Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Molecules ; 27(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35208987

ABSTRACT

Understanding the primary steps following UV photoexcitation in sulphur-substituted DNA bases (thiobases) is fundamental for developing new phototherapeutic drugs. However, the investigation of the excited-state dynamics in sub-100 fs time scales has been elusive until now due to technical challenges. Here, we track the ultrafast decay mechanisms that lead to the electron trapping in the triplet manifold for 6-thioguanine in an aqueous solution, using broadband transient absorption spectroscopy with a sub-20 fs temporal resolution. We obtain experimental evidence of the fast internal conversion from the S2(ππ*) to the S1(nπ*) states, which takes place in about 80 fs and demonstrates that the S1(nπ*) state acts as a doorway to the triplet population in 522 fs. Our results are supported by MS-CASPT2 calculations, predicting a planar S2(ππ*) pseudo-minimum in agreement with the stimulated emission signal observed in the experiment.


Subject(s)
Thioguanine/chemistry , Spectrophotometry, Ultraviolet
2.
J Biomol Struct Dyn ; 40(19): 9464-9483, 2022.
Article in English | MEDLINE | ID: mdl-34380372

ABSTRACT

Lately, drug delivery systems established on nanostructures have become the most proficient to be studied. There are different studies suggested that the BN nanoclusters can be used as drug carriers and transport drugs in the target cell. Therefore, the interactions and adsorption behavior of Mercaptopurine (MC) and 6-thioguanine (TG) as anti-cancer drugs on the B12N12 (BN), AlB11N12 (AlBN) and GaB11N12 (GaBN) nanoclusters were studied by density functional theory (DFT) and quantum mechanics atoms in molecules (QMAIM) methods to find a new drug delivery system. Our results showed strong adsorption obtained in BN-MC/TG and AlBN-MC/TG complexes can be decomposed by the BN and AlBN indicating that these nanostructures are not suitable in drug efficiency of MC and TG drugs. Unlike the BN and AlBN nanoclusters, GaBN significantly makes the MC and TG drugs adsorption energetically favorable. The high solvation energy of GaBN when interacting with MC and TG drugs led it to applicability as nanocarriers for these drugs in the drug delivery systems. Furthermore, GaBN has a short recovery time for MC, and TG drugs desorption compared to BN and AlBN nanoclusters. It is predicted that the MC, and TG drugs over GaBN can be used as a drug delivery system.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Thioguanine , Thioguanine/chemistry , Mercaptopurine/chemistry , Adsorption , Antineoplastic Agents/chemistry , Drug Carriers
3.
Bioorg Chem ; 119: 105549, 2022 02.
Article in English | MEDLINE | ID: mdl-34929517

ABSTRACT

Ecto-nucleotide pyrophosphatase/phosphodiesterases 1 (ENPP1 or NPP1), is an attractive therapeutic target for various diseases, primarily cancer and mineralization disorders. The ecto-enzyme is located on the cell surface and has been implicated in the control of extracellular levels of nucleotide, nucleoside and (di) phosphate. Recently, it has emerged as a critical phosphodiesterase that hydrolyzes cyclic 2'3'- cGAMP, the endogenous ligand for STING (STimulator of INterferon Genes). STING plays an important role in innate immunity by activating type I interferon in response to cytosolic 2'3'-cGAMP. ENPP1 negatively regulates the STING pathway and hence its inhibition makes it an attractive therapeutic target for cancer immunotherapy. Herein, we describe the design, optimization and biological evaluation studies of a series of novel non-nucleotidic thioguanine based small molecule inhibitors of ENPP1. The lead compound 43 has shown good in vitro potency, stability in SGF/SIF/PBS, selectivity, ADME properties and pharmacokinetic profile and finally potent anti-tumor response in vivo. These compounds are a good starting point for the development of potentially effective cancer immunotherapy agents.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Immunotherapy , Lung Neoplasms/therapy , Pyrophosphatases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Thioguanine/pharmacology , A549 Cells , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Female , Humans , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Molecular Structure , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/therapy , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Thioguanine/chemical synthesis , Thioguanine/chemistry
4.
Microbiol Spectr ; 9(3): e0064621, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34730435

ABSTRACT

Herpes simplex virus 1 (HSV-1) infects eye corneal tissues leading to herpetic stromal keratitis (HSK), which is one of the leading causes of blindness. Here in our study, we found that 6-thioguanine (6-TG), a once clinically approved medication for child acute myelogenous leukemia, inhibited multiple strains of HSV-1 infection in vitro and in vivo. 6-TG is more potent than acyclovir (ACV) and ganciclovir (GCV), with the 50% inhibitory concentration (IC50) of 6-TG at 0.104 µM with high stimulation index (SI) (SI = 6,475.48) compared to the IC50 of ACV at 1.253 µM and the IC50 of GCV at 1.257 µM. In addition, 6-TG at 500 µM topically applied to the eyes with HSV-1 infection significantly inhibits HSV-1 replication, alleviates virus-induced HSK pathogenesis, and improves eye conditions. More importantly, 6-TG is effective against ACV-resistant HSV-1 strains, including HSV-1/153 and HSV-1/blue. Knockdown of Rac1 with small interfering RNA (siRNA) negatively affected HSV-1 replication, suggesting that Rac1 facilitated HSV-1 replication. Following HSV-1 infection of human corneal epithelial cells (HCECs), endogenous Rac1 activity was upregulated by glutathione S-transferase (GST) pulldown assay. We further found that Rac1 was highly expressed in the corneal tissue of HSK patients compared to normal individuals. Mechanistic study showed that 6-TG inhibited HSV-1 replication by targeting Rac1 activity in HSV-1 infected cells, and the Rac1 is critical in the pathogenesis of HSK. Our results indicated that 6-TG is a promising therapeutic molecule for the treatment of HSK. IMPORTANCE We reported the discovery of 6-TG inhibition of HSV-1 infection and its inhibitory roles in HSK both in vitro and in vivo. 6-TG was shown to possess at least 10× more potent inhibitory activity against HSV-1 than ACV and GCV and, more importantly, inhibit ACV/GCV-resistant mutant viruses. Animal model studies showed that gel-formulated 6-TG topically applied to eyes locally infected with HSV-1 could significantly inhibit HSV-1 replication, alleviate virus-induced HSK pathogenesis, and improve eye conditions. Further study showed that HSV-1 infection upregulated Rac1 expression, and knockdown of Rac1 using siRNA markedly restricted HSV-1 replication, suggesting that Rac1 is required for HSV-1 replication. In addition, we also documented that Rac1 is highly expressed in corneal tissues from HSK patients, indicating that Rac1 is associated with HSK pathogenesis. In view of the high potency of 6-TG, low cytotoxicity, targeting a distinct therapeutic target, we suggest that 6-TG is a potential candidate for development as a therapeutic agent for HSK therapy.


Subject(s)
Antiviral Agents/administration & dosage , Herpesvirus 1, Human/drug effects , Keratitis, Herpetic/drug therapy , Thioguanine/administration & dosage , Animals , Antiviral Agents/chemistry , Ganciclovir/pharmacology , Herpes Simplex , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Humans , Keratitis, Herpetic/virology , Male , Mice , Mice, Inbred BALB C , Thioguanine/chemistry , Virus Replication/drug effects
5.
Phys Chem Chem Phys ; 23(9): 5069-5073, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33655288

ABSTRACT

UVA-induced deleterious effect of thiopurine prodrugs including azathioprine, 6-mercaptopurine and 6-thioguanine (6-TG) increases the risk of cancer development due to the incorporation of 6-TG in patients' DNA. The catalytic mechanism by which thiobases act as a sustained oxidant producer has yet to be explored, especially through the Type I electron transfer pathway that produces superoxide radicals (O2˙-). Under Fenton-like conditions O2˙- radicals convert to extremely reactive hydroxyl radicals (˙OH), thus carrying even higher risk of biological damage than that induced by the well-studied type II reaction. By monitoring 6-TG/UVA-induced photochemistry in mass spectra and superoxide radicals (O2˙-) via nitro blue tetrazolium (NBT) reduction, this work provides two new findings: (1) in the presence of reduced glutathione (GSH), the production of O2˙-via the type I reaction is enhanced 10-fold. 6-TG thiyl radicals are identified as the primary intermediate formed in the reaction of 6-TG with O2˙-. The restoration of 6-TG and concurrent generation of O2˙- occur via a 3-step-cycle: 6-TG type I photosensitization, O2˙- oxidation and GSH reduction. (2) In the absence of GSH, 6-TG thiyl radicals undergo oxygen addition and sulfur dioxide removal to form carbon radicals (C6) which further convert to thioether by reacting with 6-TG molecules. These findings help explain not only thiol-regulation in a biological system but chemoprevention of cancer.


Subject(s)
DNA/chemistry , DNA/radiation effects , Glutathione/chemistry , Superoxides/chemistry , Thioguanine/chemistry , Catalysis , Dimerization , Free Radicals/chemistry , Gene Deletion , Humans , Hydroxyl Radical/chemistry , Oxidation-Reduction , Oxygen/chemistry , Photosensitivity Disorders , Sulfides/chemistry , Ultraviolet Rays
6.
J Biol Chem ; 296: 100568, 2021.
Article in English | MEDLINE | ID: mdl-33753169

ABSTRACT

The enzyme NUDT15 efficiently hydrolyzes the active metabolites of thiopurine drugs, which are routinely used for treating cancer and inflammatory diseases. Loss-of-function variants in NUDT15 are strongly associated with thiopurine intolerance, such as leukopenia, and preemptive NUDT15 genotyping has been clinically implemented to personalize thiopurine dosing. However, understanding the molecular consequences of these variants has been difficult, as no structural information was available for NUDT15 proteins encoded by clinically actionable pharmacogenetic variants because of their inherent instability. Recently, the small molecule NUDT15 inhibitor TH1760 has been shown to sensitize cells to thiopurines, through enhanced accumulation of 6-thio-guanine in DNA. Building upon this, we herein report the development of the potent and specific NUDT15 inhibitor, TH7755. TH7755 demonstrates a greatly improved cellular target engagement and 6-thioguanine potentiation compared with TH1760, while showing no cytotoxicity on its own. This potent inhibitor also stabilized NUDT15, enabling analysis by X-ray crystallography. We have determined high-resolution structures of the clinically relevant NUDT15 variants Arg139Cys, Arg139His, Val18Ile, and V18_V19insGlyVal. These structures provide clear insights into the structural basis for the thiopurine intolerance phenotype observed in patients carrying these pharmacogenetic variants. These findings will aid in predicting the effects of new NUDT15 sequence variations yet to be discovered in the clinic.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Mutation , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/genetics , Thioguanine/chemistry , Thioguanine/pharmacology , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Pyrophosphatases/chemistry
7.
Int J Biol Macromol ; 176: 490-497, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33582217

ABSTRACT

Disulfiram is a promising repurposed drug that, combining with radiation and chemotherapy, exhibits effective anticancer activities in several preclinical models. The cellular metabolites of disulfiram have been established, however, the intracellular targets of disulfiram remain largely unexplored. We have previously reported that disulfiram suppresses the coronaviral papain-like proteases through attacking their zinc-finger domains, suggesting an inhibitory function potentially on other proteases with similar catalytic structures. Ubiquitin-specific proteases (USPs) share a highly-conserved zinc-finger subdomain that structurally similar to the papain-like proteases and are attractive anticancer targets as upregulated USPs levels are found in a variety of tumors. Here, we report that disulfiram functions as a competitive inhibitor for both USP2 and USP21, two tumor-related deubiquitinases. In addition, we also observed a synergistic inhibition of USP2 and USP21 by disulfiram and 6-Thioguanine (6TG), a clinical drug for acute myeloid leukemia. Kinetic analyses revealed that both drugs exhibited a slow-binding mechanism, moderate inhibitory parameters, and a synergistically inhibitory effect on USP2 and USP21, suggesting the potential combinatory use of these two drugs for USPs-related tumors. Taken together, our study provides biochemical evidence for repurposing disulfiram and 6TG as a combinatory treatment in clinical applications.


Subject(s)
Disulfiram/chemistry , Enzyme Inhibitors/chemistry , Thioguanine/chemistry , Ubiquitin Thiolesterase , Disulfiram/agonists , Drug Synergism , Humans , Thioguanine/agonists , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/chemistry
8.
J Am Chem Soc ; 142(41): 17255-17259, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33016701

ABSTRACT

DNA and RNA nucleotides are ubiquitous molecules that store and transmit genetic information. The emergence of synthetic elements that fulfill the function of DNA and RNA provides an alternative gene expression system. Herein, we demonstrate the gene expression of 4'-thioguanine DNA (dSG DNA) via 4'-thiocytosine RNA (dSC RNA) to give green fluorescent protein (GFPuv) in a single test tube. In replication, transcription, and translation, DNA/RNA polymerases and Escherichia coli (E. coli) ribosome can tolerate the replacement of O4' with S4' in the nucleotide, despite the fact that sulfur has a larger atomic radius than oxygen. Additionally, dSG DNA and dSC RNA acted as alternative genetic polymers to natural DNA and RNA for protein synthesis in artificial cells comprising a reconstituted E. coli gene expression machinery. This work involved simple experiments that are widely used in molecular biology, but which underscore the feasibility of life control by substances other than DNA/RNA nucleotides.


Subject(s)
Cytosine/analogs & derivatives , DNA/metabolism , Green Fluorescent Proteins/chemistry , RNA/metabolism , Thioguanine/chemistry , Cytosine/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/chemistry , Escherichia coli/genetics , Green Fluorescent Proteins/genetics , Protein Biosynthesis , Ribosomes/metabolism
9.
Int J Pharm Compd ; 24(3): 252-262, 2020.
Article in English | MEDLINE | ID: mdl-32401746

ABSTRACT

To allow for tailored dosing and overcome swallowing difficulties, compounded liquid medication is often required in pediatric patients. The objective of this study was to evaluate the stability of oral suspensions compounded with SyrSpend SF PH4 and the commonly used active pharmaceutical ingredients azathioprine (powder) 50 mg/mL, azathioprine (from tablets) 50 mg/mL, clonidine hydrochloride (powder) 0.1 mg/mL, clopidogrel bisulfate (from tablets) 5 mg/mL, ethambutol hydrochloride (powder) 50 mg/mL, ethambutol hydrochloride (from tablets) 50 mg/mL, ethambutol hydrochloride (powder) 100 mg/mL, griseofulvin (powder) 25 mg/mL, hydralazine hydrochloride (powder) 4 mg/mL, nitrofurantoin (powder) 10 mg/mL, and thioguanine (powder) 2.5 mg/mL. Suspensions were compounded at the concentrations listed above and stored at controlled room and refrigerated temperatures. Stability was assessed by measuring the percentage recovery at 0 day (baseline), and at 7 days, 14 days, 30 days, 60 days, and 90 days. Active pharmaceutical ingredients quantification was performed by high-performance liquid chromatography, via a stability-indicating method. The following oral suspensions compounded using SyrSpend SF PH4 as the vehicle showed a beyond-use date of 90 days when stored both at room or refrigerated temperatures: clonidine hydrochloride 0.1 mg/mL, ethambutol hydrochloride 50 mg/mL and 100 mg/mL, griseofulvin 25 mg/mL, nitrofurantoin 10 mg/mL, and thioguanine 2.5 mg/mL, all compounded from the active pharmaceutical ingredients in powder form. Suspensions compounded using the active pharmaceutical ingredients from tablets presented a lower beyond-use date: 30 days for ethambutol hydrochloride 50 mg/mL and hydralazine hydrochloride 4 mg/mL, stored at both temperatures, and for clopidogrel bisulfate 5 mg/mL when stored only at refrigerated temperature. Azathioprine suspensions showed a beyond-use date of 14 days when compounded using active pharmaceutical ingredients in powder form at both temperatures. This suggests that SyrSpend SF PH4 is suitable for compounding active pharmaceutical ingredients from different pharmacological classes.


Subject(s)
Azathioprine/pharmacology , Clonidine , Griseofulvin/chemistry , Thioguanine , Administration, Oral , Azathioprine/chemistry , Child , Chromatography, High Pressure Liquid , Clonidine/chemistry , Clonidine/pharmacology , Clopidogrel/chemistry , Drug Stability , Ethambutol/chemistry , Humans , Hydralazine/chemistry , Nitrofurantoin/chemistry , Starch/chemistry , Suspensions , Thioguanine/chemistry , Thioguanine/pharmacology
10.
J Comput Chem ; 41(19): 1748-1758, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32357385

ABSTRACT

Density functional theory methods were employed to clarify the adsorption/desorption behaviors of the thione-containing mercaptopurine and thioguanine drugs on the gold surface using both small Au6 and Au8 clusters as model reactants. Structural features, thermodynamic parameters, bonding characteristics, and electronic properties of the resulting complexes were investigated using the Perdew-Burke-Ernzerhof (PBE) and LC-BLYP functionals along with correlation-consistent basis sets, namely cc-pVDZ-PP for gold and cc-pVTZ for non-metals. Computed results show that the drug molecules tend to anchor on the gold cluster at the S atom with binding energies around -34 to -40 kcal/mol (in vacuum) and - 28 to -32 kcal/mol (in aqueous solution). As compared to Au8 , Au6 undergoes a shorter recovery time and a larger change of energy gap that could be converted to an electrical signal for selective detection of the drugs. Furthermore, interactions between the drugs and gold clusters are reversible processes and a drug release mechanism was also proposed. Accordingly, the drugs are able to separate from the gold surface due to either a slight change of pH in tumor cells or the presence of cysteine residues in protein matrices.


Subject(s)
Density Functional Theory , Gold/chemistry , Mercaptopurine/chemistry , Thioguanine/chemistry , Thiones/chemistry , Adsorption , Binding Sites , Molecular Structure , Surface Properties , Thermodynamics
11.
Int J Biol Macromol ; 148: 704-714, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31954127

ABSTRACT

6-Thioguanine encapsulated chitosan nanoparticles (6-TG-CNPs) has formulated by the ionic-gelation method. Morphologically, the 6-TG-CNPs were spherical and showed mean size, PDI, zeta potential, and entrapment efficiency of 261.63 ± 6.01 nm, 0.34 ± 0.10, +15.97 ± 0.46 mV and 44.27%, respectively. The IR spectra confirmed the 6-TG complex with chitosan. The in vitro drug release profile of 6-TG-CNPs revealed an increase in sustained-release (91.40 ± 1.08% at 48 h) at pH 4.8 compared to less sustained-release (73.96 ± 1.12% at 48 h) at pH 7.4. The MTT assay was conducted on MCF-7 and PA-1 cell lines at 48 h incubation to determine % cell viability. The IC50 values of 6-TG, 6-TG-CNPs, and curcumin for MCF-7 were 23.09, 17.82, and 15.73 µM, respectively. Likewise, IC50 values of 6-TG, 6-TG-CNPs, and curcumin for PA-1 were 5.81, 3.92, and 12.89 µM, respectively. A combination of 6-TG-CNPs (IC25) with curcumin (IC25) on PA-1 and MCF-7 showed % cell viability of 43.67 ± 0.02 and 49.77 ± 0.05, respectively. The in vitro cytotoxicity potential in terms of % cell viability, early apoptosis, G2/M phase arrest, and DNA demethylating activity of 6-TG-CNPs alone and combination with curcumin proved to be more effective than that of 6-TG on PA-1 cells.


Subject(s)
Antineoplastic Agents/pharmacology , Chitosan/chemistry , Curcumin/chemistry , Nanoparticles/chemistry , Thioguanine/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Liberation , Humans , MCF-7 Cells , Particle Size , Thioguanine/chemistry
12.
J Biomol Struct Dyn ; 38(3): 697-707, 2020 02.
Article in English | MEDLINE | ID: mdl-30900530

ABSTRACT

The interaction of 6-Thioguanine molecule, an antitumor drug with carbon nanotube and boron nitride nanotube (BNNT) is investigated using molecular dynamics simulations. Based on the obtained results, the strongest negative van der Waals interaction is found between 6-TG and BNNT among the studied nanotubes, which indicated BNNT is a better nanocarrier of the 6-TG drug than CNT within biological systems. Moreover, the adsorption and electronic properties of the 6-Thioguanine interacted with boron-nitride nanotube has been studied within the framework of density functional theory calculations. The negative binding energy values denote that there is the favorable interaction between 6-TG drug and BNNT at the studied 6-TG/BNNT complexes. Also, the amounts of the binding energies indicated that the 6-Thioguanine molecule physically interacts with the surface of BNNT. The values of electron densities and their Laplacian have been analyzed using the Bader's theory of atoms in molecules to characterize the nature of the intermolecular interactions through the topological parameters. We hope that the results of this work may provide useful information about the nature of the nanotube-drug molecule interactions and highlight the ability of these materials to be used as an adsorbent enhancing delivery of drug to cancer cells. Communicated by Ramaswamy H. Sarma.


Subject(s)
Boron/chemistry , Density Functional Theory , Molecular Dynamics Simulation , Nanotubes, Carbon/chemistry , Thioguanine/therapeutic use , Adsorption , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Drug Compounding , Molecular Conformation , Thermodynamics , Thioguanine/chemistry
13.
Rapid Commun Mass Spectrom ; 34(6): e8620, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31658399

ABSTRACT

RATIONALE: For quality control of oligonucleotide therapeutics, accurate and efficient structural characterization using mass spectrometry techniques, such as liquid chromatography/mass spectrometry (LC/MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), is essential. In MALDI MS analysis, matrix selection is critical and a new matrix could enable more efficient and rapid structural analysis. METHODS: We hypothesized that nucleobase derivatives could act as matrices more efficiently than the currently used matrices for oligonucleotides because of structural similarity, which leads to close contact with the analyte. To evaluate their suitability as matrices, 16 nucleobase derivatives were selected and tested as matrix candidates for oligonucleotide analysis. RESULTS: Six of the 16 nucleobase derivatives acted as matrices for oligonucleotides. Particularly, 6-thioguanine (TG) performed well and induced clear in-source decay fragmentation. When TG or 2-amino-6-chloropurine was used as the matrix, oligonucleotides were ionized, and mainly the w and d fragment ions were observed. CONCLUSIONS: Herein we demonstrate that a 10-mer RNA or DNA sequence can be successfully characterized using TG as matrix and suggest the possibility of using nucleobase derivatives as novel matrices in oligonucleotide sequencing.


Subject(s)
Oligonucleotides/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , 2-Aminopurine/analogs & derivatives , 2-Aminopurine/chemistry , DNA/chemistry , RNA/chemistry , Thioguanine/chemistry
14.
Bioorg Med Chem ; 27(24): 115160, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31706680

ABSTRACT

The AP sites are representative of DNA damage and known as an intermediate in the base excision repair (BER) pathway which is involved in the repair of damaged nucleobases by reactive oxygen species, UVA irradiation, and DNA alkylating agents. Therefore, it is expected that the inhibition or modulation of the AP site repair pathway may be a new type of anticancer drug. In this study, we investigated the effects of the thioguanine-polyamine ligands (SG-ligands) on the affinity and the reactivity for the AP site under UVA irradiated and non-irradiated conditions. The SG-ligands have a photo-reactivity with the A-F-C sequence where F represents a tetrahydrofuran AP site analogue. Interestingly, the SG-ligands promoted the ß-elimination of the AP site followed by the formation of a covalent bond with the ß-eliminated fragment without UVA irradiation.


Subject(s)
DNA/chemistry , Polyamines/chemistry , Thioguanine/chemistry , Ultraviolet Rays , DNA Damage , DNA Repair , Ligands , Oligonucleotides/chemistry , Oligonucleotides/pharmacology , Polyamines/pharmacology , Thioguanine/pharmacology
15.
Analyst ; 144(7): 2345-2352, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30785148

ABSTRACT

Apart from being a vital catecholamine molecule responsible for the proper functioning of the central nervous system (CNS), hormonal and renal systems, dopamine (DA) has also been increasingly employed as a functional monomer in the fabrication of surface molecular imprinting polymers (MIPs) for valuable analytes. Herein, we demonstrate the effective imprinting of 6-thioguanine (6-TG), an anticancer drug, via mussel-inspired self-polymerization of dopamine conducted in a weakly alkaline solution over reduced graphene oxide (rGO). The polymerization of 6-TG resulted into a thin polydopamine (PDA) film of 8.4 nm thickness. Removal of 6-TG molecules from this imprinted PDA film created numerous cavities of 6-TG. The electrochemical investigation of MIP electrodes found an excellent electrocatalytic activity toward 6-TG with a significant decrease in the over-potential as compared to that of the bare glassy carbon electrode (GCE). This can be attributed to the graphene's distinct physical and chemical features such as subtle electronic characteristics, an attractive π-π interaction as well as the strong adsorptive capability of MIP films. This electrochemical sensor displayed a high selectivity owing to the specific imprinted cavities for adrenaline and worked well over a wide linear concentration range of adrenaline between 0.0015 and 50 µM with a detection limit (LOD) of 0.25 nM and good reproducibility and stability. Our system depicts excellent recoveries from 97.0% to 100.6% for two different samples of urine and thioguanine drugs. These results show the great potential of our system with multiple advantages, including convenient fabrication and optimization, high sensitivity and selectivity, high reproducibility and stability, and cost-effectiveness.


Subject(s)
Bivalvia , Graphite/chemistry , Indoles/chemistry , Molecular Imprinting/methods , Oxides/chemistry , Polymerization , Polymers/chemistry , Thioguanine/chemistry , Animals , Antineoplastic Agents/analysis , Antineoplastic Agents/chemistry , Biomimetics , Calibration , Electrochemistry , Electrodes , Indoles/chemical synthesis , Oxidation-Reduction , Polymers/chemical synthesis , Thioguanine/analysis
16.
Mater Sci Eng C Mater Biol Appl ; 97: 461-466, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30678933

ABSTRACT

Adsorption of 5-Fluorouracil and Thioguanine drugs into three Zeolitic Imidazolate Frameworks (ZIFs), (ZIF-1, ZIF-3 and ZIF-6) were studied in detail through Monte Carlo (MC) and Molecular Dynamics (MD) simulations. GCMC results showed that the adsorption capacity of 5-Fluorouracil on the studied ZIFs is slightly higher than those of Thioguanine. The order of adsorption capacities of the two studied drugs on ZIFs structures is ZIF-6 > ZIF-3 > ZIF-1, where ZIF-6 shows a higher adsorption capacity for both drugs than the two other ZIFs due to its larger pore volume. Also, the isosteric heats of adsorption of both drugs in ZIF-6 are greater than those of ZIF-3 and ZIF-1. The preferential adsorption sites of 5-Fluorouracil and Thioguanine in ZIF-1 and ZIF-6 are surrounding the cage II (4-membered Zn-imidazolate ring). Finally, the microscopic details of the adsorbates in the studied ZIFs are investigated through radial distribution functions (RDFs) for characteristic atoms of drugs and ZIFs. It was found that the studied drugs preferentially adsorb in the vicinity of the metal site of ZIFs.


Subject(s)
Fluorouracil/chemistry , Thioguanine/chemistry , Zeolites/chemistry , Adsorption , Imidazoles/chemistry , Molecular Dynamics Simulation , Monte Carlo Method
17.
PLoS One ; 14(1): e0210869, 2019.
Article in English | MEDLINE | ID: mdl-30677071

ABSTRACT

Dengue virus Type 2 (DENV-2) is predominant serotype causing major dengue epidemics. There are a number of studies carried out to find its effective antiviral, however to date, there is still no molecule either from peptide or small molecules released as a drug. The present study aims to identify small molecules inhibitor from National Cancer Institute database through virtual screening. One of the hits, D0713 (IC50 = 62 µM) bearing thioguanine scaffold was derivatised into 21 compounds and evaluated for DENV-2 NS2B/NS3 protease inhibitory activity. Compounds 18 and 21 demonstrated the most potent activity with IC50 of 0.38 µM and 16 µM, respectively. Molecular dynamics and MM/PBSA free energy of binding calculation were conducted to study the interaction mechanism of these compounds with the protease. The free energy of binding of 18 calculated by MM/PBSA is -16.10 kcal/mol compared to the known inhibitor, panduratin A (-11.27 kcal/mol), which corroborates well with the experimental observation. Results from molecular dynamics simulations also showed that both 18 and 21 bind in the active site and stabilised by the formation of hydrogen bonds with Asn174.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Antiviral Agents/chemical synthesis , Catalytic Domain , Chalcones/chemistry , Chalcones/pharmacology , Dengue Virus/classification , Dengue Virus/enzymology , Drug Stability , Humans , Hydrogen Bonding , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemical synthesis , Serine Endopeptidases/drug effects , Thioguanine/chemistry , User-Computer Interface , Viral Nonstructural Proteins/antagonists & inhibitors
18.
J Biomol Struct Dyn ; 37(10): 2487-2497, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30052134

ABSTRACT

In this study, the interaction thioguanine (TG) anticancer drug with the functionalized graphene oxide (GO) nanosheet surface is theoretically studied in both gas phase and separately in physiological media using the density functional theory (DFT) calculations. DFT calculations indicated the adsorption and solvation energies are negative for f-GONS/TG complexes which propose the adsorption process of TG molecule onto the f-GONS surface is possible from the energetic viewpoint. QTAIM calculations confirm the nature of partially covalent-partially electrostatic between drug and nanosheet. These results are sorely relevant that an approach for loading of TG molecule is the chemical modification of GO using covalent functionalization which can serve as a nanocarrier to load drug molecules. Moreover, to understand the effect of urea on the nature of the interaction between TG and f-GONS, molecular dynamics (MD) simulation was employed. The results indicated that in the presence of urea the adsorption process gets affected and leads to instability of system, while the affinity of the TG for adsorption onto GO surface is increased in pure water. Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents/chemistry , Chitosan/chemistry , Graphite/chemistry , Thioguanine/chemistry , Urea/chemistry , Adsorption , Algorithms , Antineoplastic Agents/administration & dosage , Density Functional Theory , Hydrogen Bonding , Models, Chemical , Molecular Conformation , Molecular Dynamics Simulation , Nanostructures , Structure-Activity Relationship
19.
Article in English | MEDLINE | ID: mdl-30428429

ABSTRACT

In this work a non-aggregated colorimetric probe for detection of chemotherapeutic drug, 6-thioguanine (6-TG), is introduced. It is based on the protective effect of 6-TG on silver nanoprisms (AgNPRs) against the iodide-induced etching reaction. Iodide ions can attack the corners of AgNPRs and etch them, leading to the morphological transition from nanoprisms to nanodiscs. As a consequence, the solution color changes from blue to pink. However, in the presence of 6-TG, due to its protective effect on the corners of AgNPRs, I- ions cannot etch the prisms and the blue color of solution remains unchanged. Using this effect, selective sensor was designed for detection of 6-TG in the range of 2.5-500 µg L-1, with a detection limit of 0.95 µg L-1. Since with varying the concentration of 6-TG in this range, the color variation from pink to blue can be easily observed, the designed sensing scheme can be used as a colorimetric probe. The method was used for analysis of human plasma samples.


Subject(s)
Colorimetry/methods , Nanostructures/chemistry , Silver/chemistry , Thioguanine/analysis , Color , Colorimetry/instrumentation , Humans , Hydrogen-Ion Concentration , Limit of Detection , Sensitivity and Specificity , Thioguanine/blood , Thioguanine/chemistry
20.
J Am Chem Soc ; 140(36): 11214-11218, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30145892

ABSTRACT

Sulfur substitution of carbonyl oxygen atoms of DNA/RNA nucleobases promotes ultrafast intersystem crossing and near-unity triplet yields that are being used for photodynamic therapy and structural-biology applications. Replacement of sulfur with selenium or tellurium should significantly red-shift the absorption spectra of the nucleobases without sacrificing the high triplet yields. Consequently, selenium/tellurium-substituted nucleobases are thought to facilitate treatment of deeper tissue carcinomas relative to the sulfur-substituted analogues, but their photodynamics are yet unexplored. In this contribution, the photochemical relaxation mechanism of 6-selenoguanine is elucidated and compared to that of the 6-thioguanine prodrug. Selenium substitution leads to a remarkable enhancement of the intersystem crossing lifetime both to and from the triplet manifold, resulting in an efficiently populated, yet short-lived triplet state. Surprisingly, the rate of triplet decay in 6-selenoguanine increases by 835-fold compared to that in 6-thioguanine. This appears to be an extreme manifestation of the classical heavy-atom effect in organic photochemistry, which challenges conventional wisdom.


Subject(s)
DNA/chemistry , Guanine/analogs & derivatives , Organoselenium Compounds/chemistry , RNA/chemistry , Selenium/chemistry , Sulfur/chemistry , Thioguanine/chemistry , Guanine/chemistry , Photochemotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...