Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Future Med Chem ; 13(24): 2133-2151, 2021 12.
Article in English | MEDLINE | ID: mdl-34755546

ABSTRACT

Background: 2-Indolinone-based hydrazinecarbothioamides carrying a 3-phenylsulfonamide moiety (7-9) were designed by replacement of donepezil's pharmacophore group indanone with a 2-indolinone ring. Method: Compounds 7-9 were synthesized by reaction of N-(3-sulfamoylphenyl)hydrazinecarbothioamide (6) with 1H-indolin-2,3-diones (1-3). Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory effects of compounds 7-9 were assayed. Molecular modeling studies of 5-chloro-1,7-dimethyl-substituted compound 8e were carried out to determine the possible binding interactions at the active site of AChE. Results: Compound 8e showed the strongest inhibition against AChE (Ki = 0.52 ± 0.11 µM) as well as the highest selectivity (SI = 37.69). The selectivity for AChE over BuChE of compound 8e was approximately 17-times higher than donepezil and 26-times higher than galantamine. Conclusion: Further development of compounds 7-9 may present new promising agents for Alzheimer's treatment.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Hydrazines/pharmacology , Oxindoles/pharmacology , Thioamides/pharmacology , Alzheimer Disease/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Humans , Hydrazines/chemical synthesis , Hydrazines/chemistry , Models, Molecular , Molecular Structure , Oxindoles/chemistry , Thioamides/chemical synthesis , Thioamides/chemistry
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119388, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33503560

ABSTRACT

Prospective antiviral molecule (2E)-N-methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]-hydrazinecarbothioamide has been probed using Fourier transform infrared (FTIR), FT-Raman and quantum chemical computations. The geometry equilibrium and natural bond orbital analysis have been carried out with density functional theory employing Becke, 3-parameter, Lee-Yang-Parr method with the 6-311G++(d,p) basis set. The vibrational assignments pertaining to different modes of vibrations have been augmented by normal coordinate analysis, force constant and potential energy distributions. Drug likeness and oral activity have been carried out based on Lipinski's rule of five. The inhibiting potency of 2(2E)-methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]-hydrazinecarbothioamide has been investigated by docking simulation against SARS-CoV-2 protein. The optimized geometry shows a planar structure between the chromone and the side chain. Differences in the geometries due to the substitution of the electronegative atom and intermolecular contacts due to the chromone and hydrazinecarbothioamide were analyzed. NBO analysis confirms the presence of two strong stable hydrogen bonded NH⋯O intermolecular interactions and two weak hydrogen bonded CH⋯O interactions. The red shift in NH stretching frequency exposed from IR substantiates the formation of NH⋯O intermolecular hydrogen bond and the blue shift in CH stretching frequency substantiates the formation of CH⋯O intermolecular hydrogen bond. Drug likeness, absorption, distribution, metabolism, excretion and toxicity property gives an idea about the pharmacokinetic properties of the title molecule. The binding energy of the nonbonding interaction with Histidine 41 and Cysteine 145, present a clear view that 2(2E)-methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]-hydrazinecarbothioamide can irreversibly interact with SARS-CoV-2 protease.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Chromones , Coronavirus 3C Proteases/antagonists & inhibitors , Drugs, Investigational , SARS-CoV-2/drug effects , Thiourea , Antiviral Agents/analysis , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Chromones/analysis , Chromones/chemical synthesis , Chromones/chemistry , Chromones/pharmacokinetics , Computational Chemistry , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Drugs, Investigational/analysis , Drugs, Investigational/chemical synthesis , Drugs, Investigational/chemistry , Drugs, Investigational/pharmacokinetics , Humans , Hydrazines/chemistry , Hydrogen/chemistry , Hydrogen Bonding , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Binding , Quantum Theory , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Thioamides/analysis , Thioamides/chemical synthesis , Thioamides/chemistry , Thioamides/pharmacokinetics , Thiourea/analysis , Thiourea/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacokinetics , Vibration
3.
Arch Pharm (Weinheim) ; 354(5): e2000336, 2021 May.
Article in English | MEDLINE | ID: mdl-33410162

ABSTRACT

New hydrazinecarbothioamides with a phenylsulfonyl group were synthesized and their structures were identified by different spectroscopic data (1 H NMR, 13 C NMR, two-dimensional NMR, mass spectrometry, elemental analysis, and single-crystal X-ray analysis). The mechanism describing the formation of the products was also discussed. The antidiabetic activity of the isolated products was investigated histochemically. The synthesized sulfonylalkylthiosemicarbazide exhibited antihyperglycemic activity in streptozotocin-induced diabetic mice. Compounds 5a and 5c significantly lowered the blood glucose level to 103.3 ± 1.8 and 102 ± 3.9 mg/dl, respectively. Also, they caused a significant decrease in malondialdehyde levels and normalized the glutathione levels in streptozotocin-induced diabetic mice, compared with the diabetic group. The results suggest that the synthesized hydrazinocarbothioamides may effectively inhibit the development of oxidative stress in diabetes.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Drug Design , Hydrazines/pharmacology , Hypoglycemic Agents/pharmacology , Thioamides/pharmacology , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Dose-Response Relationship, Drug , Hydrazines/chemical synthesis , Hydrazines/chemistry , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Male , Mice , Molecular Structure , Oxidative Stress/drug effects , Streptozocin , Structure-Activity Relationship , Thioamides/chemical synthesis , Thioamides/chemistry
4.
Curr Comput Aided Drug Des ; 17(1): 107-122, 2021.
Article in English | MEDLINE | ID: mdl-31556860

ABSTRACT

BACKGROUND: Mixed ligand-metal complexes are efficient chelating agents because of their flexible donor ability. Mixed ligand complexes containing hetero atoms sulphur, nitrogen and oxygen have been probed for their biological significance. METHODS: Nine mixed ligand-metal complexes of 2-(butan-2-ylidene) hydrazinecarbothioamide (2- butanone thiosemicarbazone) with pyridine, bipyridine and 2-picoline as co-ligands were synthesized with Cu, Co and Zn salts. The complexes were tested against MDA-MB231 (MDA) and A549 cell lines. Antibacterial activity was tested against Staphylococcus aureus and Escherichia coli. The drug character of the complexes was evaluated on parameters viz. physicochemical properties, bioactivity scores, toxicity assessment and Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) profile using various automated softwares. Molecular docking was performed against Ribonucleotide Reductase (RR) and topoisomerase II (topo II). RESULTS: The mixed ligand-metal complexes were synthesized by condensation reaction for 4-5 h. The characterization was done by elemental analysis, 1H-NMR, FT-IR, molar conductance and UV spectroscopic techniques. Molecular docking results showed that [Cu(C5H11N3S)(py)2(CH3COO)2], [Zn(C5H11N3S)(bpy)(SO4)] and [Zn(C5H11N3S)(2-pic)2(SO4)] displayed the lowest binding energies with respect to RR. Against topo II [Cu(C5H11N3S)(py)2(CH3COO)2], [Cu(C5H11N3S)(bpy)(CH3COO)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] had the lowest energies. The druglikness assessment was done using Leadlikeness and Lipinski's rules. Not more than two violations were obtained in case of each filtering rule showing drug-like character of the mixed ligand complexes. Some of the complexes exhibited positive bioactivity scores and almost all the complexes were predicted to be safe with no hazardous effects as predicted by the toxicity assessment. Ames test predicted the non-mutagenic nature of the complexes. CONCLUSION: In vitro activity evaluation showed that [Zn(C5H11N3S)(py)2(SO4)], [Co(C5H11N3S(bpy) (Cl)2] and [Cu(C5H11N3S)(2-pic)2(CH3COO)2] were active against MDA. Against A549 [Co(C5H11N3S)(py)2(Cl)2], [Cu(C5H11N3S)(py)2(CH3COO)2] and [Co(C5H11N3S(bpy)(Cl)2] were active. Antibacterial evaluation showed that [Co(C5H11N3S)(bpy)(Cl)2], [Zn(C5H11N3S)(2-pic)2(SO4)] and [Cu(C5H11N3S)(2-pic)2(CH3COO)2] were active against S. aureus. Against E. coli, [Zn(C5H11N3S)(2- pic)2(SO4)] showed activity at 18-20 mg dose range.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Hydrazines/pharmacology , Molecular Docking Simulation , Thioamides/pharmacology , A549 Cells , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Computer Simulation , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Dose-Response Relationship, Drug , Drug Design , Humans , Hydrazines/chemical synthesis , Hydrazines/chemistry , Ligands , Microbial Sensitivity Tests , Thioamides/chemical synthesis , Thioamides/chemistry
5.
Mol Divers ; 25(2): 763-776, 2021 May.
Article in English | MEDLINE | ID: mdl-32100245

ABSTRACT

The present research paper reports the convenient synthesis, successful characterization, in vitro antibacterial, antifungal, antioxidant potency and biocompatibility of N-acyl-morpholine-4-carbothioamides (5a-5j). The biocompatible derivatives were found to be highly active against the tested bacterial and fungal strains. Moreover, some of the screened N-acyl-morpholine-4-carbothioamides exhibited excellent antioxidant potential. Docking simulation provided additional information about possibilities of their inhibitory potential against RNA. It has been predicted by in silico investigation of the binding pattern that compounds 5a and 5j can serve as the potential surrogate for design of novel and potent antibacterial agents. The results for the in vitro bioassays were promising with the identification of compounds 5a and 5j as the lead and selective candidate for RNA inhibition. Results of the docking computations further ascertained the inhibitory potential of compound 5a. Based on the in silico studies, it can be suggested that compounds 5a and 5j can serve as a structural model for the design of antibacterial agents with better inhibitory potential. Binding mode of compound 5j inside the active site of RNA in 3D space. 5j displayed highest antibacterial potential than the reference drug ampicillin with ZOI 10.50 mm against Staphylococcus aureus. 5j also displayed highest antifungal potential than the reference drug amphotericin B with ZOI 18.20 mm against Fusarium solani.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Antioxidants , Morpholines , Thioamides , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Aspergillus niger/drug effects , Aspergillus niger/growth & development , Bacteria/drug effects , Bacteria/growth & development , Biphenyl Compounds/chemistry , Cells, Cultured , Erythrocytes/drug effects , Fusarium/drug effects , Fusarium/growth & development , Hemolysis/drug effects , Humans , Molecular Docking Simulation , Morpholines/chemical synthesis , Morpholines/chemistry , Morpholines/pharmacology , Picrates/chemistry , RNA/chemistry , Thioamides/chemical synthesis , Thioamides/chemistry , Thioamides/pharmacology
6.
J Inorg Biochem ; 210: 111167, 2020 09.
Article in English | MEDLINE | ID: mdl-32653633

ABSTRACT

Herein we report on the synthesis and molecular structures of six silver(I) mixed-ligand complexes containing a heterocyclic thioamide [4-phenyl-imidazole-2-thione (phimtH) or 2,2,5,5-tetramethyl-imidazolidine-4-thione (tmimdtH)] and a tertiary arylphosphane [triphenylphosphine (PPh3), tri-o-tolylphosphane (totp)] or diphosphane [(1,2-bis(diphenylphosphano)ethane (dppe), bis(2-diphenylphosphano-phenyl)ether (DPEphos) or 4,5-bis(diphenylphosphano)-9,9-dimethylxanthene) (xantphos)]. The interaction of the compounds with calf-thymus DNA (CT DNA), as monitored directly via UV-vis spectroscopy and DNA-viscosity measurements and indirectly via its competition with ethidium bromide for DNA-intercalation sites, is suggested to take place via an intercalative mode. The new complexes show selective significant in vitro antibacterial activity against four bacterial strains. The antiproliferative effects and cytostatic efficacies of the complexes against four human cancer cell lines were evaluated. The best cytostatic and cytotoxic activity was appeared for the complexes bearing the phimtH moiety. In order to explain the described in vitro activity of the complexes, and to approach a possible mechanism of action, molecular docking studies were adopted on the crystal structure of CT DNA, DNA-gyrase, human estrogen receptor alpha and a cell-cycle specific target protein, human cyclin-dependent kinase 6.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Intercalating Agents/pharmacology , Organophosphorus Compounds/pharmacology , Thioamides/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Bacteria/drug effects , Cattle , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Cyclin-Dependent Kinase 6/metabolism , DNA/metabolism , DNA Gyrase/metabolism , Escherichia coli Proteins/metabolism , Estrogen Receptor alpha/metabolism , Humans , Intercalating Agents/chemical synthesis , Intercalating Agents/metabolism , Ligands , Microbial Sensitivity Tests , Molecular Docking Simulation , Organophosphorus Compounds/chemical synthesis , Organophosphorus Compounds/metabolism , Protein Binding , Silver/chemistry , Thioamides/chemical synthesis , Thioamides/metabolism
7.
Bioorg Med Chem Lett ; 30(13): 127211, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32354570

ABSTRACT

The Castagnoli-Cushman reaction between diglycolic anhydride and imines was applied for the synthesis of morpholine derivatives containing a thioamide or an amidino group. Enzyme inhibition assays towards BACE1 revealed an unexpected role of the cyclic thioamide group in providing inhibition in the micromolar range. Molecular docking calculations showed the thioamido group interacting with catalytic aspartic acid, and calculated BBB permeability indicated this molecular scaffold as a promising hit for further optimization.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Morpholines/chemistry , Protease Inhibitors/chemistry , Thioamides/chemistry , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Catalytic Domain , Enzyme Assays , Humans , Molecular Docking Simulation , Morpholines/chemical synthesis , Morpholines/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Protein Binding , Thioamides/chemical synthesis , Thioamides/metabolism
8.
J Pept Sci ; 26(4-5): e3248, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32202029

ABSTRACT

The unique physicochemical properties of a thioamide bond, which is an ideal isostere of an amide bond, have not been fully exploited because of the tedious synthesis of thionated amino acid building blocks. Here, we report a purification-free and highly efficient synthesis of thiobenzotriazolides of Fmoc-protected and orthogonally protected 20 naturally occurring amino acids including asparagine, glutamine, and histidine. The near-quantitative conversion to the respective thioamidated peptides on solid support demonstrates the robustness of the synthetic route. Furthermore, the unaltered incorporation efficiency of thiobenzotriazolides from their stock solution till 48 h suggests their compatibility toward automated peptide synthesis. Finally, utilizing an optimized cocktail of 2% DBU + 5% piperazine for fast Fmoc-deprotection, we report the synthesis of a thioamidated Pin1 WW domain and thioamidated GB1 directly on solid support.


Subject(s)
Peptides/chemical synthesis , Proteins/chemical synthesis , Thioamides/chemical synthesis , Molecular Structure , Peptides/chemistry , Proteins/chemistry , Thioamides/chemistry
9.
Bioorg Chem ; 96: 103626, 2020 03.
Article in English | MEDLINE | ID: mdl-32007719

ABSTRACT

We, herein, describe the synthesis of a series of novel aryl tethered 7,8-dihydroquinolin-5(6H)-ylidenehydrazinecarbothioamides 4a-v, which showed in vitro and in vivo antimycobacterial activity against Mycobacterium tuberculosis (Mtb) H37Rv. The intermediates dihydro-6H-quinolin-5-ones 3a-v were synthesized from ß-enaminones, reacting with cyclochexane-1,3-dione/5,5-dimethylcyclohexane-1,3-dione and ammonium acetate using a modified Bohlmann-Rahtz reaction conditions. They were further reacted with thiosemicarbazide to give the respective hydrazine carbothioamides 4a-v. All the new analogues 4a-v, were characterized by their NMR and mass spectral data analysis. Among the twenty-two compounds screened for in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv (ATCC27294), two compounds, 4e and 4j, exhibited the highest inhibition with an MIC of 0.39 µg/mL. Compounds 4a, 4g, and 4k were found to inhibit Mtb at an MIC of 0.78 µg/mL. Hydrazinecarbothioamides 4a-k, exhibited enhanced activity than dihydroquinolinones 3a-k. The observed increase in potency provides a clear evidence that hydrazinecarbothioamide is a potential pharmacophore, collectively imparting synergistic effect in enhancing antitubercular activity of the dihydroquinolinone core. The in vivo (Zebra fish) antimycobacterial screening of the in vitro active molecules led to the identification of a hit compound, 4j, with significant activity in the Mtb nutrient starvation model (2.2-fold reduction). Docking studies of 4j showed a hydrogen bond with the P156 residue of the protein.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/therapeutic use , Hydrazines/chemistry , Hydrazines/therapeutic use , Mycobacterium tuberculosis/drug effects , Thioamides/chemistry , Thioamides/therapeutic use , Tuberculosis/drug therapy , Animals , Antitubercular Agents/chemical synthesis , Disease Models, Animal , Drug Design , Humans , Hydrazines/chemical synthesis , Microbial Sensitivity Tests , Molecular Docking Simulation , Quinolones/chemical synthesis , Quinolones/chemistry , Quinolones/therapeutic use , Structure-Activity Relationship , Thioamides/chemical synthesis , Zebrafish
10.
Mater Sci Eng C Mater Biol Appl ; 99: 450-459, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30889719

ABSTRACT

Three silver(I) complexes bearing different combinations of diphosphanes and N-heterocyclic thioamides or thioamidates as ligands have been synthesized and structurally characterized: the ionic, homoleptic compound [Ag(xantphos)2][BF4] (1), where xantphos = 4,5-bis(diphenylphosphano)-9,9-dimethyl-xanthene, and the neutral, heteroleptic compounds [Ag(xantphos)(κ-S-pymt)] (2), where pymt = pyrimidine-2-thiolate, and [AgCl(dppbz)(κ-S-mtdztH)] (3), where dppbz = bis(diphenylphosphano)benzene and mtdztH = 5-methyl-1,3,4-thiadiazole-2-thione. X-ray crystallography studies reveal tetrahedral coordination environments around the silver(I) ions in compounds 1 and 3, while a trigonal planar arrangement of the P2S donor set has been found around the metal center in compound 2. The interaction of the three compounds with calf-thymus DNA was monitored by UV-vis spectroscopy, DNA-viscosity measurements and indirectly by testing their ability to compete with ethidium bromide for DNA intercalation sites studied by fluorescence emission spectroscopy. Intercalation was revealed as the most possible binding mode for the neutral compounds 2 and 3 and electrostatic interactions for the cationic complex [Ag(xantphos)2]+ in 1. Complexes 1-3 have also been found to display moderate in vitro antibacterial activity against the Gram-positive B. cereus, S. aureus and the Gram-negative E. coli bacterial strains, with the homoleptic bis-phosphane silver(I) compound 1 exhibiting a lower activity than the other two neutral compounds.


Subject(s)
DNA/metabolism , Phosphines/chemical synthesis , Silver/pharmacology , Thioamides/chemical synthesis , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Ethidium/chemistry , Ligands , Molecular Conformation , Phosphines/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thioamides/chemistry , Viscosity
11.
J Antibiot (Tokyo) ; 72(5): 260-270, 2019 05.
Article in English | MEDLINE | ID: mdl-30755737

ABSTRACT

A new thiourea ligand (HL), namely N-(4-chlorophenyl)morpholine-4-carbothioamide and its Co(III), Ni(II) and Ag(I) complexes (1a, 1b and 1c) were synthesized and investigated by Fourier-transform infrared, 1H NMR and UV-visible spectroscopies. The compounds HL and 1c were characterized by single-crystal X-ray crystallography revealing the triclinic space group P[Formula: see text] for both compounds. The inhibitory effect of HL ligand, 1a, 1b, and 1c complexes was investigated with in vitro tests on Gram-positive and Gram-negative bacteria. For the 1c complex, the results showed that the coordination of the HL to Ag(I) ion increased its antibacterial effect especially against E. coli. The assays also indicated that for the same bacteria strains, the new complexes showed higher activity than the ligand, with the relative activity 1c > 1b > 1a > HL. Moreover, all samples were more suitable antimicrobial agents against the Gram-negative than those of the Gram-positive bacteria. Eventually, the relationship between the structure and bactericidal activities of these specimens was examined by calculating frontier molecular orbital (HOMO and LUMO) energies using density functional theory method at the 6-31 G*/LANL2DZ level of theory.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coordination Complexes/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Morpholines/pharmacology , Thioamides/pharmacology , Thiourea/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure , Morpholines/chemical synthesis , Morpholines/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Thioamides/chemical synthesis , Thioamides/chemistry
12.
Curr Org Synth ; 16(7): 1055-1066, 2019.
Article in English | MEDLINE | ID: mdl-31984886

ABSTRACT

BACKGROUND: Oxidative stress due to high levels of reactive organic species is the cause of the progression of inflammation in various diseases. The molecules possessing both anti-inflammatory and antioxidant activity can be the promising key to treat inflammatory diseases. Phthalimide and hydrazinecarbothioamide are anti-inflammatory and anti-oxidant pharmacophores. OBJECTIVE: Molecular hybrids possessing above two pharmacophores were designed. A series of N-phenyl substituted 2-(2-(1,3-dioxoisoindolin-2-yl)acetyl)-N-phenylhydrazine-1-carbothioamide (CGS compounds) was synthesized and evaluated for biological activities. METHODS: N-phthaloylglycyl hydrazide was reacted with unsubstituted/substituted phenyl isothiocyanates to yield CGS compounds. Synthesized compounds were evaluated for in vivo anti-inflammatory activity in carrageenan rat paw edema model, and in vitro anti-oxidant activity by DPPH assay. Levels of TNF-α and oxidative stress at the site of inflammation were measured. The genetic algorithm-PLS regression based QSAR model correlating the effect of N-phenyl substituent on the anti-inflammatory activity was developed. Further, the interaction of the active compound in the TNF-α binding pocket was studied by in silico docking. RESULTS: Compound containing the 2-OCH3, 4-NO2 (CGS-5); 4-CF3 (CGS-9); 4-NO2 (CGS-3) showed significant anti-inflammatory activity (percentage inhibition of paw edema after 3 hour = 58.24, 50.38, 40.05, respectively) and potent anti-oxidant activity (IC50 =0.045, 0.998, 0.285 µg/ml, respectively). Reduced levels of TNF- α and increased levels of GSH were observed for the above three compounds. Descriptors for QSAR model identified by GA-PLS were WPSA1, Weta1unity, WDunity, SC3, VC5, MlogP, and WTPT3. The identified model was highly predictive, and value of root mean square error of prediction for internal (leave one out) and external validation was: 1.579, 1.325. CONCLUSION: Molecular hybrids of phthalimide and hydrazinecarbothioamide were synthesized. Some of the compounds possessed promising anti-inflammatory and anti-oxidant activities.


Subject(s)
Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Hydrazines/chemistry , Phthalimides/chemistry , Thioamides/chemistry , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemical synthesis , Antioxidants/pharmacology , Chemistry Techniques, Synthetic , Drug Design , Edema/drug therapy , Hydrazines/chemical synthesis , Hydrazines/pharmacology , Models, Molecular , Oxidative Stress/drug effects , Phthalimides/chemical synthesis , Phthalimides/pharmacology , Rats, Wistar , Thioamides/chemical synthesis , Thioamides/pharmacology
13.
Molecules ; 23(9)2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30200457

ABSTRACT

Thiourea as a sulfur atom transfer reagent was applied for the synthesis of aryl thioamides through a three-component coupling reaction with aryl aldehydes and N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMAC). The reaction could tolerate various functional groups and gave moderate to good yields of desired products under the transition-metal-free condition.


Subject(s)
Aldehydes/chemistry , Sulfur/chemistry , Thioamides/chemical synthesis , Thiourea/chemistry , Potassium Compounds/chemistry , Sulfates/chemistry , Thioamides/chemistry
14.
Bioorg Chem ; 81: 79-87, 2018 12.
Article in English | MEDLINE | ID: mdl-30118988

ABSTRACT

A series of N-aryl-2-phenyl-hydrazinecarbothioamides have been investigated as possible inhibitors of tyrosinase, an enzyme involved in the development of melanomas. The hydrazinecarbothioamides 1-6 were synthesized from the reaction between phenylhydrazine and isothiocyanates, for which three different methods have been employed, namely stirring at room temperature, by microwave irradiation or by mechanochemical grinding. Quantitative yields were obtained for the later technique. Compound 4 showed the best value for tyrosinase inhibition (IC50 = 22.6 µM), which occurs through an uncompetitive mechanism. Molecular docking results suggested that 4 can interact via T-stacking with the substrate L-DOPA and via hydrogen bonding and hydrophobic forces with the amino acid residues Ala-79, His-243, Val-247, Phe-263, Val-282, and Glu-321. The interaction between human serum albumin (HSA) and compound 4 occurs through a ground state association and does not perturb the secondary structure of the albumin as well as the microenvironment around Tyr and Trp residues. The binding is spontaneous, moderate and occurs mainly in the Sudlow's site I. Molecular docking results suggested hydrogen bonding, hydrophobic and electrostatic interactions as the main binding forces between the compound 4 and the amino acid residues Lys-198, Trp-214, Glu-449, Leu-452, and Leu-480.


Subject(s)
Enzyme Inhibitors/pharmacology , Hydrazines/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Serum Albumin, Human/antagonists & inhibitors , Thioamides/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Hydrazines/chemical synthesis , Hydrazines/chemistry , Molecular Docking Simulation , Molecular Structure , Monophenol Monooxygenase/metabolism , Serum Albumin, Human/chemistry , Structure-Activity Relationship , Thioamides/chemical synthesis , Thioamides/chemistry
15.
Mol Divers ; 22(3): 743-749, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29605835

ABSTRACT

Rapid, efficient, simple and green procedure for the synthesis of 4,5-dihydro-1H-pyrazole-1-carbothioamides via the multicomponent reaction of aryl aldehydes, acetophenones and thiosemicarbazide in water in the presence of tetrabutylammonium hydroxide under microwave irradiation is reported.


Subject(s)
Thioamides/chemical synthesis , Acetophenones/chemistry , Aldehydes/chemistry , Green Chemistry Technology , Microwaves , Quaternary Ammonium Compounds/chemistry , Semicarbazides/chemistry , Water/chemistry
16.
Bioorg Chem ; 77: 56-67, 2018 04.
Article in English | MEDLINE | ID: mdl-29331765

ABSTRACT

Even after considerable advances in the field of epilepsy treatment, convulsions are inefficiently controlled by standard drug therapy. Herein, a series of pyrimidine-carbothioamide derivatives 4(a-t) was designed as anticonvulsant agents by doing some important structural modifications in well-known anticonvulsant drugs. Two classical animal models were used for the in vivo anticonvulsant screening, maximum electroshock seizure (MES) and subcutaneous pentylenetetrazole (scPTZ) models; followed by motor impairment study by rotarod method. The most active compound 4g effectively suppressed seizure effect in both the animal models with median doses of 15.6 mg/kg (MES ED50), 278.4 mg/kg (scPTZ ED50) and 534.4 mg/kg (TD50) with no sign of neurotoxicity. Furthermore, in vitro GABA-AT enzyme activity assay of 4g showed inhibitory potency (IC50) of 12.23 µM. The docking study also favored the animal studies.


Subject(s)
4-Aminobutyrate Transaminase/antagonists & inhibitors , Anticonvulsants/pharmacology , Enzyme Inhibitors/pharmacology , Pyrimidines/pharmacology , Seizures/drug therapy , Thioamides/pharmacology , 4-Aminobutyrate Transaminase/metabolism , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Electroshock , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Male , Mice , Models, Molecular , Molecular Structure , Pentylenetetrazole , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Seizures/chemically induced , Structure-Activity Relationship , Thioamides/chemical synthesis , Thioamides/chemistry
17.
J Inorg Biochem ; 177: 395-401, 2017 12.
Article in English | MEDLINE | ID: mdl-28916262

ABSTRACT

Ru(II) and Os(II) complexes of 2-pyridinecarbothioamide ligands were introduced as orally administrable anticancer agents (S.M. Meier, M. Hanif, Z. Adhireksan, V. Pichler, M. Novak, E. Jirkovsky, M.A. Jakupec, V.B. Arion, C.A. Davey, B.K. Keppler, C.G. Hartinger, Chem. Sci., 2013, 4, 1837-1846). In order to identify structure-activity relationships, a series of N-phenyl substituted pyridine-2-carbothiamides (PCAs) were obtained by systematically varying the substituents at the phenyl ring. The PCAs were then converted to their corresponding RuII(η6-p-cymene) complexes and characterized spectroscopically and by X-ray diffraction as well as in terms of stability in water and HCl. The cytotoxic activity of the PCA ligands and their respective organoruthenium compounds was evaluated in a panel of cell lines (HCT116, H460, SiHa and SW480). The lipophilic PCAs 1-4 showed cytotoxicity in the low micromolar range and 6 was the most potent compound of the series with an IC50 value of 1.1µM against HCT116 colon cancer cells. These observations were correlated with calculated octanol/water partition coefficient (clogP) data and quantitative estimated druglikeness. A similar trend as for the PCAs was found in their Ru complexes, where the complexes with more lipophilic ligands proved to be more cytotoxic in all tested cell lines. In general, the PCAs and their organoruthenium derivatives demonstrated excellent drug-likeness and cytotoxicity with IC50 values in the low micromolar range, making them interesting candidates for further development as orally active anticancer agents.


Subject(s)
Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Pyridines/chemistry , Ruthenium/chemistry , Thioamides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Pyridines/chemical synthesis , Pyridines/pharmacology , Structure-Activity Relationship , Thioamides/chemical synthesis , Thioamides/pharmacology
18.
Pathog Dis ; 75(6)2017 08 31.
Article in English | MEDLINE | ID: mdl-28859311

ABSTRACT

In the continuous effort to identify new HIV-1 inhibitors endowed with innovative mechanisms, the dual inhibition of different viral functions would provide a significant advantage against drug-resistant variants. The HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H) is the only viral-encoded enzymatic activity that still lacks an efficient inhibitor. We synthesized a library of 3,5-diamino-N-aryl-1H-pyrazole-4-carbothioamide and 4-amino-5-benzoyl-N-phenyl-2-(substituted-amino)-1H-pyrrole-3-carbothioamide derivatives and tested them against RNase H activity. We identified the pyrazolecarbothioamide derivative A15, able to inhibit viral replication and both RNase H and RNA-dependent DNA polymerase (RDDP) RT-associated activities in the low micromolar range. Docking simulations hypothesized its binding to two RT pockets. Site-directed mutagenesis experiments showed that, with respect to wt RT, V108A substitution strongly reduced A15 IC50 values (12.6-fold for RNase H inhibition and 4.7-fold for RDDP), while substitution A502F caused a 9.0-fold increase in its IC50 value for RNase H, not affecting the RDDP inhibition, reinforcing the hypothesis of a dual-site inhibition. Moreover, A15 retained good inhibition potency against three non-nucleoside RT inhibitor (NNRTI)-resistant enzymes, confirming a mode of action unrelated to NNRTIs and suggesting its potential as a lead compound for development of new HIV-1 RT dual inhibitors active against drug-resistant viruses.


Subject(s)
Anti-HIV Agents/pharmacology , Enzyme Inhibitors/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , Pyrazoles/pharmacology , Ribonuclease H/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Thioamides/pharmacology , Amino Acid Substitution , Anti-HIV Agents/chemistry , Anti-HIV Agents/isolation & purification , Binding Sites , Cell Line , Cloning, Molecular , Drug Design , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , HIV-1/growth & development , Humans , Molecular Docking Simulation , Mutagenesis, Site-Directed , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Pyrazoles/chemical synthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribonuclease H/chemistry , Ribonuclease H/genetics , Ribonuclease H/metabolism , Small Molecule Libraries/chemical synthesis , T-Lymphocytes/drug effects , T-Lymphocytes/virology , Thioamides/chemical synthesis
19.
Bioorg Med Chem Lett ; 26(17): 4301-9, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27476140

ABSTRACT

To develop potent chemotherapeutic agents for treating colorectal cancers, polymethoxylated 3-naphthyl-5-phenylpyrazoline-carbothioamide derivatives were designed. Twenty-two novel derivatives were synthesized and their cytotoxicities were measured using a clonogenic long-term survival assay. Of these derivatives, 3-(1-hydroxynaphthalen-2-yl)-N-(3-methoxyphenyl)-5-(4-methoxyphenyl)-pyrazoline-1-carbothioamide (NPC 15) exhibited the best half-maximal cell growth inhibitory concentrations (196.35nM). To explain its cytotoxicity, further biological experiments were performed. Treatment with NPC 15 inhibited cell cycle progression and triggered apoptosis through the caspase-mediated pathway. Its inhibitory effects on several kinases participating in the cell cycle were investigated using an in vitro kinase assay. Its half-maximal inhibitory concentrations for aurora kinases A and B were 105.03µM and 8.53µM, respectively. Further analysis showed that NPC 15 decreased phosphorylation of aurora kinases A, B, and C and phosphorylation of histone H3, a substrate of aurora kinases A and B. Its molecular binding mode for aurora kinase B was elucidated using in silico docking. In summary, polymethoxylated 3-naphthyl-5-phenylpyrazoline-carbothioamides could be potent chemotherapeutic agents.


Subject(s)
Colorectal Neoplasms/drug therapy , Thioamides/pharmacology , Acetaldehyde/analogs & derivatives , Acetaldehyde/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line , Cell Survival/drug effects , Humans , Molecular Docking Simulation , Naphthols/chemical synthesis , Naphthols/chemistry , Naphthols/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Thioamides/chemical synthesis , Thioamides/chemistry
20.
Molecules ; 21(8)2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27548118

ABSTRACT

A novel series of 1,3,4-thiadiazoles, 5-arylazothiazoles and hexahydropyrimido-[4,5-d][1,2,4]triazolo[4,3-a]pyrimidines were synthesized via reaction of hydrazonoyl halides with each of alkyl carbothioates, carbothioamides and 7-thioxo-5,6,7,8-tetrahydropyrimido-[4,5-d]pyrimidine-2,4(1H,3H)-diones in the presence of triethylamine. The structures of the newly synthesized compounds were established based on their spectral data, elemental analyses and alternative synthetic routes whenever possible. Also, the newly synthesized compounds were screened for their antimicrobial activity against various microorganisms.


Subject(s)
Anti-Infective Agents/chemical synthesis , Pyrimidines/chemical synthesis , Thiadiazoles/chemical synthesis , Thioamides/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Molecular Structure , Pyrimidines/chemistry , Pyrimidines/pharmacology , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thioamides/chemistry , Thioamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...