Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.034
Filter
1.
Front Cell Infect Microbiol ; 14: 1382228, 2024.
Article in English | MEDLINE | ID: mdl-38698904

ABSTRACT

Background: Tick-borne pathogen (TBP) surveillance studies often use whole-tick homogenates when inferring tick-pathogen associations. However, localized TBP infections within tick tissues (saliva, hemolymph, salivary glands, and midgut) can inform pathogen transmission mechanisms and are key to disentangling pathogen detection from vector competence. Methods: We screened 278 camel blood samples and 504 tick tissue samples derived from 126 camel ticks sampled in two Kenyan counties (Laikipia and Marsabit) for Anaplasma, Ehrlichia, Coxiella, Rickettsia, Theileria, and Babesia by PCR-HRM analysis. Results: Candidatus Anaplasma camelii infections were common in camels (91%), but absent in all samples from Rhipicephalus pulchellus, Amblyomma gemma, Hyalomma dromedarii, and Hyalomma rufipes ticks. We detected Ehrlichia ruminantium in all tissues of the four tick species, but Rickettsia aeschlimannii was only found in Hy. rufipes (all tissues). Rickettsia africae was highest in Am. gemma (62.5%), mainly in the hemolymph (45%) and less frequently in the midgut (27.5%) and lowest in Rh. pulchellus (29.4%), where midgut and hemolymph detection rates were 17.6% and 11.8%, respectively. Similarly, in Hy. dromedarii, R. africae was mainly detected in the midgut (41.7%) but was absent in the hemolymph. Rickettsia africae was not detected in Hy. rufipes. No Coxiella, Theileria, or Babesia spp. were detected in this study. Conclusions: The tissue-specific localization of R. africae, found mainly in the hemolymph of Am. gemma, is congruent with the role of this tick species as its transmission vector. Thus, occurrence of TBPs in the hemolymph could serve as a predictor of vector competence of TBP transmission, especially in comparison to detection rates in the midgut, from which they must cross tissue barriers to effectively replicate and disseminate across tick tissues. Further studies should focus on exploring the distribution of TBPs within tick tissues to enhance knowledge of TBP epidemiology and to distinguish competent vectors from dead-end hosts.


Subject(s)
Babesia , Camelus , Ehrlichia , Theileria , Ticks , Animals , Kenya/epidemiology , Camelus/parasitology , Camelus/microbiology , Theileria/isolation & purification , Theileria/genetics , Babesia/isolation & purification , Babesia/genetics , Ehrlichia/isolation & purification , Ehrlichia/genetics , Ticks/microbiology , Ticks/parasitology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/parasitology , Anaplasma/isolation & purification , Anaplasma/genetics , Rickettsia/isolation & purification , Rickettsia/genetics , Coxiella/isolation & purification , Coxiella/genetics , Hemolymph/microbiology , Hemolymph/parasitology , Salivary Glands/microbiology , Salivary Glands/parasitology
2.
Emerg Med Clin North Am ; 42(2): 287-302, 2024 May.
Article in English | MEDLINE | ID: mdl-38641392

ABSTRACT

Ticks are responsible for the vast majority of vector-borne illnesses in the United States. The number of reported tick-borne disease (TBD) cases has more than doubled in the past 20 years. The majority of TBD cases occur in warm weather months in individuals with recent outdoor activities in wooded areas. The risk of contracting a TBD is also highly dependent on geographic location. Between 24 and 48 hours of tick attachment is required for most disease transmission to occur. Only 50% to 70% of patients with a TBD will recall being bitten by a tick, and TBDs are often initially misdiagnosed as a viral illness. Most TBDs are easily treated when diagnosed early in their course.


Subject(s)
Ehrlichiosis , Tick-Borne Diseases , Ticks , Animals , Humans , United States/epidemiology , Ehrlichiosis/diagnosis , Ehrlichiosis/therapy , Tick-Borne Diseases/diagnosis , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/therapy
3.
Vet Parasitol Reg Stud Reports ; 50: 101007, 2024 05.
Article in English | MEDLINE | ID: mdl-38644036

ABSTRACT

The brown dog tick, Rhipicephalus sanguineus is a complex of tick species with an unsettled species concept. In Europe, R. sanguineus is considered mainly a Mediterranean tick with sporadic findings in central and northern Europe. R. sanguineus is known as a vector of a range of pathogens of medical and veterinary importance, most of which not yet reported as autochthonous in Hungary. A total of 1839 ticks collected by veterinarians from dogs and cats were obtained in Hungary. The study aims at precise determination of ticks identified as R. sanguineus and detection of pathogens in collected ticks. All ticks were morphologically determined and 169 individuals were identified as R. sanguineus. A subset of 15 ticks was selected for molecular analysis (16S rDNA, 12S rDNA, COI). Phylogenetic analyses invariably placed sequences of all three markers into a single haplotype identified as R. sanguineus sensu stricto. All 169 brown dog ticks were tested for the presence of A. platys, E. canis, R. conorii, B. vogeli and H. canis. None of the investigated ticks was positive for the screened pathogens, though A. phagocytophilum sequence was detected in a single tick.


Subject(s)
Anaplasma , Dog Diseases , Phylogeny , RNA, Ribosomal , Rhipicephalus sanguineus , Tick Infestations , Animals , Dogs , Hungary , Rhipicephalus sanguineus/microbiology , Dog Diseases/parasitology , Dog Diseases/diagnosis , Tick Infestations/veterinary , Tick Infestations/parasitology , Female , Male , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Rickettsia conorii/isolation & purification , Rickettsia conorii/genetics , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Cats/parasitology , Ehrlichia canis/isolation & purification , Ehrlichia canis/genetics
4.
BMC Public Health ; 24(1): 1031, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38614967

ABSTRACT

BACKGROUND: Urban green spaces are important for human health, but they may expose visitors to tick-borne diseases. This not only presents a potential public health challenge but also undermines the expected public health gains from urban green spaces. The aim of this study is to assess the public health risk of tick-borne diseases in an urban green space used for recreation in Stockholm, Sweden. METHODS: We used a mixed method approach identifying both the magnitude of the tick hazard and the extent of the human exposure to tick-borne diseases. At six entry points to an urban green space, we sampled ticks and documented microhabitat conditions from five randomly assigned 2 m × 2 m plots. Surrounding habitat data was analyzed using geographical information system (GIS). Nymphs and adult ticks were tested for Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum using TaqMan qPCR. Positive B. burgdorferi (s.l.) ticks were further analyzed by nested PCR amplification and sequence analysis. Population census data and visitor count data were used to estimate the degree of human exposure to tick-borne diseases. To further understand the degree to which visitors get in contact with infected ticks we also conducted interviews with visitors to green spaces. RESULTS: High tick densities were commonly found in humid broadleaved forest with low field vegetation. High pathogen prevalence was significantly correlated with increasing proportions of artificial areas. Integrating the tick hazard with human exposure we found that the public health risk of tick-borne diseases was moderate to high at most of the studied entry points. Many of the visitors frequently used urban green spaces. Walking was the most common activity, but visitors also engaged in activities with higher risk for tick encounters. Individual protective measures were connected to specific recreational activities such as picking berries or mushrooms. CONCLUSIONS: The number of visitors can be combined with tick inventory data and molecular analyses of pathogen prevalence to make crude estimations of the public health risk of tick-borne diseases in urban green spaces. The risk of encountering infected ticks is omnipresent during recreational activities in urban green spaces, highlighting the need for public health campaigns to reduce the risk of tick-borne diseases.


Subject(s)
Tick-Borne Diseases , Ticks , Adult , Animals , Humans , Public Health , Parks, Recreational , Health Promotion , Tick-Borne Diseases/epidemiology
5.
Parasite ; 31: 21, 2024.
Article in English | MEDLINE | ID: mdl-38602373

ABSTRACT

Ticks are major vectors of various pathogens of health importance, such as bacteria, viruses and parasites. The problems associated with ticks and vector-borne pathogens are increasing in mountain areas, particularly in connection with global climate change. We collected ticks (n = 2,081) from chamois and mouflon in 4 mountainous areas of France. We identified 6 tick species: Ixodes ricinus, Rhipicephalus bursa, Rh. sanguineus s.l., Haemaphysalis sulcata, H. punctata and Dermacentor marginatus. We observed a strong variation in tick species composition among the study sites, linked in particular to the climate of the sites. We then analysed 791 ticks for DNA of vector-borne pathogens: Babesia/Theileria spp., Borrelia burgdorferi s.l., Anaplasma phagocytophilum, A. marginale, A. ovis, and Rickettsia of the spotted fever group (SFG). Theileria ovis was detected only in Corsica in Rh. bursa. Babesia venatorum (2 sites), Borrelia burgdorferi s.l. (B. afzelii and B. garinii; 2 sites) and Anaplasma phagocytophilum (3 sites) were detected in I. ricinus. Anaplasma ovis was detected at one site in I. ricinus and Rh. sanguineus s.l. SFG Rickettsia were detected at all the study sites: R. monacensis and R. helvetica in I. ricinus at the 3 sites where this tick is present; R. massiliae in Rh. sanguineus s.l. (1 site); and R. hoogstraalii and Candidatus R. barbariae in Rh. bursa in Corsica. These results show that there is a risk of tick-borne diseases for humans and domestic and wild animals frequenting these mountain areas.


Title: Prévalence d'agents pathogènes vectorisés chez des tiques collectées chez des ongulés sauvages (mouflons, chamois) dans 4 zones montagneuses en France. Abstract: Les tiques sont des vecteurs majeurs de différents agents pathogènes d'importance sanitaire, tels que des bactéries, des virus et des parasites. Les problématiques liées aux tiques et aux pathogènes vectorisés augmentent en zones de montagne, en lien notamment avec le réchauffement climatique. Nous avons collecté des tiques (n = 2 081) sur des chamois et des mouflons dans 4 zones montagneuses en France. Six espèces ont été identifiées : Ixodes ricinus, Rhipicephalus bursa, Rh. sanguineus s.l., Haemaphysalis sulcata, H. punctata et Dermacentor marginatus. Nous avons observé une forte variation de la composition en espèces de tiques entre les sites d'étude, en lien notamment avec le climat des sites. Nous avons ensuite recherché les ADN d'agents pathogènes vectorisés sur 791 tiques : Babesia/Theileria spp, Borrelia burgdorferi s.l., Anaplasma phagocytophilum, A. marginale, A. ovis, et de Rickettsia du groupe des fièvres boutonneuses (SFG). Theileria ovis a été détecté uniquement en Corse chez Rh. bursa. Babesia venatorum (2 sites), Borrelia burgdorferi s.l. (B. afzelii and B. garinii; 2 sites) et Anaplasma phagocytophilum (3 sites) ont été détectés chez I. ricinus. Anaplasma ovis a été détecté dans un site chez I. ricinus et Rh. sanguineus s.l.. Les Rickettsia SFG ont été détectées dans tous les sites d'étude : Rickettsia monacensis et R. helvetica chez I. ricinus dans les 3 sites où cette tique est présente; R. massiliae chez Rh. sanguineus s.l. (1 site); et R. hoogstraalii et Candidatus R. barbariae chez Rh. bursa en Corse. Ces résultats montrent un risque de transmission de maladies par les tiques pour les personnes et les animaux domestiques et sauvages fréquentant ces zones de montagne.


Subject(s)
Anaplasma phagocytophilum , Babesia , Ixodes , Ixodidae , Rickettsia , Rupicapra , Theileria , Tick-Borne Diseases , Humans , Animals , Sheep , Sheep, Domestic , Prevalence , Ixodes/microbiology , Babesia/genetics , Theileria/genetics , Anaplasma phagocytophilum/genetics , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology
6.
Parasit Vectors ; 17(1): 167, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566227

ABSTRACT

BACKGROUND: Hyalomma ticks are widely distributed in semi-arid zones in Northwest China. They have been reported to harbor a large number of zoonotic pathogens. METHODS: In this study, a total of 334 Hyalomma asiaticum ticks infesting domestic animals were collected from four locations in Xinjiang, Northwest China, and the bacterial agents in them were investigated. RESULTS: A putative novel Borrelia species was identified in ticks from all four locations, with an overall positive rate of 6.59%. Rickettsia sibirica subsp. mongolitimonae, a human pathogen frequently reported in Europe, was detected for the second time in China. Two Ehrlichia species (Ehrlichia minasensis and Ehrlichia sp.) were identified. Furthermore, two Anaplasma species were characterized in this study: Candidatus Anaplasma camelii and Anaplasma sp. closely related to Candidatus Anaplasma boleense. It is the first report of Candidatus Anaplasma camelii in China. CONCLUSIONS: Six bacterial agents were reported in this study, many of which are possible or validated pathogens for humans and animals. The presence of these bacterial agents may suggest a potential risk for One Health in this area.


Subject(s)
Ixodidae , Rickettsia , Tick-Borne Diseases , Ticks , Animals , Humans , Ticks/microbiology , Tick-Borne Diseases/microbiology , Rickettsia/genetics , Ixodidae/microbiology , Ehrlichia , Anaplasma , China
7.
Sci Rep ; 14(1): 7820, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570576

ABSTRACT

Anaplasma marginale infection is one of the most common tick-borne diseases, causing a substantial loss in the beef and dairy production industries. Once infected, the pathogen remains in the cattle for life, allowing the parasites to spread to healthy animals. Since clinical manifestations of anaplasmosis occur late in the disease, a sensitive, accurate, and affordable pathogen identification is crucial in preventing and controlling the infection. To this end, we developed an RPA-CRISPR/Cas12a assay specific to A. marginale infection in bovines targeting the msp4 gene. Our assay is performed at one moderately high temperature, producing fluorescent signals or positive readout of a lateral flow dipstick, which is as sensitive as conventional PCR-based DNA amplification. This RPA-CRISPR/Cas12a assay can detect as few as 4 copies/µl of Anaplasma using msp4 marker without cross-reactivity to other common bovine pathogens. Lyophilized components of the assay can be stored at room temperature for an extended period, indicating its potential for field diagnosis and low-resource settings of anaplasmosis in bovines.


Subject(s)
Anaplasma marginale , Anaplasmosis , Cattle Diseases , Tick-Borne Diseases , Cattle , Animals , Anaplasma marginale/genetics , Anaplasmosis/diagnosis , Anaplasmosis/genetics , CRISPR-Cas Systems , Cattle Diseases/genetics , Tick-Borne Diseases/genetics
8.
Int J Infect Dis ; 143: 107038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580070

ABSTRACT

A 76-year-old woman infected with Yezo virus (YEZV) developed liver dysfunction and thrombocytopenia following a tick bite. Despite the severity of her elevated liver enzymes and reduced platelet counts, the patient's condition improved spontaneously without any specific treatment. To our knowledge, this represents the first documented case where the YEZV genome was detected simultaneously in a patient's serum and the tick (Ixodes persulcatus) that bit the patient. This dual detection not only supports the hypothesis that YEZV is a tick-borne pathogen but also underscores the importance of awareness and diagnostic readiness for emerging tick-borne diseases, particularly in regions where these ticks are prevalent.


Subject(s)
Ixodes , Tick Bites , Humans , Female , Aged , Animals , Tick Bites/complications , Ixodes/virology , Tick-Borne Diseases/diagnosis , Tick-Borne Diseases/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Thrombocytopenia/virology , Thrombocytopenia/diagnosis
9.
Parasit Vectors ; 17(1): 196, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685096

ABSTRACT

BACKGROUND: Ixodes inopinatus was described from Spain on the basis of morphology and partial sequencing of 16S ribosomal DNA. However, several studies suggested that morphological differences between I. inopinatus and Ixodes ricinus are minimal and that 16S rDNA lacks the power to distinguish the two species. Furthermore, nuclear and mitochondrial markers indicated evidence of hybridization between I. inopinatus and I. ricinus. In this study, we tested our hypothesis on tick dispersal from North Africa to Southern Europe and determined the prevalence of selected tick-borne pathogens (TBPs) in I. inopinatus, I. ricinus, and their hybrids. METHODS: Ticks were collected in Italy and Algeria by flagging, identified by sequencing of partial TROSPA and COI genes, and screened for Borrelia burgdorferi s.l., B. miyamotoi, Rickettsia spp., and Anaplasma phagocytophilum by polymerase chain reaction and sequencing of specific markers. RESULTS: Out of the 380 ticks, in Italy, 92 were I. ricinus, 3 were I. inopinatus, and 136 were hybrids of the two species. All 149 ticks from Algeria were I. inopinatus. Overall, 60% of ticks were positive for at least one TBP. Borrelia burgdorferi s.l. was detected in 19.5% of ticks, and it was significantly more prevalent in Ixodes ticks from Algeria than in ticks from Italy. Prevalence of Rickettsia spotted fever group (SFG) was 51.1%, with significantly greater prevalence in ticks from Algeria than in ticks from Italy. Borrelia miyamotoi and A. phagocytophilum were detected in low prevalence (0.9% and 5.2%, respectively) and only in ticks from Italy. CONCLUSIONS: This study indicates that I. inopinatus is a dominant species in Algeria, while I. ricinus and hybrids were common in Italy. The higher prevalence of B. burgdorferi s.l. and Rickettsia SFG in I. inopinatus compared with that in I. ricinus might be due to geographical and ecological differences between these two tick species. The role of I. inopinatus in the epidemiology of TBPs needs further investigation in the Mediterranean Basin.


Subject(s)
Ixodes , Rickettsia , Animals , Ixodes/microbiology , Italy/epidemiology , Algeria/epidemiology , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Prevalence , Borrelia/genetics , Borrelia/isolation & purification , Borrelia/classification , Anaplasma phagocytophilum/genetics , Anaplasma phagocytophilum/isolation & purification , Anaplasma phagocytophilum/classification , Female , Hybridization, Genetic , Male , RNA, Ribosomal, 16S/genetics , Borrelia burgdorferi/genetics , Borrelia burgdorferi/isolation & purification , Borrelia burgdorferi/classification
10.
PLoS Negl Trop Dis ; 18(4): e0012108, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683839

ABSTRACT

Ticks are a hematophagous parasite and a vector of pathogens for numerous human and animal diseases of significant importance. The expansion of tick distribution and the increased risk of tick-borne diseases due to global climate change necessitates further study of the spatial distribution trend of ticks and their potential influencing factors. This study constructed a dataset of tick species distribution in Xinjiang for 60 years based on literature database retrieval and historical data collection (January 1963-January 2023). The distribution data were extracted, corrected, and deduplicated. The dominant tick species were selected for analysis using the MaxEnt model to assess their potential distribution in different periods under the current and BCC-CSM2.MR mode scenarios. The results indicated that there are eight genera and 48 species of ticks in 108 cities and counties of Xinjiang, with Hyalomma asiaticum, Rhipicephalus turanicus, Dermacentor marginatus, and Haemaphysalis punctatus being the top four dominant species. The MaxEnt model analysis revealed that the suitability areas of the four dominant ticks were mainly distributed in the north of Xinjiang, in areas such as Altay and Tacheng Prefecture. Over the next four periods, the medium and high suitable areas within the potential distribution range of the four tick species will expand towards the northwest. Additionally, new suitability areas will emerge in Altay, Changji Hui Autonomous Prefecture, and other local areas. The 60-year tick dataset in this study provides a map of preliminary tick distribution in Xinjiang, with a diverse array of tick species and distribution patterns throughout the area. In addition, the MaxEnt model revealed the spatial change characteristics and future distribution trend of ticks in Xinjiang, which can provide an instrumental data reference for tick monitoring and tick-borne disease risk prediction not only in the region but also in other countries participating in the Belt and Road Initiative.


Subject(s)
Biodiversity , Climate Change , Ticks , Animals , China/epidemiology , Ticks/classification , Animal Distribution , Climate , Tick-Borne Diseases/epidemiology , Humans
11.
Front Public Health ; 12: 1302133, 2024.
Article in English | MEDLINE | ID: mdl-38487180

ABSTRACT

Ticks are one of the most important vectors that can transmit pathogens to animals and human beings. This study investigated the dominant tick-borne bacteria carried by ticks and tick-borne infections in forestry populations in Arxan, Inner Mongolia, China. Ticks were collected by flagging from May 2020 to May 2021, and blood samples were collected from individuals at high risk of acquiring tick-borne diseases from March 2022 to August 2023. The pooled DNA samples of ticks were analyzed to reveal the presence of tick-borne bacteria using high-throughput sequencing of the 16S rDNA V3-V4 region, and species-specific polymerase chain reaction (PCR) related to sequencing was performed to confirm the presence of pathogenic bacteria in individual ticks and human blood samples. All sera samples were examined for anti-SFGR using ELISA and anti-B. burgdorferi using IFA and WB. A total of 295 ticks (282 Ixodes persulcatus and 13 Dermacentor silvarum) and 245 human blood samples were collected. Rickettsia, Anaplasma, Borrelia miyamotoi, and Coxiella endosymbiont were identified in I. persulcatus by high-throughput sequencing, while Candidatus R. tarasevichiae (89.00%, 89/100), B. garinii (17.00%, 17/100), B. afzelii (7.00%, 7/100), and B. miyamotoi (7.00%, 7/100) were detected in I. persulcatus, as well the dual co-infection with Candidatus R. tarasevichiae and B. garinii were detected in 13.00% (13/100) of I. persulcatus. Of the 245 individuals, B. garinii (4.90%, 12/245), R. slovaca (0.82%, 2/245), and C. burnetii (0.41%, 1/245) were detected by PCR, and the sequences of the target genes of B. garinii detected in humans were identical to those detected in I. persulcatus. The seroprevalence of anti-SFGR and anti-B. burgdorferi was 5.71% and 13.47%, respectively. This study demonstrated that Candidatus R. tarasevichiae and B. garinii were the dominant tick-borne bacteria in I. persulcatus from Arxan, and that dual co-infection with Candidatus R. tarasevichiae and B. garinii was frequent. This is the first time that B. miyamotoi has been identified in ticks from Arxan and R. solvaca has been detected in humans from Inner Mongolia. More importantly, this study demonstrated the transmission of B. garinii from ticks to humans in Arxan, suggesting that long-term monitoring of tick-borne pathogens in ticks and humans is important for the prevention and control of tick-borne diseases.


Subject(s)
Coinfection , Ixodes , Tick-Borne Diseases , Animals , Humans , Forestry , Seroepidemiologic Studies , Ixodes/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology
12.
Comp Immunol Microbiol Infect Dis ; 107: 102156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457963

ABSTRACT

Virulent species or strains of hematophagous borne pathogens such as Anaplasma spp., Babesia spp., Theileria spp., and Trypanosoma spp., are lethal to susceptible animals or reduce their productivity on a global scale. Nonetheless, efforts to diagnose the causative agents and assess the genotypic profiles as well as quantify the parasite burden of aforementioned parasites across seasons remain limited. Therefore, the present investigation sought to elucidate the genotypic composition of Anaplasma spp., Babesia spp., Theileria spp., and Trypanosoma spp. The findings revealed heightened infection rates during the summer, manifesting a correlation between Trypanosoma spp. infection and seasonal fluctuations. Among the identified pathogens, Anaplasma marginale emerged as the most dominant species, while the occurrence of Anaplasma platys in Thai cattle was confirmed via the sequencing of the groEL gene. Moreover, the study successfully identified two lineages of Trypanosoma theileri. The findings of this investigation offer valuable insights that can inform the development of preventive strategies for vector-borne diseases, such as considering the appropriate use of insect repellent, mosquito or insect nets, or eliminating breeding places for insects in each season.


Subject(s)
Anaplasmosis , Arthropods , Babesia , Cattle Diseases , Parasites , Theileria , Tick-Borne Diseases , Trypanosoma , Animals , Cattle , Seasons , Thailand/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Anaplasma/genetics , Babesia/genetics , Theileria/genetics , Trypanosoma/genetics , Anaplasmosis/epidemiology , Tick-Borne Diseases/veterinary
13.
Ticks Tick Borne Dis ; 15(3): 102327, 2024 May.
Article in English | MEDLINE | ID: mdl-38460341

ABSTRACT

The bites of hard ticks are the major route of transmission of tick-borne infections to humans, causing thousands of cases of diseases worldwide. However, the characteristics of the human population that is exposed to tick bites are still understudied. This work is aimed at characterizing both the structure of the population directly contacting ticks and the human behavioral features associated with tick bites. We studied 25,970 individuals who sought medical help after a tick bite at the Centre for Diagnostics and Prevention of Tick-borne Infections (CDPTBI) in Irkutsk City (Russian Federation). The demographic and behavioral characteristics of the human population were analyzed using z-tests for proportions, the Mann-Whitney U test, and the Spearman rank correlation coefficient. The majority of bitten people were urban residents (70 %), and most of them were either of active ages between 30 and 74 years old (62 %), or children between 0 and 9 years old (approximately 20%). Tick bites occurred mostly in the range of 150 km around the location of the diagnostic facility (83 %). In comparison to the general population, significant differences were revealed in the representation of different age groups among bitten people. The population affected by tick bites included fewer men and women in the ages of 10-29 and over 75 years old than would be predicted based on the demographics of the general population. Vice versa, the proportions of people in the ages of 5-9 and 60-74 increased among bitten people. Among men, such activities (in order of occurrence) as "leisure and recreation", "visiting allotments", "foraging for forest food", and "fulfilling work duties" tend to be more associated with tick bites. Among women, tick bites occurred mainly during "visiting allotments", "leisure and recreation", "visiting cemeteries" and "contact with pets and plants at home". The overall vaccination rate was 12 %; however, significantly more men than women were vaccinated against tick-borne encephalitis (up to 20 % vs. approximately 7 % respectively). The structure of the tick bite - affected population suggests that it is age-specific human behavior that mainly determines the frequency of contact between people and ticks. However, in several age groups, especially among children from 5 to 9 and people aged 30-39 years old, gender-related factors could significantly change the exposure of people to tick bites.


Subject(s)
Ixodidae , Tick Bites , Tick-Borne Diseases , Ticks , Male , Animals , Child , Humans , Female , Adult , Middle Aged , Aged , Infant, Newborn , Infant , Child, Preschool , Tick Bites/epidemiology , Siberia/epidemiology , Russia , Tick-Borne Diseases/epidemiology
14.
Exp Appl Acarol ; 92(3): 479-506, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457048

ABSTRACT

Tick-borne pathogens (TBPs) represent a substantial threat to cattle globally, exerting adverse impacts on production, health, and economic viability. This study delves into the prevalence and implications of TTBPs in cattle sourced from resource-limited smallholder livestock farms situated in southeastern Iran, proximate to Afghanistan and Pakistan. Blood and tick specimens were systematically collected from a cohort of 230 cattle, comprising 150 asymptomatic and 80 symptomatic individuals. Genomic DNA isolated from blood samples underwent rigorous examination for the presence of key TBPs, including Anaplasma marginale, A. phagocytophilum, A. bovis, A. centrale, Babesia bigemina, and Theileria annulata, utilizing multiple genetic markers. Nucleotide sequence analysis facilitated the reconstruction of phylogenetic relationships. The study also evaluated various potential risk factors, such as clinical status, gender, age, breed, tick infestation, and management practices, to elucidate their associations with TTBPs. Among the cattle cohort, a staggering 87.8% (202/230) tested positive for at least one pathogen. Prevalence statistics encompassed A. marginale (72.2%), T. annulata (68.3%), A. phagocytophilum/A. platys-like complex (66.1%), A. centrale (16.7%), B. bigemina (10.0%), and A. bovis (6.1%). Remarkably, mixed infections involving two, three, and four pathogens were detected in 23%, 52.1%, and 2.2% of animals, respectively. Notably, all asymptomatic cattle were positive for at least one TBP. Tick infestation was observed in 62.2% (143/230) of cattle, predominantly caused by Hyalomma anatolicum (82.5%), Rhipicephalus (Boophilus) annulatus (13.1%), and R. sanguineus sensu lato (4.4%). Risk factors linked to TBPs encompassed tick infestation, older age, and crossbred animals. Clinical presentations among symptomatic cattle encompassed fever, anemia, weight loss, anorexia, jaundice, and enlarged superficial lymph nodes. This study underscores the pivotal role of asymptomatic carriers in the propagation of TTBPs within endemic regions. Furthermore, it emphasizes the potential for the implementation of molecular diagnostics to unmask subclinical infections, thereby affording the opportunity for targeted interventions aimed at ameliorating the burden of TTBPs in resource-constrained smallholder dairy farms.


Subject(s)
Cattle Diseases , Phylogeny , Animals , Cattle , Iran/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Female , Male , Risk Factors , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Babesia/isolation & purification , Babesia/genetics , Prevalence , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Theileriasis/epidemiology , Theileriasis/parasitology , Babesiosis/epidemiology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology
15.
BMC Infect Dis ; 24(1): 344, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519907

ABSTRACT

INTRODUCTION: To answer to patients' medical wandering, often due to "unexplained symptoms" of "unexplained diseases" and to misinformation, multidisciplinary care centers for suspected Lyme borreliosis (LB), such as the 5 Tick-Borne Diseases (TBDs) Reference Centers (TBD-RC), were created a few years ago in France, the Netherlands and Denmark. Our study consisted of a comprehensive analysis of the satisfaction of the patients managed at a TBD-RC for suspected LB in the context of scientific and social controversy. METHODS: We included all adults who were admitted to one of the TBD-RC from 2017 to 2020. A telephone satisfaction survey was conducted 12 months after their first consultation. It consisted of 5 domains, including 2 free-text items: "What points did you enjoy?" and "What would you like us to change or to improve?". In the current study, the 2 free-items were analyzed with a qualitative method called reflexive thematic analysis within a semantic and latent approach. RESULTS: The answer rate was 61.3% (349/569) and 97 distinctive codes from the 2-free-text items were identified and classified into five themes: (1) multidisciplinarity makes it possible to set up quality time dedicated to patients; (2) multidisciplinarity enables seamless carepaths despite the public hospital crisis compounded by the COVID-19 pandemic; (3) multidisciplinarity is defined as trust in the team's competences; (4) an ambivalent opinion and uncertainty are barriers to acceptance of the diagnosis, reflecting the strong influence of the controversy around LB; and (5) a lack of adapted communication about TBDs, their management, and ongoing research is present. CONCLUSION: The multidisciplinary management for suspected LB seemed an answer to medical wandering for the majority of patients and helped avoid misinformation, enabling better patient-centered shared information and satisfaction, despite the context of controversy.


Subject(s)
Lyme Disease , Tick-Borne Diseases , Adult , Humans , Pandemics , Lyme Disease/diagnosis , Lyme Disease/therapy , Lyme Disease/epidemiology , Referral and Consultation , Hospitalization
16.
Acta Trop ; 254: 107197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554993

ABSTRACT

Dermacentor (Indocentor) auratus Supino, 1897 occurs in many regions of Southeast Asia and South Asia. In many regions of Southeast Asia and South Asia, targeted tick sampling and subsequent screening of collected D. auratus ticks have detected pathogenic bacteria and viruses in D. auratus. These disease-causing pathogens that have been detected in D. auratus include Anaplasma, Bartonella, Borrelia, Rickettsia (including spotted fever group rickettsiae), African swine fever virus, Lanjan virus, and Kyasanur forest disease virus. Although D. auratus predominantly infests wild pigs, this tick is also an occasional parasite of humans and other animals. Indeed, some 91 % of human otoacariasis cases in Sri Lanka were due to infestation by D. auratus. With the propensity of this tick to feed on multiple species of hosts, including humans, and the detection of pathogenic bacteria and viruses from this tick, D. auratus is a tick of medical, veterinary, and indeed zoonotic concern. The geographic range of this tick, however, is not well known. Therefore, in the present paper, we used the species distribution model, BIOCLIM, to project the potential geographic range of D. auratus, which may aid pathogen and tick-vector surveillance. We showed that the potential geographic range of D. auratus is far wider than the current geographic distribution of this tick, and that regions in Africa, and in North and South America seem to have suitable climates for D. auratus. Interestingly, in Southeast Asia, Borneo and Philippines also have suitable climates for D. auratus, but D. auratus has not been found in these regions yet despite the apparent close proximity of these regions to Mainland Southeast Asia, where D. auratus occurs. We thus hypothesize that the geographic distribution of D. auratus is largely dependent on the movement of wild pigs and whether or not these wild pigs are able to overcome dispersal barriers. We also review the potential pathogens and the diseases that may be associated with D. auratus and provide an updated host index for this tick.


Subject(s)
Dermacentor , Animals , Dermacentor/microbiology , Dermacentor/virology , Humans , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/virology , Swine , Tick Infestations/veterinary , Tick Infestations/epidemiology , Asia, Southeastern/epidemiology , Rickettsia/isolation & purification , Rickettsia/classification , Asia , Zoonoses/parasitology
17.
PLoS Pathog ; 20(3): e1012101, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38502642

ABSTRACT

Emerging and reemerging tick-borne virus infections caused by orthonairoviruses (family Nairoviridae), which are genetically distinct from Crimean-Congo hemorrhagic fever virus, have been recently reported in East Asia. Here, we have established a mouse infection model using type-I/II interferon receptor-knockout mice (AG129 mice) both for a better understanding of the pathogenesis of these infections and validation of antiviral agents using Yezo virus (YEZV), a novel orthonairovirus causing febrile illnesses associated with tick bites in Japan and China. YEZV-inoculated AG129 mice developed hepatitis with body weight loss and died by 6 days post infection. Blood biochemistry tests showed elevated liver enzyme levels, similar to YEZV-infected human patients. AG129 mice treated with favipiravir survived lethal YEZV infection, demonstrating the anti-YEZV effect of this drug. The present mouse model will help us better understand the pathogenicity of the emerging tick-borne orthonairoviruses and the development of specific antiviral agents for their treatment.


Subject(s)
Nairovirus , Tick-Borne Diseases , Animals , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Disease Models, Animal , Mice, Knockout
18.
Acta Trop ; 253: 107172, 2024 May.
Article in English | MEDLINE | ID: mdl-38447703

ABSTRACT

Tick-borne rickettsial pathogens pose significant threats to public and animal health. In Upper Egypt, limited information exists regarding the prevalence and diversity of such tick-borne pathogens. Therefore, this study aimed to conduct a comprehensive investigation to elucidate the presence and variety of tick-borne rickettsial pathogens in Upper Egyptian camels. Our results revealed a prevalence of 2.96 % for Anaplasma marginale and 0.34 % for Candidatus Anaplasma camelii among Hyalomma ticks. However, Ehrlichia spp. weren't detected in our study. The identification of Ca. A. camelii in H. dromedari ticks was documented for the first time, suggesting a potential mode of transmission in camels. Notably, this study marks the first documentation of Rickettsia aeschlimannii with a prevalence of 6.06 % in the study area. Furthermore, we detected Coxiella burnetii in a prevalence of 8.08 % in Hyalomma ticks, indicating a potential risk of Q fever transmission. Molecular techniques results were confirmed by sequencing and phylogenetic analysis and provided valuable insights into the epidemiology of these pathogens, revealing their diversity. This study is vital in understanding tick-borne rickettsial pathogens' prevalence, distribution, and transmission dynamics in Upper Egypt. In conclusion, our findings emphasize the importance of continued research to enhance our understanding of the epidemiology and impact of these pathogens on both animal and human populations.


Subject(s)
Ixodidae , Rickettsia , Tick-Borne Diseases , Ticks , Animals , Humans , Ticks/microbiology , Camelus/microbiology , Egypt/epidemiology , Phylogeny , Rickettsia/genetics , Ehrlichia , Ixodidae/microbiology , Tick-Borne Diseases/epidemiology
19.
Vaccine ; 42(11): 2801-2809, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38508929

ABSTRACT

Ticks as obligate blood-feeding arthropod vectors of pathogenic viruses, bacteria, protozoa and helminths associated with prevalent tick-borne diseases (TBDs) worldwide. These arthropods constitute the second vector after mosquitoes that transmit pathogens to humans and the first vector in domestic animals. Vaccines constitute the safest and more effective approach to control tick infestations and TBDs, but research is needed to identify new antigens and improve vaccine formulations. The tick protein Subolesin (Sub) is a well-known vaccine protective antigen with a highly conserved sequence at both gene and protein levels in the Ixodidae and among arthropods and vertebrates. In this study, transcriptomics and proteomics analyses were conducted together with graph theory data analysis in wild type and Sub knockdown (KD) tick ISE6 cells in order to identify and characterize the functional implications of Sub in tick cells. The results support a key role for Sub in the regulation of gene expression in ticks and the relevance of this antigen in vaccine development against ticks and TBDs. Proteins with differential representation in response to Sub KD provide insights into vaccine protective mechanisms and candidate tick protective antigens.


Subject(s)
Tick Infestations , Tick-Borne Diseases , Ticks , Vaccines , Animals , Humans , Ticks/microbiology , Mosquito Vectors , Antigens , Tick Infestations/prevention & control , Arthropod Proteins/genetics , Tick-Borne Diseases/prevention & control
20.
Transfusion ; 64(4): 751-754, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491925

ABSTRACT

BACKGROUND: Anaplasma phagocytophilum is a tick-borne bacterium and the cause of human granulocytic anaplasmosis (HGA). Here, we report a case of transfusion-transmitted (TT)-HGA involving a leukoreduced (LR) red blood cell (RBC) unit. CASE REPORT: A 64-year-old woman with gastric adenocarcinoma and multiple myeloma who received weekly blood transfusions developed persistent fevers, hypotension, and shortness of breath 1 week after receiving an RBC transfusion. Persistent fevers, new thrombocytopenia, and transaminitis suggested a tick-borne infection. RESULTS: The absence of blood parasites on thick and thin blood smears suggested that malaria and Babesia infection were not present, and the recipient tested negative for antibodies to Borrelia burgdorferi. Blood testing by polymerase chain reaction (PCR) for Ehrlichia and Anaplasma species identified A. phagocytophilum. Treatment with doxycycline resolved the infection; however, the recipient expired due to complications of her known malignancies. The recipient lived in a nursing home and did not have pets or spend time outdoors. The donor was a female in her 70s from Maine who was diagnosed with HGA 3 weeks after donating blood and whose LR-RBCs from the donation were transfused to the recipient 9 days following collection. CONCLUSION: This is a confirmed case of TT-HGA. Although rare, TT-HGA has been reported with LR-RBCs and platelets. In endemic areas, testing for tick-borne associated infections should be considered when investigating post-transfusion complications.


Subject(s)
Anaplasma phagocytophilum , Anaplasmosis , Tick-Borne Diseases , Humans , Animals , Female , Middle Aged , Tick-Borne Diseases/diagnosis , Tick-Borne Diseases/epidemiology , Antibodies, Bacterial , Erythrocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...