Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 12(11)2021 10 21.
Article in English | MEDLINE | ID: mdl-34828268

ABSTRACT

Interferon-induced transmembrane protein 3 (IFITM3), a crucial effector of the host's innate immune system, prohibits an extensive range of viruses. Previous studies have reported that single nucleotide polymorphisms (SNPs) of the IFITM3 gene are associated with the expression level and length of the IFITM3 protein and can impact susceptibility to infectious viruses and the severity of infection with these viruses. However, there have been no studies on polymorphisms of the bovine IFITM3 gene. In the present study, we finely mapped the bovine IFITM3 gene and annotated the identified polymorphisms. We investigated polymorphisms of the bovine IFITM3 gene in 108 Hanwoo and 113 Holstein cattle using direct sequencing and analyzed genotype, allele, and haplotype frequencies and linkage disequilibrium (LD) between the IFITM3 genes of the two cattle breeds. In addition, we analyzed transcription factor-binding sites and transcriptional capacity using PROMO and luciferase assays, respectively. Furthermore, we analyzed the effect of a nonsynonymous SNP of the IFITM3 gene using PolyPhen-2, PANTHER, and PROVEAN. We identified 23 polymorphisms in the bovine IFITM3 gene and found significantly different genotype, allele, and haplotype frequency distributions and LD scores between polymorphisms of the bovine IFITM3 gene in Hanwoo and Holstein cattle. In addition, the ability to bind the transcription factor Nkx2-1 and transcriptional capacities were significantly different depending on the c.-193T > C allele. Furthermore, nonsynonymous SNP (F121L) was predicted to be benign. To the best of our knowledge, this is the first genetic study of bovine IFITM3 polymorphisms.


Subject(s)
Cattle/genetics , Membrane Proteins/genetics , Regulatory Sequences, Nucleic Acid/genetics , Animals , Cells, Cultured , Gene Expression Regulation , Gene Frequency , Genotype , Haplotypes , Interferons/metabolism , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Species Specificity , Thyroid Nuclear Factor 1/physiology , Transcriptional Activation/genetics
2.
Dev Biol ; 477: 219-231, 2021 09.
Article in English | MEDLINE | ID: mdl-34107272

ABSTRACT

The endostyle is a ventral pharyngeal organ used for internal filter feeding of basal chordates and is considered homologous to the follicular thyroid of vertebrates. It contains mucus-producing (glandular) and thyroid-equivalent regions organized along the dorsoventral (DV) axis. Although thyroid-related genes (Nkx2-1, FoxE, and thyroid peroxidase (TPO)) are known to be expressed in the endostyle, their roles in establishing regionalization within the organ have not been demonstrated. We report that Nkx2-1 and FoxE are essential for establishing DV axial identity in the endostyle of Oikopleura dioica. Genome and expression analyses showed von Willebrand factor-like (vWFL) and TPO/dual oxidase (Duox)/Nkx2-1/FoxE as orthologs of glandular and thyroid-related genes, respectively. Knockdown experiments showed that Nkx2-1 is necessary for the expression of glandular and thyroid-related genes, whereas FoxE is necessary only for thyroid-related genes. Moreover, Nkx2-1 expression is necessary for FoxE expression in larvae during organogenesis. The results demonstrate the essential roles of Nkx2-1 and FoxE in establishing regionalization in the endostyle, including (1) the Nkx2-1-dependent glandular region, and (2) the Nkx2-1/FoxE-dependent thyroid-equivalent region. DV axial regionalization may be responsible for organizing glandular and thyroid-equivalent traits of the pharynx along the DV axis.


Subject(s)
Forkhead Transcription Factors/physiology , Thyroid Hormones/physiology , Thyroid Nuclear Factor 1/physiology , Urochordata/embryology , Animals , Mucus , Thyroid Gland/embryology , Thyroid Gland/physiology , Urochordata/anatomy & histology , Urochordata/physiology
3.
Commun Biol ; 4(1): 568, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33980985

ABSTRACT

The transcription factor NKX2-1/TTF-1 is involved in lung pathophysiology, including breathing, innate defense and tumorigenesis. To understand the mechanism by which NKX2-1 regulates genes involved in such pathophysiology, we have previously performed ChIP-seq and identified genome-wide NKX2-1-binding sites, which revealed that NKX2-1 binds to not only proximal promoter regions but also multiple intra- and inter-genic regions of the genes regulated by NKX2-1. However, the roles of such regions, especially non-proximal ones, bound by NKX2-1 have not yet been determined. Here, using CRISPRi (CRISPR/dCas9-KRAB), we scrutinize the functional roles of 19 regions/sites bound by NKX2-1, which are located in genes involved in breathing and innate defense (SFTPB, LAMP3, SFTPA1, SFTPA2) and lung tumorigenesis (MYBPH, LMO3, CD274/PD-L1). Notably, the CRISPRi approach reveals that a portion of NKX2-1-binding sites are functionally indispensable while the rest are dispensable for the expression of the genes, indicating that functional roles of NKX2-1-binding sites are unequally yoked.


Subject(s)
Lung/pathology , Thyroid Nuclear Factor 1/genetics , Thyroid Nuclear Factor 1/physiology , Binding Sites/genetics , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Chromatin Immunoprecipitation Sequencing/methods , Gene Expression Regulation, Neoplastic/genetics , Genetic Engineering/methods , Humans , Lung Neoplasms/genetics , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Transcription Factors/genetics
4.
Dev Dyn ; 250(7): 1001-1020, 2021 07.
Article in English | MEDLINE | ID: mdl-33428297

ABSTRACT

BACKGROUND: Distinct boundaries between the proximal conducting airways and more peripheral-bronchial regions of the lung are established early in foregut embryogenesis, demarcated in part by the distribution of SOX family and NKX2-1 transcription factors along the cephalo-caudal axis of the lung. We used blastocyst complementation to identify the role of NKX2-1 in the formation of the proximal-peripheral boundary of the airways in mouse chimeric embryos. RESULTS: While Nkx2-1-/- mouse embryos form primordial tracheal cysts, peripheral pulmonary structures are entirely lacking in Nkx2-1-/- mice. Complementation of Nkx2-1-/- embryos with NKX2-1-sufficient embryonic stem cells (ESCs) enabled the formation of all tissue components of the peripheral lung but did not enhance ESC colonization of the most proximal regions of the airways. In chimeric mice, a precise boundary was formed between NKX2-1-deficient basal cells co-expressing SOX2 and SOX9 in large airways and ESC-derived NKX2-1+ SOX9+ epithelial cells of smaller airways. NKX2-1-sufficient ESCs were able to selectively complement peripheral, rather than most proximal regions of the airways. ESC complementation did not prevent ectopic expression of SOX9 but restored ß-catenin signaling in Nkx2-1-/- basal cells of large airways. CONCLUSIONS: NKX2-1 and ß-catenin function in an epithelial cell-autonomous manner to establish the proximal-peripheral boundary along developing airways.


Subject(s)
Blastocyst/physiology , Organogenesis/genetics , Respiratory Mucosa/embryology , Thyroid Nuclear Factor 1/physiology , Animals , Cell Differentiation/genetics , Embryo, Mammalian , Embryonic Development/genetics , Female , Genetic Complementation Test , Lung/embryology , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity/genetics , Pregnancy , Trachea/embryology
5.
Brain Struct Funct ; 225(9): 2857-2869, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33145610

ABSTRACT

During the development of the central nervous system, the immature neurons suffer different migration processes. It is well known that Nkx2.1-positive ventricular layer give rise to critical tangential migrations into different regions of the developing forebrain. Our aim was to study this phenomenon in the hypothalamic region. With this purpose, we used a transgenic mouse line that expresses the tdTomato reporter driven by the promotor of Nkx2.1. Analysing the Nkx2.1-positive derivatives at E18.5, we found neural contributions to the prethalamic region, mainly in the zona incerta and in the mes-diencephalic tegmental region. We studied the developing hypothalamus along the embryonic period. From E10.5 we detected that the Nkx2.1 expression domain was narrower than the reporter distribution. Therefore, the Nkx2.1 expression fades in a great number of the early-born neurons from the Nkx2.1-positive territory. At the most caudal positive part, we detected a thin stream of positive neurons migrating caudally into the mes-diencephalic tegmental region using time-lapse experiments on open neural tube explants. Late in development, we found a second migratory stream into the prethalamic territory. All these tangentially migrated neurons developed a gabaergic phenotype. In summary, we have described the contribution of interneurons from the Nkx2.1-positive hypothalamic territory into two different rostrocaudal territories: the mes-diencephalic reticular formation through a caudal tangential migration and the prethalamic zona incerta complex through a dorsocaudal tangential migration.


Subject(s)
Cell Movement , Hypothalamus/growth & development , Neurons/physiology , Thyroid Nuclear Factor 1/physiology , Animals , Female , Interneurons/physiology , Male , Mice, Transgenic , Neural Pathways/physiology , Neurogenesis , Zona Incerta/growth & development
6.
Mol Cell Endocrinol ; 518: 111032, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32941925

ABSTRACT

Thyroid transcription factors (TTFs) - NKX2-1, FOXE1, PAX8 and HHEX - regulate multiple genes involved in thyroid development in mice but little is known about TTF regulation of thyroid-specific genes - thyroglobulin (TG), thyroid peroxidase (TPO), deiodinase type 2 (DIO2), sodium/iodide symporter (NIS) and TSH receptor (TSHR) - in adult, human thyrocytes. Thyrotropin (thyroid-stimulating hormone, TSH) regulation of thyroid-specific gene expression in primary cultures of human thyrocytes is biphasic yielding an inverted U-shaped dose-response curve (IUDRC) with upregulation at low doses and decreases at high doses. Herein we show that NKX2-1, FOXE1 and PAX8 are required for TSH-induced upregulation of the mRNA levels of TG, TPO, DIO2, NIS, and TSHR whereas HHEX has little effect on the levels of these thyroid-specific gene mRNAs. We show that TSH-induced upregulation is mediated by changes in their transcription and not by changes in the degradation of their mRNAs. In contrast to the IUDRC of thyroid-specific genes, TSH effects on the levels of the mRNAs for NKX2-1, FOXE1 and PAX8 exhibit monophasic decreases at high doses of TSH whereas TSH regulation of HHEX mRNA levels exhibits an IUDRC that overlaps the IUDRC of thyroid-specific genes. In contrast to findings during mouse development, TTFs do not have major effects on the levels of other TTF mRNAs in adult, human thyrocytes. Thus, we found similarities and important differences in the regulation of thyroid-specific genes in mouse development and TSH regulation of these genes in adult, human thyrocytes.


Subject(s)
Cell Differentiation , Thyroid Epithelial Cells/drug effects , Thyrotropin/pharmacology , Transcription, Genetic/drug effects , Adult , Autoantigens/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Humans , Iodide Peroxidase/genetics , Iron-Binding Proteins/genetics , Organ Specificity/drug effects , Organ Specificity/genetics , PAX8 Transcription Factor/genetics , PAX8 Transcription Factor/physiology , Primary Cell Culture , RNA Stability/drug effects , RNA Stability/genetics , Receptors, Thyrotropin/genetics , Thyroglobulin/genetics , Thyroid Epithelial Cells/cytology , Thyroid Epithelial Cells/physiology , Thyroid Nuclear Factor 1/genetics , Thyroid Nuclear Factor 1/physiology , Iodothyronine Deiodinase Type II
7.
Sci Rep ; 7: 43093, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28266561

ABSTRACT

The homeodomain transcription factor Nkx2.1 (NK2 homeobox 1) controls cell differentiation of telencephalic GABAergic interneurons and oligodendrocytes. Here we show that Nkx2.1 also regulates astrogliogenesis of the telencephalon from embryonic day (E) 14.5 to E16.5. Moreover we identify the different mechanisms by which Nkx2.1 controls the telencephalic astrogliogenesis. In Nkx2.1 knockout (Nkx2.1-/-) mice a drastic loss of astrocytes is observed that is not related to cell death. Further, in vivo analysis using BrdU incorporation reveals that Nkx2.1 affects the proliferation of the ventral neural stem cells that generate early astrocytes. Also, in vitro neurosphere assays showed reduced generation of astroglia upon loss of Nkx2.1, which could be due to decreased precursor proliferation and possibly defects in glial specification/differentiation. Chromatin immunoprecipitation analysis and in vitro co-transfection studies with an Nkx2.1-expressing plasmid indicate that Nkx2.1 binds to the promoter of glial fibrillary acidic protein (GFAP), primarily expressed in astrocytes, to regulate its expression. Hence, Nkx2.1 controls astroglial production spatiotemporally in embryos by regulating proliferation of the contributing Nkx2.1-positive precursors.


Subject(s)
Astrocytes/metabolism , Cell Differentiation , Embryonic Development , Telencephalon/metabolism , Thyroid Nuclear Factor 1/physiology , Animals , Astrocytes/physiology , Gene Expression Regulation, Developmental , Glial Fibrillary Acidic Protein/genetics , Mice , Mice, Knockout , Telencephalon/physiology , Thyroid Nuclear Factor 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...