Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
J Agric Food Chem ; 72(20): 11369-11380, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38727083

ABSTRACT

In keeping with our investigation, a simple and practical synthesis of novel heterocyclic compounds with a sulfamoyl moiety that can be employed as insecticidal agents was reported. The compound 2-hydrazinyl-N-(4-sulfamoylphenyl)-2-thioxoacetamide 1 was coupled smoothly with triethylorthoformate or a variety of halo compounds, namely phenacyl chloride, chloroacetyl chloride, chloroacetaldehyde, chloroacetone, 1,3-dichloropropane, 1,2-dichloroethane, ethyl chloroformate, 2,3-dichloro-1,4-naphthoquinone, and chloroanil respectively, which afforded the 1,3,4-thiadiazole and 1,3,4-thiadiazine derivatives. The new products structure was determined using elemental and spectral analysis. Under laboratory conditions, the biological and toxicological effects of the synthetic compounds were also evaluated as insecticides against Spodoptera littoralis (Boisd.). Compounds 3 and 5 had LC50 values of 6.42 and 6.90 mg/L, respectively. The investigated compounds (from 2 to 11) had been undergoing molecular docking investigation for prediction of the optimal arrangement and strength of binding between the ligand (herein, the investigated compounds (from 2 to 11)) and a receptor (herein, the 2CH5) molecule. The binding affinity within docking score (S, kcal/mol) ranged between -8.23 (for compound 5), -8.12 (for compound 3) and -8.03 (for compound 9) to -6.01 (for compound 8). These compounds were shown to have a variety of binding interactions within the 2CH5 active site, as evidenced by protein-ligand docking configurations. This study gives evidence that those compounds have 2CH5-inhibitory capabilities and hence may be used for 2CH5-targeting development. Furthermore, the three top-ranked compounds (5, 3, and 9) and the standard buprofezin were subjected to density functional theory (DFT) analysis. The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy difference (ΔE) of compounds 5, 3, and 9 was found to be comparable to that of buprofezin. These findings highlighted the potential and relevance of charge transfer at the molecular level.


Subject(s)
Drug Design , Insecticides , Molecular Docking Simulation , Spodoptera , Thiadiazines , Thiadiazoles , Animals , Insecticides/chemistry , Insecticides/chemical synthesis , Insecticides/pharmacology , Spodoptera/drug effects , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Thiadiazines/chemistry , Thiadiazines/pharmacology , Thiadiazines/chemical synthesis , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Insect Proteins/chemistry , Benzenesulfonamides , Molecular Structure , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase II/chemistry
2.
Eur J Med Chem ; 208: 112847, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33022479

ABSTRACT

Based on our prior work, we reported the design, synthesis, and biological evaluation of fifty-two new triazolothiadiazine-based analogues of CA-4 and their preliminary structure-activity relationship. Among synthesized compounds, Iab was found to be the most potent derivative possessing IC50 values ranging from single-to double-digit nanomolar in vitro, and also exhibited excellent selectivity over the normal human embryonic kidney HEK-293 cells (IC50 > 100 µM). Further mechanistic studies revealed that Iab significantly blocked tubulin polymerization and disrupted the intracellular microtubule network of A549 cells. Moreover, Iab induced G2/M cell cycle arrest by regulation of p-cdc2 and cyclin B1 expressions, and caused cell apoptosis through up-regulating cleaved PARP and cleaved caspase-3 expressions, and down-regulating of Bcl-2. Importantly, in vivo, Iab effectively suppressed tumor growth of A549 lung cancers in a xenograft mouse model without obvious signs of toxicity, confirming its potential as a promising candidate for cancer treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Thiadiazines/therapeutic use , Triazoles/therapeutic use , Tubulin Modulators/therapeutic use , Tubulin/metabolism , A549 Cells , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Binding Sites , Cell Proliferation/drug effects , Female , G2 Phase Cell Cycle Checkpoints/drug effects , HEK293 Cells , Humans , Mice, Inbred BALB C , Molecular Structure , Protein Binding , Structure-Activity Relationship , Thiadiazines/chemical synthesis , Thiadiazines/metabolism , Triazoles/chemical synthesis , Triazoles/metabolism , Tubulin/chemistry , Tubulin Modulators/chemical synthesis , Tubulin Modulators/metabolism , Xenograft Model Antitumor Assays
3.
Bioorg Chem ; 96: 103641, 2020 03.
Article in English | MEDLINE | ID: mdl-32032844

ABSTRACT

A novel synthetic approach was developed for the synthesis of 3-hydrazinotriazolothiadiazines in just one step from Purpald and phenacyl bromides. They were then selectively tethered to naphthoquinone fragments through hydrazine moiety generating novel Naphthoquinone-hydrazinotriazolothiadiazine analogues. In vitro cytotoxicity for the synthesized chemical entities was validated against HepG2 and MCF-7 cell lines and recorded IC50 inhibitory profile range of 0.07-19.68 µM and 1.19-67.32 µM respectively. Among the synthesized series, compound 4c had maximal cytotoxicity against HepG2 and was therefore selected for further downstream biological investigations. Caspase 3 apoptotic marker was significantly upregulated in cells treated with compound 4c with induction of apoptosis at Pre-G1 phase and cell death at G2/M phase. Compounds 4a, 4c and 4d exhibited the most powerful inhibitory range (0.55-0.64 µM) against Topo IIB. Molecular docking study revealed potential interactions of those compounds within the ATP catalytic binding domain of Topo-IIB with high scores. In conclusion, the novel Naphthoquinone-hydrazinotriazolothiadiazine analogues could serve as promising anticancer agents through inhibition of Topoisomerase-IIB.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , DNA Topoisomerases, Type II/metabolism , Drug Design , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , MCF-7 Cells , Molecular Docking Simulation , Naphthoquinones/chemical synthesis , Neoplasms/drug therapy , Neoplasms/metabolism , Structure-Activity Relationship , Thiadiazines/chemical synthesis , Thiadiazines/chemistry , Thiadiazines/pharmacology , Topoisomerase II Inhibitors/chemical synthesis
4.
Molecules ; 24(24)2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31817609

ABSTRACT

A series of triazolo-thiadiazepines 4a-k were synthesized with excellent yields using dehydrated PTSA as a catalyst in toluene. Two triazolo-thiadiazines were obtained; 8a was formed directly by reflux in ethanol, whereas, PTSA promoted the formation of 8b. The molecular structure of the formed triazolo-thiadiazepines is identical to the imine-form 4a-k and not the enamine-tautomer 6a-k. The structures of the newly synthesized triazolo-thiadiazepines 4a-k and triazolo-thiadiazines 8a-b were elucidated using NMR (1H, and 13C), 2D NMR, HRMS, and X-ray single crystal. Furthermore, 4a was deduced using X-ray single crystal diffraction analysis. These new thiadiazepine hits represent an optimized series of previously synthesized indole-triazole derivatives for the inhibition of EGFR. The cytotoxicity activity against two cancer cell lines including human liver cancer (HEPG-2) and breast cancer (MCF-7) was promising, with IC50 between 12.9 to 44.6 µg/mL and 14.7 to 48.7 µg/mL for the tested cancer cell lines respectively, compared to doxorubicin (IC50 4.0 µg/mL). Docking studies revealed that the thiadiazepine scaffold presented a suitable anchor, allowing good interaction of the various binding groups with the enzyme binding regions and sub-pockets.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Thiadiazines/chemistry , Thiadiazines/chemical synthesis , Triazoles/chemistry , Triazoles/chemical synthesis , Hep G2 Cells , Humans , MCF-7 Cells , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Structure-Activity Relationship
5.
Molecules ; 24(23)2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31775363

ABSTRACT

In previous work, we applied the rotation-limiting strategy and introduced a substituent at the 3-position of the pyrazolo [3,4-d]pyrimidin-4-amine as the affinity element to interact with the deeper hydrophobic pocket, discovered a series of novel quinazolinones as potent PI3Kδ inhibitors. Among them, the indole derivative 3 is one of the most selective PI3Kδ inhibitors and the 3,4-dimethoxyphenyl derivative 4 is a potent and selective dual PI3Kδ/γ inhibitor. In this study, we replaced the carbonyl group in the quinazolinone core with a sulfonyl group, designed a series of novel 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives as PI3Kδ inhibitors. After the reduction of nitro group in N-(2,6-dimethylphenyl)-2-nitrobenzenesulfonamide 5 and N-(2,6-dimethylphenyl)-2-nitro-5-fluorobenzenesulfonamide 6, the resulting 2-aminobenzenesulfonamides were reacted with trimethyl orthoacetate to give the 3-methyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives. After bromination of the 3-methyl group, the nucleophilic substitution with the 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine provided the respective iodide derivatives, which were further reacted with a series of arylboronic acids via Suzuki coupling to furnish the 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives 15a-J and 16a-d. In agreement with the quinazolinone derivatives, the introduction of a 5-indolyl or 3,4-dimethoxyphenyl at the affinity pocket generated the most potent analogues 15a and 15b with the IC50 values of 217 to 266 nM, respectively. In comparison with the quinazolinone lead compounds 3 and 4, these 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives exhibited much decreased PI3Kδ inhibitory potency, but maintained the high selectivity over other PI3K isoforms. Unlike the quinazolinone lead compound 4 that was a dual PI3Kδ/γ inhibitor, the benzthiadiazine 1,1-dioxide 15b with the same 3,4-dimethoxyphenyl moiety was more than 21-fold selective over PI3Kγ. Moreover, the introducing of a fluorine atom at the 7-position of the 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide core, in general, was not favored for the PI3Kδ inhibitory activity. In agreement with their high PI3Kδ selectivity, 15a and 15b significantly inhibited the SU-DHL-6 cell proliferation.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Quinazolinones/chemistry , Thiadiazines/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Class I Phosphatidylinositol 3-Kinases/chemistry , Drug Design , Humans , Molecular Docking Simulation , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Quinazolinones/chemical synthesis , Quinazolinones/pharmacology , Structure-Activity Relationship , Thiadiazines/chemistry , Thiadiazines/pharmacology
6.
Bioorg Chem ; 93: 103323, 2019 12.
Article in English | MEDLINE | ID: mdl-31586713

ABSTRACT

New 1,3,4-thiadiazine-thiourea derivatives have been synthesized. All the synthesized compounds were examined for in vitro cytotoxic activity against Non-Small Cell Lung Cancer (NSCLC) cell line A549, using MTT bioassay. Compounds 5d, 5i, 5j showed the highest cytotoxic activity with IC50 values of 0.27 ±â€¯0.01, 0.30 ±â€¯0.02, and 0.32 ±â€¯0.012 µM respectively with sorafenib as reference (IC50 3.85 ±â€¯0.27 µM). These compounds were chosen for further investigations against various biological targets known to play roles in NSCLC specifically: vascular endothelial growth factor receptor 2 (VEGFR2), B-RAF and matrix metalloproteinase 9 (MMP9). Encouraging results were exhibited by the three compounds against the selected targets. Compound 5j was specially promising as it exhibited inhibitory activity of VEGFR2 close to sorafenib (IC50 0.11 ±â€¯0.01 µM), most potent B-RAF activity inhibition (IC50 0.178 ±â€¯0.004 µM) and MMP9 inhibition (IC50 0.08 ±â€¯0.004 µM). Moreover, cell cycle analysis of A549 cells treated with 5j exhibited cell cycle arrest at G2-M phase and pro-apoptotic activity as indicated by Annexin V-FITC staining. Also, it reflected antinvasive and antimigration properties to A549 cells. Additionally, docking study of 5j on VEGFR2, B-RAF and MMP9 revealed that it binds to the target enzymes in a similar way as the co-crystallized ligand. The three compounds exhibited significantly high selectivity to A549 cancer cells against the normal human fetal lung fibroblast cell line WI-38 with higher selectivity index compared to sorafenib (5d IC50 136.76 ±â€¯2.38 µM, SI = 506.52; 5i IC50 89.20 ±â€¯2.11 µM, SI = 297.33; 5j IC50 79.60 ±â€¯3.8 µM, SI = 248.75; sorafenib IC50 30.32 ±â€¯2.41 µM, SI = 7.88). In conclusion, compounds 5d, 5i and 5j, specially 5j are promising anticancer agents targeting important pathways in NSCLC and warrant further preclinical and clinical trials.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Design , Thiadiazines/chemistry , Thiadiazines/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle/drug effects , Drug Screening Assays, Antitumor , Humans , Lung Neoplasms/pathology , Matrix Metalloproteinase 1/drug effects , Matrix Metalloproteinase 9/drug effects , Molecular Docking Simulation , Neoplasm Metastasis/prevention & control , Proto-Oncogene Proteins B-raf/drug effects , Thiadiazines/chemical synthesis , Vascular Endothelial Growth Factor Receptor-2/drug effects
7.
J Org Chem ; 84(18): 11382-11390, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31436096

ABSTRACT

The one-pot telescopic approach has been developed for the chemoselective synthesis of substituted benzo[e]pyrido/pyrazino/pyridazino[1,2-b][1,2,4]thiadiazine dioxides using readily available 2-aminopyridines/pyrazines/pyridazine and 2-chloro benzene sulfonyl chloride. This one-pot procedure involves the chemoselective sulfonylation of 2-aminopyridines/pyrazines/pyridazine with 2-chloro benzene sulfonyl chloride followed by a Cu(I)-catalyzed Ullmann-type C-N coupling reaction to obtain benzo[e]pyrido/pyrazino/pyridazino[1,2-b][1,2,4]thiadiazine dioxides with broad substrate scope and high functional group tolerance. The synthetic sequence merges well with the nucleophilic attack on the 2-amino group of pyridines/pyrazines/pyridazines on the 2-chloro benzene sulfonyl chloride, followed by Cu(I)-catalyzed ipso chloro displacement to C-N bond formation resulting in a more modular and straightforward approach. Moreover, the biological significance of the synthesized benzothiadiazine dioxides was evaluated by following their ability to bind to protein macromolecules and their anti-inflammatory activity.


Subject(s)
Chemistry Techniques, Synthetic/methods , Pyrazines/chemistry , Pyridazines/chemistry , Pyrimidines/chemistry , Thiadiazines/chemical synthesis , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Computer Simulation , Molecular Docking Simulation , Molecular Structure , Protein Binding , Serum Albumin, Bovine/chemistry , Thiadiazines/chemistry , Thiadiazines/pharmacology
8.
Bioorg Med Chem Lett ; 29(10): 1177-1181, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30922660

ABSTRACT

To develop PET tracers for imaging of Alzheimer's disease, a new carbon-11-labeled AMPAR allosteric modulator 4-cyclopropyl-7-(3-[11C]methoxyphenoxy)-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide ([11C]8) has been synthesized. The reference standard 4-cyclopropyl-7-(3-methoxyphenoxy)-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (8) and its corresponding desmethylated precursor 4-cyclopropyl-7-(3-hydroxyphenoxy)-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (9) were synthesized from 4-methoxyabiline and chlorosulfonyl isocyanate in eight and nine steps with 3% and 1% overall chemical yield, respectively. The target tracer [11C]8 was prepared from the precursor 9 with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 10-15% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (AM) at EOB was 370-740 GBq/µmol with a total synthesis time of 35-40-minutes from EOB.


Subject(s)
Alzheimer Disease/diagnostic imaging , Radiopharmaceuticals/chemical synthesis , Allosteric Regulation , Carbon Radioisotopes/chemistry , Chromatography, High Pressure Liquid , Humans , Isotope Labeling , Positron-Emission Tomography , Radiopharmaceuticals/analysis , Radiopharmaceuticals/isolation & purification , Solid Phase Extraction , Thiadiazines/analysis , Thiadiazines/chemical synthesis , Thiadiazines/isolation & purification
9.
ChemMedChem ; 14(7): 788-795, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30740927

ABSTRACT

Alzheimer's disease (AD) remains a significant burden on society. In the search for new AD drugs, modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are of particular interest, as loss of synaptic AMPARs has been linked to AD learning and memory deficits. Previously reported fluorine-containing BPAM121, an AMPA positive allosteric modulator (pam) with high activity, low toxicity, and slow metabolism, was considered to be a perfect 18 F-labeled candidate for positron emission tomography (PET) AD diagnostic investigations. For the preclinical use of this compound, an automated synthesis avoiding human radiation exposure was developed. The detailed production of [18 F]BPAM121 in relatively high quantity using a commercial FASTlab synthesizer from GE Healthcare coupled with a full set of quality controls is presented, along with procedures for the synthesis of the tosylated precursor and the fluorinated reference. To evaluate the clinical usefulness of [18 F]BPAM121 as a potential AD diagnostic, some in vivo studies in mice were then realized, alongside blocking and competition studies.


Subject(s)
Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacology , Receptors, AMPA/drug effects , Thiadiazines/chemical synthesis , Thiadiazines/pharmacology , Allosteric Regulation , Alzheimer Disease/diagnostic imaging , Animals , Automation , Drug Evaluation, Preclinical , Female , Male , Mice , Mice, Inbred C57BL , Receptors, AMPA/metabolism
10.
Mol Divers ; 23(3): 573-583, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30465251

ABSTRACT

A series of novel 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N'-phenylacethydrazide derivatives were designed, synthesized and evaluated for their antifungal activities against Fusarium graminearum (Fg), Rhizoctonia solani (Rs), Botrytis cinerea (Bc) and Colletotrichum capsici (Cc). The bioassay results in vitro showed that most of the title compounds exhibited impressive antifungal activities against the above plant fungi. Particularly, the compounds 5c, 5f, 5g, 5i, 5m and 5p displayed desirable anti-Rs activities, with the corresponding EC50 values of 0.37, 0.32, 0.49, 0.50, 0.46 and 0.45 µg/mL, respectively, which are superior to the positive control carbendazim (0.55 µg/mL). Further in vivo bioassay results showed that the anti-Rs activity of title compound 5f at 200 µg/mL reached 95.84% on detached rice leaves and 93.96% on rice plants. Featuring convenient synthesis, novel structures and desirable antifungal activity, these 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N'-phenylacethydrazide derivatives could be further studied as the potential candidates of novel agricultural fungicides.


Subject(s)
Drug Design , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/pharmacology , Thiadiazines/chemical synthesis , Thiadiazines/pharmacology , Chemistry Techniques, Synthetic , Fungicides, Industrial/chemistry , Microbial Sensitivity Tests , Structure-Activity Relationship , Thiadiazines/chemistry
11.
Eur J Med Chem ; 157: 1005-1016, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30170319

ABSTRACT

The Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) is an enzyme that has been implicated as an important drug target in various therapeutic areas, including neurological disorders (Down syndrome, Alzheimer's disease), oncology, and diabetes (pancreatic ß-cell expansion). Current small molecule DYRK1A inhibitors are ATP-competitive inhibitors that bind to the kinase in an active conformation. As a result, these inhibitors are promiscuous, resulting in pharmacological side effects that limit their therapeutic applications. None are in clinical trials at this time. In order to identify a new DYRK1A inhibitor scaffold, we constructed a homology model of DYRK1A in an inactive, DFG-out conformation. Virtual screening of 2.2 million lead-like compounds from the ZINC database, followed by in vitro testing of selected 68 compounds revealed 8 hits representing 5 different chemical classes. We chose to focus on one of the hits from the computational screen, thiadiazine 1 which was found to inhibit DYRK1A with IC50 of 9.41 µM (Kd = 7.3 µM). Optimization of the hit compound 1, using structure-activity relationship (SAR) analysis and in vitro testing led to the identification of potent thiadiazine analogs with significantly improved binding as compared to the initial hit (Kd = 71-185 nM). Compound 3-5 induced human ß-cell proliferation at 5 µM while showing selectivity for DYRK1A over DYRK1B and DYRK2 at 10 µM. This newly developed DYRK1A inhibitor scaffold with unique kinase selectivity profiles has potential to be further optimized as novel therapeutics for diabetes.


Subject(s)
Insulin-Secreting Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Thiadiazines/pharmacology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Thiadiazines/chemical synthesis , Thiadiazines/chemistry , Dyrk Kinases
12.
Molecules ; 23(9)2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30134530

ABSTRACT

A novel series of pyrazolyl 1,3,4-thiadiazines 5a⁻c, 8a⁻c, 12, 15a⁻c, 17a⁻c, and 20 was prepared from the reaction of pyrazole-1-carbothiohydrazide 1a,b with 2-oxo-N'-arylpropanehydrazonoyl chloride, 2-chloro-2-(2-arylhydrazono)acetate, and 3-bromoacetylcoumarin. Moreover, the regioselective reaction of 5-pyrazolone-1-carbothiohydrazide 1a with 4-substituted diazonium salts and 4-(dimethylamino)benzaldehyde gave the corresponding hydrazones 21a⁻c and 22. The newly prepared compounds were characterized by spectroscopy and elemental analysis. Many new synthesized compounds showed considerable antimicrobial activity against tested microorganisms. Hydrazones 21a⁻c and 22 showed remarkable antibacterial and antifungal activities. 4-(2-(p-tolyl)hydrazineylidene)-pyrazole-1-carbothiohydrazide 21a displayed the highest antibacterial and antifungal activities with minimum inhibitory concentration (MIC) values lower than standard drugs chloramphenicol and clotrimazole, in the range of 62.5⁻125 and 2.9⁻7.8 µg/mL, respectively.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Drug Design , Pyrazoles/chemistry , Pyrazoles/pharmacology , Thiadiazines/chemistry , Thiadiazines/pharmacology , Anti-Infective Agents/chemical synthesis , Bacteria/drug effects , Chemistry Techniques, Synthetic , Fungi/drug effects , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure , Pyrazoles/chemical synthesis , Thiadiazines/chemical synthesis
13.
ACS Chem Neurosci ; 9(7): 1663-1679, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29697965

ABSTRACT

Alzheimer's disease (AD) is associated with multiple neuropathological events including ß-site amyloid precursor protein cleaving enzyme-1 (BACE-1) inhibition and neuronal inflammation, ensuing degeneracy, and death to neuronal cells. Targeting such a complex disease via a single target directed treatment was found to be inefficacious. Hence, with an intention to incorporate multiple therapeutic effects within a single molecule, multitarget-directed ligands (MTDLs) have been evolved. Herein, for the first time, we report the discovery of novel thiazolyl-thiadiazines that can serve as MTDLs as evident from the in vitro and in vivo studies. These MTDLs exhibited BACE-1 inhibition down to micromolar range, and results from the in vivo studies demonstrated efficient anti-inflammatory activity with inherent gastrointestinal safety. Moreover, compound 6d unveiled noteworthy antioxidant, antiamyloid, neuroprotective, and antiamnesic properties. Overall, results of the present study manifest the potential outcome of thiazolyl-thiadiazines for AD treatment.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Thiadiazines/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Brain/drug effects , Brain/enzymology , Brain/pathology , Disease Models, Animal , Drug Design , Inflammation/drug therapy , Inflammation/enzymology , Inflammation/pathology , Intestines/drug effects , Intestines/enzymology , Intestines/pathology , Molecular Docking Simulation , Molecular Structure , Rats, Sprague-Dawley , Stomach/drug effects , Stomach/enzymology , Stomach/pathology , Thiadiazines/chemical synthesis , Thiadiazines/chemistry
14.
Molecules ; 23(5)2018 04 27.
Article in English | MEDLINE | ID: mdl-29702549

ABSTRACT

A novel fused system with three or four fused rings­pyridazino[3',4':5,6][1,2,4]triazino[4,3-b][1,2,4,5]tetrazine and pyridazino[3',4':5,6][1,2,4]triazino[3,4-b]pyrimido[4,5-e][1,3,4]thiadiazine was obtained from the starting materials 4(6H)-amino-3-hydrazino-7-(2-thienyl)pyridazino[3,4-e][1,2,4]-triazine 2 and 9-amino-3-(2-thienyl)-2H,8H-pyridazino[3',4':5,6][1,2,4]triazino[3,4-b][1,3,4]thiadiazine-8-carbonitrile 12. Each of the starting compounds was subjected to a number of cyclization reactions to obtain a series of new heterocyclic fused systems, 3⁻10 and 13⁻23, via bifunctional reagents. Some of the synthesized compounds were screened against three cell lines including HepG2, HCT-116 and MCF-7 to discover their anticancer activity. The synthesized compounds were characterized depending on their elemental analyses and spectral data.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Thiadiazines/chemical synthesis , Thiadiazines/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclization , HCT116 Cells , Hep G2 Cells , Humans , MCF-7 Cells , Molecular Structure , Thiadiazines/chemistry
15.
Org Lett ; 20(6): 1568-1571, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29481097

ABSTRACT

The development of a commercial manufacturing route to verubecestat (MK-8931) is described, highlights of which include the application of a continuous processing step to outcompete fast proton transfer in a Mannich-type ketimine addition, a copper-catalyzed amidation reaction, and an optimized guanidinylation procedure to form the key iminothiadiazine dioxide core.


Subject(s)
Cyclic S-Oxides/chemical synthesis , Thiadiazines/chemical synthesis , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Catalysis , Copper , Enzyme Inhibitors , Molecular Structure
16.
J Chromatogr A ; 1539: 87-92, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29397980

ABSTRACT

Verubecestat is an inhibitor of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) being evaluated in clinical trials for the treatment of Alzheimer's disease. Synthetic route development involves diastereoselective transformations with a need for enantiomeric excess (ee) determination of each intermediate and final active pharmaceutical ingredient (API). The analytical technical package of validated methods relies on enantioselective SFC and RPLC separations using multiple 3 and 5 µm coated polysaccharide-based chiral stationary phases (CSPs) and mobile phases combinations. Evaluation of recently developed chiral columns revealed a single chiral selector (Teicoplanin) bonded to 2.7 µm core-shell particles using H3PO4 in H2O/ACN and triethylammonium acetate: methanol based eluents at different isocratic compositions allowed good enatioseparation of all verubecestat intermediates. EE determination of verubecestat is easily performed on NicoShell, another macrocyclic glycopeptide chiral selector bonded to 2.7 µm superficially porous particles. This approach enables fast and reliable enantiopurity analysis of the entire verubecestat synthetic route using only two chiral columns and mobile phases on a conventional HPLC system, simplifying technical package preparation, method validation and transfer to manufacturing facilities.


Subject(s)
Chemistry Techniques, Analytical/methods , Cyclic S-Oxides/chemical synthesis , Glycopeptides/chemistry , Thiadiazines/chemical synthesis , Chromatography, High Pressure Liquid , Polysaccharides/chemistry , Porosity , Stereoisomerism , Teicoplanin/chemistry
17.
Sci Rep ; 7(1): 11997, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28931885

ABSTRACT

A novel series of 3,6-diaryl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines were designed, synthesized and biologically evaluated as vinylogous CA-4 analogues, which involved a rigid [1,2,4]triazolo[3,4-b][1,3,4]thiadiazine scaffold to fix the configuration of (Z,E)-butadiene linker of A-ring and B-ring. Among these rigidly vinylogous CA-4 analogues, compounds 4d, 5b, 5i, 6c, 6e, 6g, 6i and 6k showed excellent antiproliferative activities against SGC-7901, A549 and HT-1080 cell lines with IC50 values at the nanomolar level. Compound 6i showed the most highly active antiproliferative activity against the three human cancer cell lines with an IC50 values of 0.011-0.015 µM, which are comparable to those of CA-4 (IC50 = 0.009-0.013 µM). Interestingly, SAR studies revealed that 3,4-methylenedioxyphenyl, 3,4-dimethoxyphenyl, 3-methoxyphenyl and 4-methoxyphenyl could replace the classic 3,4,5-trimethoxyphenyl in CA-4 structure and keep antiproliferative activity in this series of designed compounds. Tubulin polymerization experiments showed that 6i could effectively inhibit tubulin polymerization, which was corresponded with CA-4, and immunostaining experiments suggested that 6i significantly disrupted microtubule/tubulin dynamics. Furthermore, 6i potently induced cell cycle arrest at G2/M phase in SGC-7901 cells. Competitive binding assays and docking studies suggested that compound 6i binds to the tubulin perfectly at the colchicine binding site. Taken together, these results revealed that 6i may become a promising lead compound for new anticancer drugs discovery.


Subject(s)
Drug Design , Structure-Activity Relationship , Thiadiazines/chemistry , Tubulin Modulators/chemistry , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Models, Chemical , Molecular Structure , Protein Binding , Thiadiazines/chemical synthesis , Thiadiazines/pharmacology , Tubulin/chemistry , Tubulin Modulators/chemical synthesis , Tubulin Modulators/pharmacology
18.
Arch Pharm (Weinheim) ; 350(7)2017 Jul.
Article in English | MEDLINE | ID: mdl-28594090

ABSTRACT

Previously, we demonstrated that certain heterocyclic compounds derived from 3-substituted-1,2,4-triazole-5-thiones had promising analgesic/anti-inflammatory activities together with low ulcerogenic properties. Therefore, we sought to design and synthesize new derivatives of triazol-5-thiones-fused heterocycles. In the present study, a series of novel bis-Mannich bases, namely 2,6-disubstituted-6,7-dihydro-5H-1,2,4-triazolo[3,2-b]-1,3,5-thiadiazines (1a-d, 2a-c, and 3a-d), were synthesized and characterized to assess their possible anti-inflammatory/analgesic properties. Additionally, their ability to induce gastric toxicity was also evaluated. Several of the condensed compounds produced a degree of analgesic activity comparable to reference drugs in both the hot plate and tail-flick tests. A strong anti-inflammatory effect was observed for the derivatives carrying a benzyl group at the second position (2a-c). The majority of the prepared compounds caused comparatively less gastrointestinal (GI) side effects than the reference drugs naproxen and indomethacin did. These results showed that 1,2,4-triazolo[3,2-b]-1,3,5-thiadiazine derivatives might afford a safer alternative to currently available analgesic/anti-inflammatory agents for the treatment and management of inflammatory disease and pain.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Design , Edema/drug therapy , Pain/drug therapy , Stomach Ulcer/drug therapy , Thiadiazines/pharmacology , Triazoles/pharmacology , Analgesics/chemical synthesis , Analgesics/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Behavior, Animal/drug effects , Carrageenan , Disease Models, Animal , Edema/chemically induced , Hot Temperature , Mice , Molecular Structure , Stomach Ulcer/chemically induced , Thiadiazines/chemical synthesis , Thiadiazines/chemistry , Triazoles/chemical synthesis , Triazoles/chemistry
19.
Eur J Med Chem ; 136: 223-234, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28499168

ABSTRACT

A new family of imidazo[4,5-c][1,2,6]thiadiazine 2,2-dioxide with antiproliferative Trypanosoma cruzi properties was identified from a neural network model published by our group. The synthesis and evaluation of this new class of trypanocidal agents are described. These compounds inhibit the growth of Trypanosoma cruzi, comparable with benznidazole or nifurtimox. In vitro assays were performed to study their effects on the growth of the epimastigote form of the Tulahuen 2 strain, as well as the epimastigote and amastigote forms of CL clone B5 of Trypanosoma cruzi. To verify selectivity towards parasite cells, the non-specific cytotoxicity of the most relevant compounds was studied in mammalian cells, i.e. J774 murine macrophages and NCTC clone 929 fibroblasts. Furthermore, these compounds were assayed regarding the inhibition of cruzipain. In vivo studies revealed that one of the compounds, 19, showed interesting trypanocidal activity, and could be a very promising candidate for the treatment of Chagas disease.


Subject(s)
Imidazoles/pharmacology , Neural Networks, Computer , Thiadiazines/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Imidazoles/chemical synthesis , Imidazoles/chemistry , Macrophages/drug effects , Mice , Molecular Structure , Structure-Activity Relationship , Thiadiazines/chemical synthesis , Thiadiazines/chemistry , Trypanosoma cruzi/cytology , Trypanosoma cruzi/growth & development
20.
Bioorg Med Chem ; 25(1): 213-220, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27810439

ABSTRACT

Following up the SAR study of triazolothiadiazoles for their antitubercular activities targeting Mt SD in our previous study, on the principle of scaffold hopping, the C3 and C6 positions of triazolothiadiazine were examined systematically to define a preliminary structure-activity relationship (SAR) with respect to biological activity. This study herein highlights the potential of two highly potent advanced leads 6c-3, 6g-3 and several other compounds with comparable potencies as promising new candidates for the treatment of TB (6c-3, MIC-H37Rv=0.25µg/mL; MIC-MDRTB=2.0µg/mL; MIC-RDRTB=0.25µg/mL; Mt SD-IC50=86.39µg/mL; and 6g-3, MIC-H37Rv=1.0µg/mL; MIC-MDRTB=4.0µg/mL; MIC-RDRTB=2.0µg/mL; Mt SD-IC50=73.57µg/mL). Compounds 6c-3 and 6g-3 possessed a para-nitro phenyl at the 6 position showed low Vero and HepG2 cells toxicity, turning out to be two excellent lead candidates for preclinical trials. In addition, in vitro Mt SD inhibitory assay indicates that Mt SD is at least one of the targets for their antitubercular activity. Thus, they may turn out to be promising multidrug-resistance-reversing agents.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Thiadiazines/pharmacology , Triazoles/pharmacology , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/toxicity , Chlorocebus aethiops , Drug Resistance, Bacterial , Drug Resistance, Multiple , Hep G2 Cells , Humans , Isoniazid/pharmacology , Rifampin/pharmacology , Structure-Activity Relationship , Thiadiazines/chemical synthesis , Thiadiazines/toxicity , Triazoles/chemical synthesis , Triazoles/toxicity , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...