menthol/pharmacology , Performance-Enhancing Substances/pharmacology , Sweating , Thermosensing , Anesthetics/pharmacology , Plant Extracts/pharmacology , Athletes
20.
Int J Biometeorol ; 68(1): 79-87, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37966503

ABSTRACT

The large number of thermal indices introduced in the literature poses a challenge to identify the appropriate one for a given application. The aim of this study was to examine the effectiveness of widely used indices in quantifying the thermal environment for operational weather applications within a Mediterranean climate. Eight indices (six simple and two thermo-physiological) were considered, i.e., apparent temperature, heat index, humidex, net effective temperature (NET), physiologically equivalent temperature (PET), universal thermal climate index (UTCI), wet-bulb globe temperature, and wind chill temperature. They were estimated using hourly meteorological data between 2010 and 2021, recorded in 15 stations from the Automatic Weather Station Network of the National Observatory of Athens in the Athens metropolitan area, Greece. The statistical analysis focused on examining indices' sensitivity to variations of the thermal environment. NET, PET, and UTCI were evaluated as suitable for operational use, assessing both cool and warm environments, and extending their estimations to the entire range of their assessment scales. NET and PET often tended to classify thermal perception in the negative categories of their scales, with 63% of NET and 56% of PET estimations falling within the range of cool/slightly cool to very cold. UTCI estimations in the negative categories accounted for 25.8% (p < 0.001), while most estimations were classified in the neutral category (53.1%). The common occasions of extreme warm conditions in terms of both air temperature (Tair) and NET was 77.7%, Tair and UTCI 64.4%, and Tair and PET 33.6% (p < 0.001). According to the indices considered and the method followed, NET and UTCI satisfied sufficiently the requirements for operational use in the climate conditions of the Mediterranean climate.


Subject(s)
Thermosensing , Weather , Greece , Climate , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...