Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 462
Filter
1.
Drug Des Devel Ther ; 18: 2775-2791, 2024.
Article in English | MEDLINE | ID: mdl-38984208

ABSTRACT

Background: Psoriasis is a common chronic inflammatory skin condition. The emergence of psoriasis has been linked to dysbiosis of the microbiota on the skin surface and an imbalance in the immunological microenvironment. In this study, we investigated the therapeutic impact of topical thymopentin (TP5) on imiquimod (IMQ)-induced psoriasis in mice, as well as the modulatory influence of TP5 on the skin immune milieu and the skin surface microbiota. Methods: The IMQ-induced psoriasis-like lesion mouse model was used to identify the targets and molecular mechanisms of TP5. Immunofluorescence was employed to identify differences in T-cell subset expression before and after TP5 therapy. Changes in the expression of NF-κB signaling pathway components were assessed using Western blotting (WB). 16S rRNA sequencing and network pharmacology were used to detect changes in the skin flora before and after TP5 administration. Results: In vivo, TP5 reduced IMQ-induced back inflammation in mice. H&E staining revealed decreased epidermal thickness and inflammatory cell infiltration with TP5. Masson staining revealed decreased epidermal and dermal collagen infiltration after TP5 administration. Immunohistochemistry showed that TP5 treatment dramatically reduced IL-17 expression. Results of the immunoinfiltration analyses showed psoriatic lesions with more T-cell subsets. According to the immunofluorescence results, TP5 dramatically declined the proportions of CD4+, Th17, ROR+, and CD8+ T cells. WB revealed that TP5 reduced NF-κB pathway expression in skin tissues from IMQ-induced psoriasis model mice. 16S rRNA sequencing revealed a significant increase in Burkholderia and Pseudomonadaceae_Pseudomonas and a significant decrease in Staphylococcaceae_Staphylococcus, Aquabacterium, Herbaspirillum, and Balneimonas. Firmicutes dominated the skin microbial diversity after TP5 treatment, while Bacteroidetes, Verrucomicrobia, TM7, Proteobacteria, Actinobacteria, Acidobacteria, Gemmatimonadetes, and other species dominated in the IMQ group. Conclusion: TP5 may treat psoriasis by modulating the epidermal flora, reducing NF-κB pathway expression, and influencing T-cell subsets.


Subject(s)
Imiquimod , Psoriasis , Skin , Thymopentin , Psoriasis/drug therapy , Psoriasis/chemically induced , Psoriasis/immunology , Psoriasis/pathology , Animals , Mice , Skin/drug effects , Skin/pathology , Imiquimod/pharmacology , Thymopentin/pharmacology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Disease Models, Animal , Mice, Inbred BALB C , Female , Microbiota/drug effects , Male , Mice, Inbred C57BL
2.
Int Immunopharmacol ; 126: 111295, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38048668

ABSTRACT

Immune dysfunction is one of the leading causes of death of sepsis. How to regulate host immune functions to improve prognoses of septic patients has always been a clinical focus. Here we elaborate on the efficacy and potential mechanism of a classical drug, thymopentin (TP5). TP5 could decrease peritoneal bacterial load, and reduce inflammatory cytokine levels both in the peritoneal lavage fluid (PLF) and serum, alleviate pathological injuries in tissue and organ, coaxed by cecal ligation and perforation (CLP) in mice, ultimately improve the prognosis of septic mice. Regarding the mechanism, using RNA-seq and flow cytometry, we found that TP5 induced peptidoglycan recognition protein 1 (PGLYRP1) expression, increased phagocytosis and restored TNF-α expression of small peritoneal macrophage (SPM) in the septic mice. This may be increased SPM's ability to clear peritoneal bacteria, thereby attenuates the inflammatory response both in the peritoneal cavity and the serum. It was shown that TP5 plays a key role in restoring the function of peritoneal macrophages to alleviate the sepsis process. We reckon that this is closely relevant to SPM phagocytosis, which might involve increased PGLYRP1 expression and restored TNF-α secretion.


Subject(s)
Sepsis , Thymopentin , Humans , Mice , Animals , Tumor Necrosis Factor-alpha/metabolism , Macrophages/metabolism , Cytokines/metabolism
3.
Molecules ; 28(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37764221

ABSTRACT

Thymopentin (TP5) has exhibited strong antitumor and immunomodulatory effects in vivo. However, the polypeptide is rapidly degraded by protease and aminopeptidase within a minute at the N-terminal of TP5, resulting in severe limitations for further practical applications. In this study, the protective effects of water-soluble alginic acid (WSAA) on the N-terminal of TP5 were investigated by establishing an H22 tumor-bearing mice model and determining thymus, spleen, and liver indices, immune cells activities, TNF-α, IFN-γ, IL-2, and IL-4 levels, and cell cycle distributions. The results demonstrated that WSAA+TP5 groups exhibited the obvious advantages of the individual treatments and showed superior antitumor effects on H22 tumor-bearing mice by effectively protecting the immune organs, activating CD4+ T cells and CD19+ B cells, and promoting immune-related cytokines secretions, finally resulting in the high apoptotic rates of H22 cells through arresting them in S phase. These data suggest that WSAA could effectively protect the N-terminal of TP5, thereby improving its antitumor and immunoregulatory activities, which indicates that WSAA has the potential to be applied in patients bearing cancer or immune deficiency diseases as a novel immunologic adjuvant.


Subject(s)
Alginic Acid , Thymopentin , Humans , Mice , Animals , Thymopentin/pharmacology , Thymopentin/metabolism , Adjuvants, Immunologic/pharmacology , T-Lymphocytes/metabolism , Thymus Gland/metabolism
4.
Int Immunopharmacol ; 119: 110109, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37121113

ABSTRACT

Neuroinflammation plays a pivotal role in neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and stroke, and is accompanied by excessive release of inflammatory cytokines and mediators by activated microglia. Microglial inflammatory response inhibition may be an effective strategy for preventing inflammatory disorders. However, the reciprocal connections between the central nervous system (CNS) and immune system have not been elucidated. Thus far, these links have been proven to mainly involve immuno- and neuropeptides. The pentapeptide thymopentin (TP-5) exerts a significant immunomodulatory effect; however, its antineuroinflammatory effects and underlying mechanism are still unclear. In this study, lipopolysaccharide (LPS) was used to establish an inflammation model, and the therapeutic effect of TP-5 was evaluated. Behavioral tests showed that TP-5 treatment could improve the performance of LPS-treated mice in the open field and pole test, but not hanging wire test. TP-5 also attenuated neuronal lesions in the brains of LPS-treated mice. TP-5 reduced cytotoxicity and morphological changes in activated microglia. Label-free quantitative analysis indicated that the expression of multiple proteins and the activation of associated signaling pathways were altered by TP-5. Moreover, TP-5 could inhibit LPS-induced neuroinflammation in the brain and BV2 microglia and the expression of major genes in the NF-κB/NLRP3 signaling pathway. Additionally, tyrosine hydroxylase (TH) expression downregulation was rescued in the LPS + TP-5 group compared with the LPS group. We conclude that TP-5 exerts neuroprotection by alleviating LPS-induced inflammatory damage and dopaminergic neurodegeneration. The protective effect of TP-5 may involve the NF-κB/NLRP3 signaling pathway.


Subject(s)
NF-kappa B , Signal Transduction , Thymopentin , Animals , Mice , Cell Line , Dopaminergic Neurons/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides , Microglia , Neuroinflammatory Diseases , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Thymopentin/therapeutic use
6.
Anal Chem ; 94(40): 13719-13727, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36173369

ABSTRACT

Based on the Venturi self-pumping effect, real-time sniffing with mass spectrometry (R-sniffing MS) is developed as a tool for direct and real-time mass spectrometric analysis of both gaseous and solid samples. It is capable of dual-mode operation in either gaseous or solid phase, with the corresponding techniques termed as Rg-sniffing MS and Rs-sniffing MS, respectively. In its gaseous mode, Rg-sniffing MS is capable of analyzing a gaseous mixture with response time (0.8-2.1 s rise time and 7.3-9.6 s fall time), spatial resolution (<80 µm), three-dimensional diffusion imaging, and aroma distribution imaging of red pepper. In its solid mode, an appropriate solvent droplet desorbs the sample from a solid surface, followed by the aspiration of the mixture using the Venturi self-pumping effect into the mass spectrometer, wherein it is ionized by a standard ion source. Compared with the desorption electrospray ionization (DESI) technique, Rs-sniffing MS demonstrated considerably improved limit of detection (LOD) values for arginine (0.07 µg/cm2 Rs-sniffing vs 1.47 µg/cm2 DESI), thymopentin (0.10 µg/cm2 vs 2.67 µg/cm2), and bacitracin (0.16 µg/cm2 vs 2.28 µg/cm2). Rs-sniffing is applicable for the detection of C60(OCH3)6Cl-, an intermediate in the methoxylation reaction involving C60Cl6 (solid) and methanol (liquid). The convenient and highly sensitive R-sniffing MS has a characteristic separation of desorption from the ionization process, in which the matrix atmosphere of desorption can be interfaced by a pipe channel and self-pumped by the Venturi effect with consequent integration using a standard ion source. The R-sniffing MS operates in a voltage-, heat-, and vibration-free environment, wherein the analyte is ionized by a standard ion source. Consequently, a wide range of samples can be analyzed simultaneously by the R-sniffing MS technique, regardless of their physical state.


Subject(s)
Gases , Spectrometry, Mass, Electrospray Ionization , Arginine , Bacitracin , Methanol , Solvents , Spectrometry, Mass, Electrospray Ionization/methods , Thymopentin
7.
Int J Pharm ; 625: 122123, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35995317

ABSTRACT

The oral delivery of medicines is the most popular route of administration for patients. However, thymopentin (TP5) is only available in the market in forms for parenteral administration. In large part, this is because of extensive peptidolytic degradation in the gastrointestinal tract (GIT), which decreases the amount of TP5 available for absorption. This study aims to understand the extent of TP5 peptideolysis and determine effective inhibitors and suitable lipid-based nanocarriers to aid in the development of an effective oral delivery formulation. Enzymatic degradation kinetics of TP5 was investigated in the presence or absence of mucosal and luminal components extracted from various parts of the rat intestine, including the duodenum, jejunum, ileum, and colon. Inhibition of TP5 enzymatic peptidolysis was screened in the presence or absence of EDTA, trypsin and chymotrypsin inhibitors from soybean (SBTCI), and bestatin. TP5 with SBTCI was loaded into lipid-based nanocarriers, including microemulsions, niosomes and solid lipid nanoparticles. These TP5-loaded nanocarriers were investigated through characterization of morphology, particle size, zeta potential, entrapment efficacy (EE%), and ex vivo rat intestinal degradation studies to select a lead formulation for a future oral drug delivery study. The degradation kinetics of TP5 followed pseudo-first-order kinetics, and the biological metabolism of TP5 was displayed in the presence of luminal contents, indicating that TP5 is sensitive to luminal enzymes. Notably, a considerable decrease in TP5 peptidolysis was found in the presence of SBTCI, bestatin, and EDTA. TP5 and SBTCI were loaded into three lipid-based delivery systems, displaying superior protection under ex vivo intestinal luminal contents and mucosal homogenates for 6 h compared with the pure drug solution. These findings suggest that using select inhibitors and lipid-based nanocarriers can decrease peptide degradation and may improve oral bioavailability of TP5 following oral administration.


Subject(s)
Nanoparticles , Thymopentin , Animals , Edetic Acid , Lipids , Liposomes , Nanoparticles/chemistry , Rats , Thymopentin/chemistry , Thymopentin/pharmacology
8.
FEMS Microbiol Lett ; 369(1)2022 06 02.
Article in English | MEDLINE | ID: mdl-35536569

ABSTRACT

The present study aimed to isolate and characterize proteolytic Bacillus spp. from termite guts to test the possibility of application for improving the nutritional value and bioactivity of fermented soybean meal (FSBM). Aerobic endospore-forming bacteria were isolated from the gut of the termite Termes propinquus. Ten isolates with high levels of soy milk degradation were selected and tested for extracellular enzyme production. Among them, two isolates, Tp-5 and Tp-7, exhibited all tested hydrolytic enzyme activities (cellulase, xylanase, pectinase, amylase, protease, lipase and phytase), weak alpha hemolytic and also antagonistic activities against fish pathogenic species of Aeromonas and Streptococcus. Both phylogenetic and biochemical analyses indicated that they were closely related to Bacillus amyloliquefaciens. During solid-state fermentation of SBM, Tp-5 and Tp-7 exhibited the highest protease activity (1127.2 and 1552.4 U g-1, respectively) at 36 h, and the resulting FSBMs showed a significant increase in crude protein content and free radical-scavenging ability (P < 0.05), as well as an improvement in the composition of amino acids, metabolites and other nutrients, while indigestible materials such as fiber, lignin and hemicellulose were decreased. The potential strains, especially Tp-7, improved the nutritional value of FSBM by their strong hydrolytic and antioxidant activities, together with reducing antinutritional components.


Subject(s)
Bacillus , Fabaceae , Isoptera , Animals , Fermentation , Nutritive Value , Peptide Hydrolases/metabolism , Phylogeny , Glycine max/microbiology , Thymopentin/metabolism
9.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769113

ABSTRACT

The increasing numbers of infections caused by multidrug-resistant (MDR) pathogens highlight the urgent need for new alternatives to conventional antibiotics. Antimicrobial peptides have the potential to be promising alternatives to antibiotics because of their effective bactericidal activity and highly selective toxicity. The present study was conducted to investigate the antibacterial, antibiofilm, and anti-adhesion activities of different CTP peptides (CTP: the original hybrid peptide cathelicidin 2 (1-13)-thymopentin (TP5); CTP-NH2: C-terminal amidated derivative of cathelicidin 2 (1-13)-TP5; CTPQ: glutamine added at the C-terminus of cathelicidin 2 (1-13)-TP5) by determining the minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), propidium iodide uptake, and analysis by scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy). The results showed that CTPs had broad-spectrum antibacterial activity against different gram-positive and gram-negative bacteria, with MICs against the tested strains varying from 2 to 64 µg/mL. CTPs at the MBC (2 × MIC 64 µg/mL) showed strong bactericidal effects on a standard methicillin-resistant Staphylococcus aureus strain ATCC 43300 after co-incubation for 6 h through disruption of the bacterial membrane. In addition, CTPs at 2 × MIC also displayed effective inhibition activity of several S. aureus strains with a 40-90% decrease in biofilm formation by killing the bacteria embedded in the biofilms. CTPs had low cytotoxicity on the intestinal porcine epithelial cell line (IPEC-J2) and could significantly decrease the rate of adhesion of S. aureus ATCC 43300 on IPEC-J2 cells. The current study proved that CTPs have effective antibacterial, antibiofilm, and anti-adhesion activities. Overall, this study contributes to our understanding of the possible antibacterial and antibiofilm mechanisms of CTPs, which might be an effective anti-MDR drug candidate.


Subject(s)
Cathelicidins , Methicillin-Resistant Staphylococcus aureus/drug effects , Thymopentin , Biofilms/drug effects , Cell Adhesion/drug effects , Microbial Sensitivity Tests
10.
Int J Med Sci ; 18(15): 3544-3555, 2021.
Article in English | MEDLINE | ID: mdl-34522181

ABSTRACT

Premature ovarian failure (POF) is a typical form of pathological aging with complex pathogenesis and no effective treatment. Meanwhile, recent studies have reported that a high-fat and high-sugar (HFHS) diet adversely affects ovarian function and ovum quality. Here, we investigated the therapeutic effect of thymopentin (TP-5) as a treatment for murine POF derived from HFHS and its target. Pathological examination and hormone assays confirmed that TP-5 significantly improved murine POF symptoms. And, TP-5 could reduce oxidative stress injury and blood lipids in the murine POF derived from HFHS. Flow cytometry and qPCR results suggested that TP-5 attenuated activation of CD3+ T cells and type I macrophages. RNA-Seq results indicated somedifferences in gene transcription between the TP-5 intervention group and the control group. KEGG analysis indicated that the expression of genes involved in the mTOR signaling pathway was the most significantly different between the two groups. Additionally, compared with the control groups, the expression levels of interleukin, NFκB, and TNF families of genes were significantly downregulated in the POF+TP-5 group, whereas expression of the TGFß/Smad9 genes was significantly upregulated. Finally, immunofluorescence staining and qPCR confirmed that TP-5 promoted the polarization of Mø2 cells in the ovary by activating the expression of the BMP4/Smad9 signalling pathway. Thus, our study confirmed that TP-5 has a significant therapeutic effect on POF by upregulating BMP4/Smad9 signalling pathway so as to promote the balance and polarization of immune cell and reducing the release of inflammatory factors and reduce lipid oxidative stress injury.


Subject(s)
Adjuvants, Immunologic/pharmacology , Primary Ovarian Insufficiency/drug therapy , Receptor-CD3 Complex, Antigen, T-Cell/drug effects , Signal Transduction/drug effects , Thymopentin/pharmacology , Animals , Bone Morphogenetic Protein 4/immunology , Disease Models, Animal , Female , Mice , Primary Ovarian Insufficiency/immunology , Signal Transduction/immunology , Smad8 Protein/immunology
11.
Mater Sci Eng C Mater Biol Appl ; 127: 112210, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34225862

ABSTRACT

Thymopentin (TP5) is widely used in the treatment of autoimmune diseases, but the short in vivo half-life of TP5 strongly restricts its clinical applications. A series of blank and TP5 loaded hydrogels were synthesized via reversible dual imine bonding by mixing water soluble O-carboxymethyl chitosan (CMCS) with a dynamer (Dy) prepared from Jeffamine and benzene-1,3,5-tricarbaldehyde. TP5 release from hydrogels was studied at 37 °C under in vitro conditions. The molar mass of CMCS, drug loading conditions and drug content were varied to elucidate their effects on hydrogel properties and drug release behaviors. Density functional theory was applied to theoretically confirm the chemical connections between TP5 or CMCS with Dy. All hydrogels exhibited interpenetrating porous architecture with average pore size from 59 to 83 µm, and pH-sensitive swelling up to 10,000% at pH 8. TP5 encapsulation affected the rheological properties of hydrogels as TP5 was partially attached to the network via imine bonding. Higher TP5 loading led to higher release rates. Faster release was observed at pH 5.5 than at pH 7.4 due to lower stability of imine bonds in acidic media. Fitting of release data using Higuchi model showed that initial TP5 release was essentially diffusion controlled. All these findings proved that the dynamic hydrogels are promising carriers for controlled delivery of hydrophilic drugs, and shed new light on the design of drug release systems by both physical mixing and reversible covalent bonding.


Subject(s)
Chitosan , Thymopentin , Aldehydes , Delayed-Action Preparations , Drug Carriers , Hydrogels , Hydrogen-Ion Concentration , Imines
12.
Int Immunopharmacol ; 99: 108008, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34330058

ABSTRACT

In the present study, the low molecular weight of chitosan (CS) was prepared and its activity on thymopentin-activated mice bearing H22 solid tumors was further researched. The purity and molecular weight of CS were determined by UV and HPGPC spectra, and its immunosuppressive effects on H22 tumor-bearing mice were evaluated through determination on immune organs, cells and cytokines. Results showed that CS contained little impurities with the average molecular weight of 1.20 × 104 Da. The in vivo antitumor experiments demonstrated that CS facilitated to destroy immune organs (thymuses and spleens), suppress immune cells (lymphocytes, macrophages and NK cells) activities and reduce immune-related cytokines (TNF-α, IFN-γ, IL-2 and IL-4) expressions of H22 tumor-bearing mice even with simultaneous TP5 stimulation. Our data suggested that CS could not be applied to improve immune response in cancer-bearing patients, but might be employed for treatments on autoimmune diseases or organ transplant patients.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Chitosan/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Animals , Blood Cell Count , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cytokines/blood , Female , Liver Neoplasms/pathology , Mice , Mice, Inbred BALB C , Molecular Weight , T-Lymphocytes/metabolism , Thymopentin
13.
Cell Prolif ; 54(8): e13089, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34180104

ABSTRACT

OBJECTIVE: Thymopentin (5TP) significantly improved typical murine premature ovarian failure (POF) symptoms induced by a high-fat and high-sugar (HFHS) diet. However, its effect and mechanism remain unclear. MATERIALS AND METHODS: RNA-Seq was used to detect the differentially expressed genes among each group. HFHS-induced POF mouse model was generated and injected with siRNA using Poly (lactic-co-glycolic acid) (PLGA) as a carrier. RESULTS: RNA-Seq suggested that 5TP promoted the expression of Yin Yang 2 (YY2) in mouse ovarian granulosa cell (mOGC) of HFHS-POF mice. Luciferase reporter assay indicated that 5TP promoted the binding of YY2 to the specific sequence C(C/T)AT(G/C)(G/T) on the Lin28A promoter and promoted Lin28A transcription and expression. We continuously injected PLGA-cross-linked siRNA nanoparticles targeting YY2 into HFHS-POF mice (siYY2@PLGA), which significantly reduced the therapeutic effect of 5TP. siYY2@PLGA injection also significantly attenuated the upregulation of Lin28a expression in mOGCs induced by 5TP and enhanced the expression of let-7 family microRNAs, thereby inhibiting the proliferation and division of mOGCs. qPCR results showed that there was a significant difference in the expression levels of exosome-derived Yy2 mRNAs between POF patients and normal women, and that there was a specific correlation between the expression level of exosome-derived Yy2 and the peripheral concentrations of the blood hormones pregnenolone, progesterone and oestradiol. CONCLUSIONS: Thymopentin promotes the transcriptional activation of Lin28A via stimulating transcription factor YY2 expression, inhibits the activity of let-7 family microRNAs and alleviates the ageing of ovarian granulosa cells, ultimately achieving a therapeutic effect on POF in mice.


Subject(s)
MicroRNAs/metabolism , Primary Ovarian Insufficiency/pathology , RNA-Binding Proteins/metabolism , Thymopentin/pharmacology , Transcription Factors/metabolism , Animals , Biomarkers/blood , Cell Proliferation/drug effects , Disease Models, Animal , Exosomes/metabolism , Female , Gene Expression Regulation/drug effects , Humans , Mice , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Primary Ovarian Insufficiency/diagnosis , Primary Ovarian Insufficiency/drug therapy , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , Signal Transduction/drug effects , Thymopentin/therapeutic use , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics
14.
Front Immunol ; 12: 620494, 2021.
Article in English | MEDLINE | ID: mdl-34122400

ABSTRACT

The innate and adaptive immune systems act in concert to protect us from infectious agents and other harmful substances. As a state of temporary or permanent immune dysfunction, immunosuppression can make an organism more susceptible to infection, organ injury, and cancer due to damage to the immune system. It takes a long time to develop new immunomodulatory agents to prevent and treat immunosuppressive diseases, with slow progress. Toll-like receptor 2 (TLR2) agonists have been reported as potential immunomodulatory candidates due to their effective activation of immune responses. It has been demonstrated that thymopentin (TP5) could modulate immunity by binding to the TLR2 receptor. However, the fairly short half-life of TP5 greatly reduces its pharmacological potential for immunosuppression therapy. Although peptide cathelicidin 2 (CATH2) has a long half-life, it shows poor immunomodulatory activity and severe cytotoxicity, which seriously hampers its clinical development. Peptide hybridization is an effective approach for the design and engineering of novel functional peptides because hybrid peptides combine the advantages and benefits of various native peptides. In this study, to overcome all these challenges faced by the parental peptides, six hybrid peptides (CaTP, CbTP, CcTP, TPCa, TPCb, and TPCc) were designed by combining the full-length TP5 with different active fragments of CATH2. CbTP, the most potent TLR2 agonist among the six hybrid peptides, was effectively screened through in silico analysis and in vitro experiments. The CbTP peptide exhibited lower cytotoxicity than either CATH2 or TP5. Furthermore, the immunomodulatory effects of CbTP were confirmed in a CTX-immunosuppressed mouse model, which showed that CbTP has increased immunopotentiating activity and physiological stability compared to the parental peptides. CbTP successfully inhibited immunosuppression and weight loss, increased immune organ indices, and improved CD4+/CD8+ T lymphocyte subsets. In addition, CbTP significantly increased the production of the cytokine TNF-α and IL-6, and the immunoglobulins IgA, IgM, and IgG. The immunoenhancing effects of CbTP were attributed to its TLR2-binding activity, promoting the formation of the TLR2 cluster, the activation of the TLR2 receptor, and thus activation of the downstream MyD88-NF-кB signaling pathway.


Subject(s)
Peptides/metabolism , T-Lymphocytes/immunology , Thymopentin/metabolism , Toll-Like Receptor 2/agonists , Animals , Cells, Cultured , Cyclophosphamide , Cytokines , Female , Humans , Immunity , Immunity, Humoral , Immunocompromised Host , Immunomodulation , Mice , Mice, Inbred BALB C , Models, Animal , Peptides/immunology , RAW 264.7 Cells , Thymopentin/immunology
15.
Drug Dev Ind Pharm ; 47(10): 1680-1692, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35234086

ABSTRACT

Thymopentin (TP5) is a synthetic pentapeptide with immunomodulatory properties. Given the previously described poor absorption of TP5, preformulation data is required to support effective formulation development. In this manuscript, an analytical method of TP5 was developed and validated to determine the aqueous solubility, stability, and Log P of TP5. Thermal properties were investigated, and chemical, physical and enzymatic degradation were evaluated. TP5 was informed to load in a microemulsion (ME) system according to the preformulation parameters and characterized for rheological behavior, droplet size, morphology and in vitro drug release. TP5 displayed high aqueous solubility (294.3 mg/mL), low Log P (-4.2) and 2% water content with a melting temperature of 193 °C. TP5 degraded rapidly in alkaline conditions, at elevated temperature, in oxidizing agents, and with UV exposure, however TP5 had a longer half-life in acidic conditions. The fastest enzymatic degradation was with Trypsin (half-life 6.3 h) compared with other digestive enzymes. The different degradation pathways followed first-order kinetics, and half-lives were obtained from the kinetic studies. The TP5 loaded ME exhibited a droplet size of 143 ± 35 nm with a Higuchi-model fitted sustained release profile for 24 h. These data justify and support the design of formulations to stabilize and enhance the absorption of TP5, with a ME formulation demonstrated.


Subject(s)
Thymopentin , Drug Liberation , Half-Life , Kinetics , Solubility , Thymopentin/chemistry
16.
FASEB J ; 34(9): 11772-11785, 2020 09.
Article in English | MEDLINE | ID: mdl-32652815

ABSTRACT

Sepsis, a systemic inflammatory response syndrome (SIRS) caused by infection, is a major public health concern with limited therapeutic options. Infection disturbs the homeostasis of host, resulting in excessive inflammation and immune suppression. This has prompted the clinical use of immunomodulators to balance host response as an alternative therapeutic strategy. Here, we report that Thymopentin (TP5), a synthetic immunomodulator pentapeptide (Arg-Lys-Asp-Val-Tyr) with an excellent safety profile in the clinic, protects mice against cecal ligation and puncture (CLP)-induced sepsis, as shown by improved survival rate, decreased level of pro-inflammatory cytokines and reduced ratios of macrophages and neutrophils in spleen and peritoneum. Regarding mechanism, TP5 changed the characteristics of LPS-stimulated macrophages by increasing the production of 15-deoxy-Δ12,14 -prostaglandin J2 (15-d-PGJ2). In addition, the improved effect of TP5 on survival rates was abolished by the peroxisome proliferator-activated receptor γ (PPARγ) antagonist GW9662. Our results uncover the mechanism of the TP5 protective effects on CLP-induced sepsis and shed light on the development of TP5 as a therapeutic strategy for lethal systemic inflammatory disorders.


Subject(s)
PPAR gamma/metabolism , Prostaglandin D2/analogs & derivatives , Sepsis/metabolism , Signal Transduction/drug effects , Thymopentin/pharmacology , Animals , Cecum/surgery , Cytokines/metabolism , Inflammation Mediators/metabolism , Ligation/adverse effects , Male , Mice, Inbred C57BL , Prostaglandin D2/metabolism , Punctures/adverse effects , Sepsis/etiology , Sepsis/mortality , Survival Rate
17.
Front Immunol ; 11: 618312, 2020.
Article in English | MEDLINE | ID: mdl-33613547

ABSTRACT

Lipopolysaccharide (LPS) has been implicated as a major cause of inflammation and an uncontrolled LPS response increases the risk of localized inflammation and sepsis. While some native peptides are helpful in the treatment of LPS-induced inflammation, the use of these peptides is limited due to their potential cytotoxicity and poor anti-inflammatory activity. Hybridization is an effective approach for overcoming this problem. In this study, a novel hybrid anti-inflammatory peptide that combines the active center of Cathelicidin 2 (CATH2) with thymopentin (TP5) was designed [CTP, CATH2 (1-13)-TP5]. CTP was found to have higher anti-inflammatory effects than its parental peptides through directly LPS neutralization. However, CTP scarcely inhibited the attachment of LPS to cell membranes or suppressed an established LPS-induced inflammation due to poor cellular uptake. The C-terminal amine modification of CTP (CTP-NH2) was then designed based on the hypothesis that C-terminal amidation can enhance the cell uptake by increasing the hydrophobicity of the peptide. Compared with CTP, CTP-NH2 showed enhanced anti-inflammatory activity and lower cytotoxicity. CTP-NH2 not only has strong LPS neutralizing activity, but also can significantly inhibit the LPS attachment and the intracellular inflammatory response. The intracellular anti-inflammatory effect of CTP-NH2 was associated with blocking of LPS binding to the Toll-like receptor 4-myeloid differentiation factor 2 complex and inhibiting the nuclear factor-kappa B pathway. In addition, the anti-inflammatory effect of CTP-NH2 was confirmed using a murine LPS-induced sepsis model. Collectively, these findings suggest that CTP-NH2 could be developed into a novel anti-inflammatory drug. This successful modification provides a design strategy to improve the cellular uptake and anti-inflammatory activity of peptide agents.


Subject(s)
Anti-Inflammatory Agents , Inflammation , Recombinant Proteins , Amination , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Biological Availability , Cathelicidins , Inflammation/chemically induced , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology , Thymopentin
18.
J Mass Spectrom ; 55(1): e4449, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31820512

ABSTRACT

Chemical cross-linking combined with mass spectrometry (XL-MS) and computational modeling has evolved as an alternative method to derive protein 3D structures and to map protein interaction networks. Special focus has been laid recently on the development and application of cross-linkers that are cleavable by collisional activation as they yield distinct signatures in tandem mass spectra. Building on our experiences with cross-linkers containing an MS-labile urea group, we now present the biuret-based, CID-MS/MS-cleavable cross-linker imidodicarbonyl diimidazole (IDDI) and demonstrate its applicability for protein cross-linking studies based on the four model peptides angiotensin II, MRFA, substance P, and thymopentin.


Subject(s)
Biuret/analogs & derivatives , Biuret/chemistry , Cross-Linking Reagents/chemistry , Peptides/chemistry , Angiotensin II/chemistry , Chromatography, High Pressure Liquid , Imidazoles/chemistry , Proof of Concept Study , Protein Conformation , Substance P/chemistry , Tandem Mass Spectrometry , Thymopentin/chemistry
19.
Theranostics ; 9(25): 7490-7505, 2019.
Article in English | MEDLINE | ID: mdl-31695782

ABSTRACT

Background: Ulcerative colitis (UC) is a chronic inflammatory gastrointestinal disease, notoriously challenging to treat. Previous studies have found a positive correlation between thymic atrophy and colitis severity. It was, therefore, worthwhile to investigate the effect of thymopentin (TP5), a synthetic pentapeptide corresponding to the active domain of the thymopoietin, on colitis. Methods: Dextran sulfate sodium (DSS)-induced colitis mice were treated with TP5 by subcutaneous injection. Body weight, colon length, colon weight, immune organ index, disease activity index (DAI) score, and the peripheral blood profile were examined. The immune cells of the spleen and colon were analyzed by flow cytometry. Histology was performed on isolated colon tissues for cytokine analysis. Bacterial DNA was extracted from mouse colonic feces to assess the intestinal microbiota. Intestinal lamina propria mononuclear cells (LPMCs), HCT116, CT26, and splenocytes were cultured and treated with TP5. Results: TP5 treatment increased the body weight and colon length, decreased the DAI score, and restored colon architecture of colitic mice. TP5 also decreased the infiltration of immune cells and expression levels of pro-inflammatory cytokines such as IL-6. Importantly, the damaged thymus and compromised lymphocytes in peripheral blood were significantly restored by TP5. Also, the production of IL-22, both in innate and adaptive lymphoid cells, was triggered by TP5. Given the critical role of IL-22 in mucosal host defense, we tested the effect of TP5 on mucus barrier and gut microbiota and found that the number of goblet cells and the level of Mucin-2 expression were restored, and the composition of the gut microbiome was normalized after TP5 treatment. The critical role of IL-22 in the protective effect of TP5 on colitis was further confirmed by administering the anti-IL-22 antibody (αIL-22), which completely abolished the effect of TP5. Furthermore, TP5 significantly increased the expression level of retinoic acid receptor-related orphan receptor γ (RORγt), a transcription factor for IL-22. Consistent with this, RORγt inhibitor abrogated the upregulation of IL-22 induced by TP5. Conclusion: TP5 exerts a protective effect on DSS-induced colitis by triggering the production of IL-22 in both innate and adaptive lymphocytes. This study delineates TP5 as an immunomodulator that may be a potential drug for the treatment of UC.


Subject(s)
Adaptive Immunity/drug effects , Colitis, Ulcerative/drug therapy , Dextran Sulfate/pharmacology , Immunity, Innate/drug effects , Interleukins/metabolism , Lymphocytes/drug effects , Thymopentin/pharmacology , Animals , Cell Line, Tumor , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colon/drug effects , Colon/metabolism , Disease Models, Animal , Feces/microbiology , Gastrointestinal Microbiome/drug effects , HCT116 Cells , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Lymphocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Spleen/drug effects , Spleen/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Interleukin-22
20.
Immunol Lett ; 216: 1-8, 2019 12.
Article in English | MEDLINE | ID: mdl-31520655

ABSTRACT

Previous study showed that injection of thymopentin (TP 5) in the area of supramammary lymph nodes (SMLN) had therapeutic effect on the intramammary infection (IMI) in cows. This study was to explore the underlying mechanisms by investigating the immunomodulatory effect of TP 5 on SMLN lymphocytes. Lymphocyte proliferation, cell cycle distribution and cytokine mRNA expression were determined by MTT, FCM and RT-qPCR, respectively. Laser scanning confocal microscope (LSCM) was used to observe the binding between TP 5 and SMLN lymphocytes. Moreover, RNA-sequencing (RNA-seq) was performed to observe the difference between the lymphocytes with and without TP 5 treatment. The results showed that TP 5 significantly promoted lymphocyte proliferation, accelerated cell cycle progression, and enhanced mRNA expression of IL-17A and IL-17F. Laser scanning confocal microscopic analysis revealed the binding of TP 5 to the surface of SMLN lymphocytes. A total of 1094 genes were identified as differentially expressed genes (DEGs) using RNA-seq with 692 up- and 402 down-regulated genes. 48 significantly enriched GO terms were identified by RNA-seq. In KEGG analysis, 1/3 of DEGs were enriched in the immune system pathway, including IL-17 signaling pathway, cytokine-cytokine receptor interaction, Th1 and Th2 cell differentiation, T cell receptor signaling pathway, Th17 cell differentiation. Among them, IL-17 signaling pathway was the most prominent. This study suggested that the therapeutic benefit of TP 5 in the treatment of bovine mastitis might be attributed to its immunomodulatory activity in SMLN lymphocytes.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Interleukin-17/metabolism , Mastitis, Bovine/drug therapy , Th17 Cells/drug effects , Thymopentin/administration & dosage , Animals , Cattle , Cell Proliferation/drug effects , Cells, Cultured , Female , Interleukin-17/immunology , Lymph Nodes/cytology , Lymph Nodes/drug effects , Lymph Nodes/immunology , Lymphocyte Activation/drug effects , Mammary Glands, Animal/immunology , Mastitis, Bovine/immunology , Primary Cell Culture , RNA-Seq , Signal Transduction/drug effects , Signal Transduction/immunology , Th17 Cells/immunology , Th17 Cells/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...