Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.542
Filter
1.
Open Biol ; 14(7): 240057, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39043224

ABSTRACT

With the spread of resistance to long-established insecticides targeting Anopheles malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 Anopheles gambiae nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Agα1, Agα2, Agα3, Agα8 and Agß1 subunits in Xenopus laevis oocytes, the Drosophila melanogaster orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Agα2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Agα3 subunit increases it. Crystal structures of the acetylcholine binding protein (AChBP), an established surrogate for the ligand-binding domain, with dinotefuran bound, shows a unique target site interaction through hydrogen bond formation and CH-N interaction at the tetrahydrofuran ring. This is of interest as dinotefuran is also under trial as the toxic element in baited traps. Multiple regression analyses show a correlation between the efficacy of neonicotinoids for the Agα1/Agα2/Agα8/Agß1 nAChR, their hydrophobicity and their rate of knockdown of adult female An. gambiae, providing new insights into neonicotinoid features important for malaria vector control.


Subject(s)
Anopheles , Guanidines , Insecticides , Mosquito Vectors , Neonicotinoids , Nitro Compounds , Receptors, Nicotinic , Animals , Anopheles/metabolism , Anopheles/genetics , Anopheles/drug effects , Neonicotinoids/pharmacology , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Nitro Compounds/pharmacology , Nitro Compounds/chemistry , Guanidines/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Xenopus laevis , Ligands , Pyridines/pharmacology , Malaria/transmission , Malaria/parasitology , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/metabolism , Thiazines/pharmacology , Thiazines/chemistry , Oocytes/metabolism , Oocytes/drug effects , Female , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Imidazoles/pharmacology , Imidazoles/chemistry
2.
AAPS PharmSciTech ; 25(6): 172, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044025

ABSTRACT

The goal of the present study was to prepare meloxicam (MX) entrapped hybrid particles (HPs) to enhance intestinal permeation and anti-inflammatory activity. MX-HPs were prepared by nanoprecipitation method using lipid, chitosan, poloxamer, and TPGS. The formulations (MX-HPs1, MX-HPs2, MX-HPs3) were evaluated for particle size, entrapment efficiency, and drug release to select the optimized composition and further evaluated for permeation study, stability study, morphology, interaction study, and anti-inflammatory activity by carrageenan-induced rat paw edema test. The prepared MX-HPs showed nano sized particles (198.5 ± 3.7 to 223.8 ± 2.1 nm) and PDI (<0.3), zeta potential (16.5 ± 2.7 to 29.1 ± 3.6 mV), and high entrapment efficiency (75.1 ± 4.7 to 88.5 ± 3.9%). The surface morphology was assessed by transmission electron microscopy and showed non-aggregated particles. Infra-red (IR) spectroscopy of pure MX as well as formulation revealed no drug-polymer interaction and X-ray diffraction confirmed the conversion of crystalline MX into amorphous form. The release study data revealed prolonged MX release for 24 h. The selected optimized hybrid particles (MX-HPs2) revealed a 2.3-fold improved enhancement ratio than free MX. The storage stability and gastrointestinal stability data demonstrated a stable formulation in SIF as well as SGF. The anti-inflammatory activity showed better therapeutic action than pure MX dispersion. From the study, it can be concluded that the prepared MX-HPs may be a promising delivery system for MX in treating inflammatory disorders.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Drug Liberation , Meloxicam , Nanoparticles , Particle Size , Meloxicam/administration & dosage , Meloxicam/pharmacology , Meloxicam/chemistry , Animals , Rats , Nanoparticles/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chemistry, Pharmaceutical/methods , Male , Drug Carriers/chemistry , Thiazines/administration & dosage , Thiazines/chemistry , Thiazines/pharmacology , Thiazines/pharmacokinetics , Poloxamer/chemistry , Thiazoles/chemistry , Thiazoles/pharmacology , Chitosan/chemistry , Edema/drug therapy , Lipids/chemistry , Rats, Wistar , Carrageenan/chemistry , Vitamin E/chemistry , Vitamin E/pharmacology , Drug Stability
3.
Pestic Biochem Physiol ; 203: 105996, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084770

ABSTRACT

Thiacloprid, a neonicotinoid insecticide, has become one of the major control agents for the pine sawyer beetle, Monochamus alternatus Hope, however, the mechanism of detoxification is unknown. We demonstrate that glutathione S-transferases (GSTs) and nicotinic acetylcholine receptors (nAChRs) are involved in the rapid detoxification of thiacloprid in M. alternatus larvae. The activity of detoxification enzyme GSTs was significantly higher, while the activity of acetylcholinesterase (AChE) was inhibited under thiacloprid exposure. The inhibition of AChE activity led to lethal over-stimulation of the cholinergic synapse, which was then released by the rapid downregulation of nAChRs. Meanwhile, GSTs were overexpressed to detoxify thiacloprid accordingly. A total of 3 nAChR and 12 GST genes were identified from M. alternatus, among which ManAChRα2 and MaGSTs1 were predicted to confer thiacloprid tolerance. RNA interference (RNAi) was subsequently conducted to confirm the function of ManAChRα2 and MaGSTs1 genes in thiacloprid detoxification. The successful knock-down of the ManAChRα2 gene led to lower mortality of M. alternatus under LC30 thiacloprid treatment, and the suppression of the MaGSTs1 gene increased the mortality rate of M. alternatus. However, the mortality rate has no significant difference with controls when thiacloprid was fed together with both dsMaGSTs1 and dsManAChRα2. Molecular docking modeled the molecular basis for interaction between MaGSTs1/ManAChR and thiacloprid. This study highlights the important roles that ManAChRα2 and MaGSTs1 genes play in thiacloprid detoxification through transcriptional regulation and enzymatic metabolization, and proposes a new avenue for integrated pest management that combines pesticides and RNAi technology as an efficient strategy for M. alternatus control.


Subject(s)
Coleoptera , Glutathione Transferase , Insecticides , Neonicotinoids , Receptors, Nicotinic , Thiazines , Animals , Neonicotinoids/pharmacology , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Coleoptera/drug effects , Coleoptera/genetics , Coleoptera/metabolism , Thiazines/pharmacology , Thiazines/metabolism , Thiazines/toxicity , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Insecticides/toxicity , Insecticides/pharmacology , Insecticides/metabolism , Larva/drug effects , Larva/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Inactivation, Metabolic , Acetylcholinesterase/metabolism , Acetylcholinesterase/genetics , Pyridines/pharmacology
4.
J Hazard Mater ; 476: 134901, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38909462

ABSTRACT

Acesulfame potassium (ACK) was generally regarded as innocuous and extensively ingested. Nevertheless, ACK has recently gained attention as a burgeoning pollutant that has the potential to induce a range of health hazards, particularly to the digestive system. Herein, we uncover that ACK initiates inflammatory bowel disease (IBD) in mice and zebrafish, as indicated by the aggregation of macrophages in the intestine and the inhibition of intestinal mucus secretion. Transcriptome analysis of mice and zebrafish guts revealed that exposure to ACK typically impacts the cell cycle, focal adhesion, and PI3K-Akt signaling pathways. Using pharmacological approaches, we demonstrate that the PI3K-Akt signaling pathway and the generation of reactive oxygen species (ROS) triggered by cell division are not significant factors in the initiation of IBD caused by ACK. Remarkably, inhibition of the focal adhesion pathway is responsible for the IBD onset induced by ACK. Our results indicate the detrimental impacts and possible underlying mechanisms of ACK on the gastrointestinal system and provide insights for making informed choices about everyday dietary habits.


Subject(s)
Focal Adhesions , Inflammatory Bowel Diseases , Signal Transduction , Thiazines , Zebrafish , Animals , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Thiazines/pharmacology , Focal Adhesions/drug effects , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Male
5.
Biochem Biophys Res Commun ; 711: 149921, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38603831

ABSTRACT

Artificial sweeteners, which contain no or few calories, have been widely used in various foods and beverages, and are regarded as safe alternatives to sugar by the Food and Drug Administration. While several studies suggest that artificial sweeteners are not related to cancer development, some research has reported their potential association with the risk of cancers, including hepatocellular carcinoma (HCC). Here, we investigated whether acesulfame potassium (Ace K), a commonly used artificial sweetener, induces immune evasion of HCC cells by upregulating programmed death ligand-1 (PD-L1). Ace K elevated the protein levels of PD-L1 in HCC cells without increasing its mRNA levels. The upregulation of PD-L1 protein levels in HCC cells by Ace K was induced by attenuated autophagic degradation of PD-L1, which was mediated by the Ace K-stimulated ERK1/2-mTORC1 signaling pathway. Ace K-induced upregulation of PD-L1 attenuated T cell-mediated death of HCC cells, thereby promoting immune evasion of HCC cells. In summary, the present study suggests that Ace K promotes HCC progression by upregulating the PD-L1 protein level.


Subject(s)
Autophagy , B7-H1 Antigen , Carcinoma, Hepatocellular , Liver Neoplasms , Thiazines , Up-Regulation , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Autophagy/drug effects , Up-Regulation/drug effects , Thiazines/pharmacology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Cell Line, Tumor , Sweetening Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , MAP Kinase Signaling System/drug effects
6.
Nanomedicine (Lond) ; 19(11): 947-964, 2024.
Article in English | MEDLINE | ID: mdl-38483291

ABSTRACT

Aim: This study aims to explore potential of transniosomes, a hybrid vesicular system, as ocular drug-delivery vehicle. Materials & methods: Thin-film hydration technique was used to fabricate brinzolamide-loaded transniosomes (BRZ-TN) and optimized using Box-Behnken design, further exhaustively characterized for physicochemical evaluations, deformability, drug release, permeation and preclinical evaluations for antiglaucoma activity. Results: The BRZ-TN showed ultradeformability (deformability index: 5.71), exhibiting sustained drug release without irritation (irritancy score: 0) and high permeability compared with the marketed formulation or free drug suspension. The extensive in vivo investigations affirmed effective targeted delivery of transniosomes, with brinzolamide reducing intraocular pressure potentially. Conclusion: Our findings anticipated that BRZ-TN is a promising therapeutic nanocarrier for effectively delivering cargo to targeted sites by crossing corneal barriers.


[Box: see text].


Subject(s)
Cornea , Glaucoma , Liposomes , Permeability , Sulfonamides , Thiazines , Cornea/metabolism , Cornea/drug effects , Animals , Sulfonamides/chemistry , Sulfonamides/pharmacology , Glaucoma/drug therapy , Liposomes/chemistry , Thiazines/chemistry , Thiazines/pharmacology , Drug Liberation , Humans , Intraocular Pressure/drug effects , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Drug Carriers/chemistry , Rabbits , Drug Delivery Systems , Male
7.
Chest ; 165(3): 704-715, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37776971

ABSTRACT

BACKGROUND: The carbonic anhydrase inhibitor sulthiame reduces OSA severity, increases overnight oxygenation, and improves sleep quality. Insights into how sulthiame modulates OSA pathophysiologic features (endotypic traits) adds to our understanding of the breathing disorder itself, as well as the effects of carbonic anhydrases in respiratory regulation. RESEARCH QUESTION: How does sulthiame treatment modify endotypic traits in OSA? STUDY DESIGN AND METHODS: Per-protocol tertiary analysis of a randomized controlled trial with the inclusion criteria as follow: BMI, ≥ 20 to ≤ 35 kg/m2; age, 18-75 years; apnea-hypopnea index (AHI) ≥ 15 events/h; Epworth sleepiness scale score, ≥ 6; as well as nonacceptance or nontolerance of positive airway pressure treatment. Patients were randomized to receive placebo (n = 22), sulthiame 200 mg (n = 12), or sulthiame 400 mg (n = 24) during 4 weeks of treatment. Polysomnography was applied twice at baseline and follow-up. Endotypic traits were determined from polysomnography tracings (PUPBeta). Sulthiame plasma concentration was analyzed. Differences from baseline to follow-up (Δs) were analyzed with the analysis of covariance or Kruskal-Wallis H test and Pearson (r) or Spearman correlations (rs). RESULTS: Sulthiame (200-mg and 400-mg groups) consistently reduced loop gain (response to a 1-cycle/min disturbance, LG1; mean, -0.16 [95% CI, -0.18 to -0.13]; P < .05) in addition to increased ventilation at lowest decile of ventilatory drive (Vmin; median, +12 [95% CI, 4-20]; P < .05) and median ventilation at eupneic ventilatory drive (Vpassive; median, +4 [95% CI, 0-5]; P < .05). ΔLG1 correlated with ΔAHI percentage (200 mg: r = 0.65; P < .05). Vmin and Vpassive correlated with ΔAHI (all sulthiame: rs = -0.59 and rs = -0.65; P < .05 for all). The reduction of LG1 was seen already in the lower sulthiame concentration range, whereas changes in Vmin peaked in the higher range. INTERPRETATION: The effect of sulthiame in OSA may be explained by a reduction of ventilatory instability (LG1) as well as upper airway collapsibility (Vmin and Vpassive). TRIAL REGISTRY: European Union Drug Regulating Authorities Clinical Trials Database; No.: EudraCT 2017-004767-13; URL: https://www.clinicaltrialsregister.eu.


Subject(s)
Benzenesulfonamides , Sleep Apnea, Obstructive , Thiazines , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/therapeutic use , Sleep Apnea, Obstructive/therapy , Thiazines/pharmacology , Thiazines/therapeutic use , Polysomnography , Continuous Positive Airway Pressure/methods
8.
Br J Pharmacol ; 181(7): 1051-1067, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37823675

ABSTRACT

BACKGROUND AND PURPOSE: Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely prescribed drugs in the world due to their analgesic, antipyretic and anti-inflammatory effects. However, NSAIDs inhibit prostanoid synthesis, interfering with their pro-inflammatory and anti-inflammatory functions and potentially prolonging acute inflammation. EXPERIMENTAL APPROACH: We used high-content immunohistochemistry to define the impact of meloxicam treatment on spatially separated pro-inflammatory and anti-inflammatory processes during innate inflammation in mice induced by zymosan. This allowed us to determine the effect of meloxicam treatment on the organization of pro-inflammatory and anti-inflammatory microenvironments, thereby identifying relevant changes in immune cell localization, recruitment and activation. KEY RESULTS: Meloxicam treatment reduced zymosan-induced thermal hypersensitivity at early time points but delayed its resolution. High-content immunohistochemistry revealed that the pro-inflammatory area was smaller after treatment, diminishing neutrophil recruitment, M1-like macrophage polarization, and especially phagocytosis by neutrophils and macrophages. The polarization of macrophages towards the M2-like anti-inflammatory phenotype was unaffected, and the number of anti-inflammatory eosinophils actually increased. CONCLUSION AND IMPLICATIONS: High-content immunohistochemistry was able to identify relevant meloxicam-mediated effects on inflammatory processes based on alterations in the regional structure of inflammation sites. Meloxicam delayed the clearance of pathogens by inhibiting pro-inflammatory processes, causing prolonged inflammation. Our data suggest that the prescription of NSAIDs as a treatment during an acute pathogen-driven inflammation should be reconsidered in patients with compromised immune systems.


Subject(s)
Prostaglandins , Thiazines , Humans , Mice , Animals , Meloxicam/adverse effects , Zymosan , Thiazoles/pharmacology , Thiazoles/therapeutic use , Thiazines/pharmacology , Thiazines/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Inflammation/chemically induced , Inflammation/drug therapy , Anti-Inflammatory Agents/adverse effects
9.
Anticancer Agents Med Chem ; 24(5): 358-371, 2024.
Article in English | MEDLINE | ID: mdl-37957911

ABSTRACT

BACKGROUND: Thiazine, a 6-membered distinctive heterocyclic motif with sulfur and nitrogen atoms, is one of the heterocyclic compounds that functions as a core scaffold in a number of medicinally significant molecules. Small thiazine-based compounds may operate simultaneously on numerous therapeutic targets and by employing a variety of methods to halt the development, proliferation, and vasculature of cancer cells. We have, herein, reported a series of substituted 1,4 benzothiazines as potential anticancer agents for the treatment of lung cancer. METHODS: In order to synthesize 2,3-disubstituted-1,4 benzothiazines in good yield, a facile green approach for the oxidative cycloaddition of 2-amino benzenethiol and 1,3-dicarbonyls employing a catalytic amount of ceric ammonium nitrate has been devised. All the molecules have been characterized by spectral analysis and tested for anticancer activity against the A-549 lung cancer cell line using various functional assays. Further in silico screening of compound 3c against six crucial inflammatory molecular targets, such as Il1-α (PDB ID: 5UC6), Il1- ß (PDB ID: 6Y8I), Il6 (PDB ID: 1P9M), vimentin (PDB ID: 3TRT), COX-2 (PDB ID: 5KIR), Il8 (PDB ID: 5D14), and TNF-α (PDB ID: 2AZ5), was done using AutoDock tool. RESULTS: Among the synthesized compounds, propyl 3-methyl-3,4-dihydro-2H-benzo[b][1,4]thiazine-2- carboxylate (3c) was found to be most active based on cell viability assays using A-549 lung cancer cell line and was found to effectively downregulate various pro-inflammatory genes, like Il1-α, Il1-ß, Il6, vimentin, COX-2, Il8, and TNF-α in vitro. The ability of the molecule to effectively suppress the proliferation and migration of lung cancer cells in vitro has been further demonstrated by the colony formation unit assay and wound healing assay. Molecular docking analysis showed the maximal binding affinity (- 7.54 kcal/mol) to be exhibited by compound 3c against IL8. CONCLUSION: A green unconventional route for the synthesis of 2,3-disubstituted-1,4 benzothiazines has been developed. All the molecules were screened for their activity against lung cancer and the data suggested that the presence of an additional unbranched alkyl group attached to the thiazine ring increased their activity. Also, in vitro and in silico modeling confirmed the anti-cancer efficiency of compound 3c, encouraging the exploration of such small molecules against cancer.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Thiazines , Humans , Molecular Docking Simulation , Vimentin , Structure-Activity Relationship , Cell Line, Tumor , Cyclooxygenase 2 , Interleukin-6 , Interleukin-8/pharmacology , Tumor Necrosis Factor-alpha , Antineoplastic Agents/chemistry , Thiazines/pharmacology , Lung Neoplasms/drug therapy , Cell Proliferation , Drug Screening Assays, Antitumor
10.
Chem Commun (Camb) ; 59(32): 4697-4715, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36974371

ABSTRACT

Tuberculosis is the leading bacterial killer worldwide. 8-Nitro-4H-benzo[e][1,3]thiazin-4-ones are a potent class of antitubercular agents with a new mechanism of action. BTZ043 and PBTZ169 (macozinone) have progressed to clinical studies. Herein, we give a comprehensive account of this important class of potential new drugs to treat tuberculosis. We present an overview of recent developments in the field of antitubercular benzothiazinones (BTZs) and summarize our own contributions. The review covers synthesis, structures and reactivity, mechanism of action, in vitro activity and structure activity relationships (SARs), physicochemical and pharmacokinetic properties as well as a brief summary of in vivo models and clinical studies. We address bioavailability issues and the challenge of the potentially toxic nitroaromatic moiety, including reactivity towards nucleophiles in vivo and highlight possible directions of further research into BTZs through chemical modification.


Subject(s)
Mycobacterium tuberculosis , Thiazines , Tuberculosis , Humans , Chemistry, Pharmaceutical , Antitubercular Agents/chemistry , Tuberculosis/drug therapy , Structure-Activity Relationship , Thiazines/pharmacology , Thiazines/chemistry , Thiazines/therapeutic use
11.
J Agric Food Chem ; 71(9): 4163-4171, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36812404

ABSTRACT

CYP6ER1 overexpression is a prevalent mechanism for neonicotinoid resistance in Nilaparvata lugens. Except for imidacloprid, the metabolism of other neonicotinoids by CYP6ER1 lacked direct evidence. In this study, a CYP6ER1 knockout strain (CYP6ER1-/-) was constructed using the CRISPR/Cas9 strategy. The CYP6ER1-/- strain showed much higher susceptibility to imidacloprid and thiacloprid with an SI (sensitivity index, LC50 of WT/LC50 of CYP6ER1-/-) of over 100, which was 10-30 for four neonicotinoids (acetamiprid, nitenpyram, clothianidin, and dinotefuran) and less than 5 for flupyradifurone and sulfoxaflor. Recombinant CYP6ER1 showed the highest activity to metabolize imidacloprid and thiacloprid and moderate activity for the other four neonicotinoids. Main metabolite identification and oxidation site prediction revealed that CYP6ER1 activities were insecticide structure-dependent. The most potential oxidation site of imidacloprid and thiacloprid was located in the five-membered heterocycle with hydroxylation activity. For the other four neonicotinoids, the potential site was within the ring opening of a five-membered heterocycle, indicating N-desmethyl activity.


Subject(s)
Hemiptera , Insecticides , Thiazines , Animals , Neonicotinoids/pharmacology , Insecticides/pharmacology , Thiazines/pharmacology , Hemiptera/genetics
12.
Arch Oral Biol ; 146: 105590, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36463789

ABSTRACT

OBJECTIVE: This study aimed to determine changes in saliva secretion and subjective taste intensity during a sustained period with continuous gustatory stimulation. DESIGN: Twenty-two healthy adults participated in this study. The selected taste solutions were aspartame, sucralose, and acesulfame potassium, which are nonnutritive sweeteners. The concentrations of sucralose1 and acesulfame potassium were set to show the same sweetness intensity as aspartame. Sucralose2 was twice the concentration of sucralose1. The solution was continuously fed into the oral cavity at a flow rate of 0.04 mL / min through a neck-worn precise infusion system. The salivary flow rate (g/min) after 10 min of intraoral water supply from the device was used as the baseline. Salivary flow rate, subjective taste intensity evaluated by the visual analog scale (VAS), and salivary flow rate relative to the baseline were recorded at 10, 30, 60, and 120 min after the start of the test. RESULTS: In the aspartame, sucralose1, and sucralose2 groups, the salivary flow rate increased significantly from 10 min to 120 min after the start of the test when compared to the rate at baseline (p < 0.05). The relative salivary flow rate increased and the VAS value decreased significantly over time and were affected by the time factor (p < 0.001, p = 0.013, respectively) but not by the sweetener-group factor and the interaction effects. CONCLUSIONS: Continuous gustatory stimulation may maintain increased salivary production for a sustained period.


Subject(s)
Non-Nutritive Sweeteners , Salivation , Thiazines , Adult , Humans , Aspartame/pharmacology , Non-Nutritive Sweeteners/pharmacology , Taste/physiology , Thiazines/pharmacology
13.
ChemistryOpen ; 11(10): e202200169, 2022 10.
Article in English | MEDLINE | ID: mdl-36200514

ABSTRACT

A series of novel heterocyclic structures, namely 1,3-oxazines, 1,3-thiazines and 2,4-diaminopyrimidines, were designed and synthesised. The bioassay tests demonstrated that, among these analogues, 2,4-diaminopyridine derivatives showed significant antiproliferative activity against different human cancer cell lines (A2780, SiHa, HeLa, MCF-7 and MDA-MB-231). Pyrimidines substituted with N2 -(p-trifluoromethyl)aniline, in particular, displayed a potent inhibitory effect on the growth of cancer cells. Structure-activity relationships were also studied from the aspects of stereochemistry on the aminodiol moiety as well as exploring the effects of substituents on the pyrimidine scaffold.


Subject(s)
Ovarian Neoplasms , Thiazines , Aniline Compounds/pharmacology , Cell Line, Tumor , Cell Proliferation , Cyclohexane Monoterpenes , Female , Humans , Oxazines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Thiazines/pharmacology
14.
Colloids Surf B Biointerfaces ; 218: 112777, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36007315

ABSTRACT

Meloxicam (MLX) is considered to have significant analgesic properties. However, the analgesic effects of MLX are compromised by its poor water solubility and thus the low drug loading. The purpose of this study was to develop a high drug-loaded MLX injection by formulating it into nanocrystals (NCs) for the treatment of analgesia. The developed MLXNCs exhibited satisfactory particle sizes and remarkably in vitro dissolution behaviors. In addition, the plasma concentrations of MLXNCs were comparable with the MLX solution (formulated with 1.0% polyoxyethylene castor oil 35) in rats. The acetic acid-induced writhing tests, hot plate tests and hind paw incision experiments demonstrated that the MLXNCs had significant analgesic effects. The findings provide insights into the developed high drug-loaded MLXNCs and provide new therapeutic options for acute and chronic pain management.


Subject(s)
Analgesia , Nanoparticles , Thiazines , Acetates , Animals , Anti-Inflammatory Agents, Non-Steroidal , Meloxicam/chemistry , Pain/drug therapy , Pain Management , Rats , Thiazines/pharmacology , Thiazines/therapeutic use , Thiazoles/chemistry , Thiazoles/pharmacology , Water
15.
Arch Pharm (Weinheim) ; 355(11): e2200168, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35876343

ABSTRACT

The quinoline moiety remains a privileged antitubercular (anti-TB) pharmacophore, whereas 8-nitrobenzothiazinones are emerging potent antimycobacterial agents with two investigational candidates in the clinical pipeline. Herein, we report the synthesis and bioevaluation of 30 piperazinyl-benzothiazinone-based quinoline hybrids as prospective anti-TB agents. Preliminary evaluation revealed 24/30 compounds exhibiting substantial activity (minimum inhibitory concentration [MIC] = 0.06-1 µg/ml) against Mycobacterium tuberculosis (Mtb) H37Rv. Cytotoxicity analysis against Vero cells found these to be devoid of any significant toxicity, with the majority displaying a selectivity index of >80. Furthermore, potent nontoxic compounds, when screened against clinical isolates of drug-resistant Mtb strains, demonstrated equipotent inhibition with MIC values of 0.03-0.25 µg/ml. A time-kill study identified a lead compound exhibiting concentration-dependent bactericidal activity, with 10× MIC completely eliminating Mtb bacilli within 7 days. Along with acceptable aqueous solubility and microsomal stability, the optimum active compounds of the series manifested all desirable traits of a promising antimycobacterial candidate.


Subject(s)
Mycobacterium tuberculosis , Quinolines , Animals , Antitubercular Agents/pharmacology , Chlorocebus aethiops , Microbial Sensitivity Tests , Structure-Activity Relationship , Vero Cells , Thiazines/pharmacology
16.
ChemMedChem ; 17(6): e202200021, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35170242

ABSTRACT

8-Nitro-4H-benzo[e][1,3]thiazinones (BTZs) are potent in vitro antimycobacterial agents. New chemical transformations, viz. dearomatization and decarbonylation, of two BTZs and their influence on the compounds' antimycobacterial properties are described. Reactions of 8-nitro-2-(piperidin-1-yl)-6-(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one and the clinical drug candidate BTZ043 with the Grignard reagent CH3 MgBr afford the corresponding dearomatized stable 4,5-dimethyl-5H- and 4,7-dimethyl-7H-benzo[e][1,3]thiazines. These methine compounds are structurally characterized by X-ray crystallography for the first time. Reduction of the BTZ carbonyl group, leading to the corresponding markedly non-planar 4H-benzo[e][1,3]thiazine systems, is achieved using the reducing agent (CH3 )2 S ⋅ BH3 . Double methylation with dearomatization and decarbonylation renders the two BTZs studied inactive against Mycobacterium tuberculosis and Mycobacterium smegmatis, as proven by in vitro growth inhibition assays.


Subject(s)
Mycobacterium tuberculosis , Thiazines , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Crystallography, X-Ray , Mycobacterium smegmatis , Thiazines/chemistry , Thiazines/pharmacology
18.
Eur J Med Chem ; 227: 113956, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34731762

ABSTRACT

We report a series of compounds 1-17 derived from the antiepileptic drug Sulthiame (SLT) from which both the benzenesulfonamide and the sultam moiety were retained. All compounds were tested in vitro for their inhibition activity against the human (h) Carbonic Anhydrase (CA; EC 4.2.1.1) I, II, VII, IX and XII isoforms. Among the series, derivatives 1 and 11 showed great enhancement of both inhibition potency and selectivity towards the hCA VII isoform, when compared to the reference SLT drug. The binding mode of 11 within the hCA VII active site was deciphered by means of X-ray crystallography and revealed the sultam moiety being exposed to the rim of the active site. In vivo experiments on a model of neuropathic pain induced by oxaliplatin clearly showed 11 being an effective pain relieving agent and therefore worth of further exploitation towards the validation of the hCA VII as new target for the management of neuropathies.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Neuralgia/drug therapy , Neuroprotective Agents/pharmacology , Thiazines/pharmacology , Animals , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Male , Mice , Models, Molecular , Molecular Structure , Neuralgia/chemically induced , Neuralgia/metabolism , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Oxaliplatin/administration & dosage , Structure-Activity Relationship , Thiazines/chemical synthesis , Thiazines/chemistry
19.
Brain Dev ; 44(1): 44-49, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34483011

ABSTRACT

BACKGROUND: Ferric chelate reductase 1 like (FRRS1L) encephalopathy is a rare cause of developmental and epileptic encephalopathy. Only a few cases have been reported thus far and seizures tend to be drug refractory. We report an additional case to highlight the good seizure response to sulthiame. CASE REPORT: A boy from non-consanguineous parents presented with history of 'abnormal movements' from 7 months of age. At one year of age, video electroencephalogram (EEG) monitoring demonstrated the 'abnormal movements' to be clonic seizures. Valproate, lamotrigine and clobazam combination were only partially effective at reducing the seizures. Repeat EEG at 1 year 8 months old revealed a continuous spikes-and-waves during slow sleep (CSWS) pattern, prompting a trial of sulthiame. After 2 weeks of sulthiame, seizures ceased completely. The clonic seizures recurred at age 4 years when sulthiame supply was interrupted, but the seizures promptly remitted following sulthiame's resumption. Subtle choreiform movements appeared from age one year and later became more prominent. Whole exome sequencing (WES) identified a homozygous novel variant (nonsense) in the FRRS1L gene (NM_014334.3: c.670C>T:p.Gln224*). He has been seizure free since 4 years of age but remained profoundly delayed. CONCLUSION: Sulthiame may have a role in the early treatment of seizures in children with refractory epilepsy due to FRRS1L mutation.


Subject(s)
Anticonvulsants/pharmacology , Drug Resistant Epilepsy/drug therapy , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/physiopathology , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Thiazines/pharmacology , Humans , Infant , Male , Seizures/drug therapy , Seizures/physiopathology , Sleep, Slow-Wave/physiology
20.
Pak J Pharm Sci ; 34(5(Supplementary)): 1951-1955, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34836865

ABSTRACT

Diabetes mellitus (DM) is a metabolic disorder characterized by frequent urination, hunger and high blood sugar level. α-glucosidase inhibitors are considered as a frontline treatment for the DM. This research article deals with the identification of benzothiazine derivatives as α-glucosidase inhibitors through in-silico techniques and then the confirmation through in-vitro analysis. Molecular docking studies were carried out to find out the binding interactions of targeted molecules with receptor molecule i.e., α-glucosidase enzyme. The synthetic compounds 1 (a-n), 2 (a-d) and 3 (a-b) were evaluated for in-vitro alpha glucosidase inhibitory activities that resulted in the discovery of various potent molecules. Majority of the compounds (1c, 1f, 1g, 1k-n, 2a-d and 3a-b) exhibited good inhibitory activity against α-glucosidase. Compounds 1c, 1g, 1k and 1m appeared as the potent active compounds with the IC50 values 17.44, 27.64, 24.43, 42.59 and 16.90 µM respectively. Compounds 1c & 2c were found almost 3-folds more active than the standard acarbose. The study may lead to discover potent drug candidates with less complication for the treatment of the type II diabetes mellitus.


Subject(s)
Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Hydrazones/chemical synthesis , Hydrazones/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Thiazines/chemical synthesis , Thiazines/pharmacology , Computer Simulation , Diabetes Mellitus, Type 2/drug therapy , Drug Evaluation, Preclinical , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL