Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Int J Infect Dis ; 143: 107038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580070

ABSTRACT

A 76-year-old woman infected with Yezo virus (YEZV) developed liver dysfunction and thrombocytopenia following a tick bite. Despite the severity of her elevated liver enzymes and reduced platelet counts, the patient's condition improved spontaneously without any specific treatment. To our knowledge, this represents the first documented case where the YEZV genome was detected simultaneously in a patient's serum and the tick (Ixodes persulcatus) that bit the patient. This dual detection not only supports the hypothesis that YEZV is a tick-borne pathogen but also underscores the importance of awareness and diagnostic readiness for emerging tick-borne diseases, particularly in regions where these ticks are prevalent.


Subject(s)
Ixodes , Tick Bites , Humans , Female , Aged , Animals , Tick Bites/complications , Ixodes/virology , Tick-Borne Diseases/diagnosis , Tick-Borne Diseases/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Thrombocytopenia/virology , Thrombocytopenia/diagnosis
2.
Acta Trop ; 254: 107197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554993

ABSTRACT

Dermacentor (Indocentor) auratus Supino, 1897 occurs in many regions of Southeast Asia and South Asia. In many regions of Southeast Asia and South Asia, targeted tick sampling and subsequent screening of collected D. auratus ticks have detected pathogenic bacteria and viruses in D. auratus. These disease-causing pathogens that have been detected in D. auratus include Anaplasma, Bartonella, Borrelia, Rickettsia (including spotted fever group rickettsiae), African swine fever virus, Lanjan virus, and Kyasanur forest disease virus. Although D. auratus predominantly infests wild pigs, this tick is also an occasional parasite of humans and other animals. Indeed, some 91 % of human otoacariasis cases in Sri Lanka were due to infestation by D. auratus. With the propensity of this tick to feed on multiple species of hosts, including humans, and the detection of pathogenic bacteria and viruses from this tick, D. auratus is a tick of medical, veterinary, and indeed zoonotic concern. The geographic range of this tick, however, is not well known. Therefore, in the present paper, we used the species distribution model, BIOCLIM, to project the potential geographic range of D. auratus, which may aid pathogen and tick-vector surveillance. We showed that the potential geographic range of D. auratus is far wider than the current geographic distribution of this tick, and that regions in Africa, and in North and South America seem to have suitable climates for D. auratus. Interestingly, in Southeast Asia, Borneo and Philippines also have suitable climates for D. auratus, but D. auratus has not been found in these regions yet despite the apparent close proximity of these regions to Mainland Southeast Asia, where D. auratus occurs. We thus hypothesize that the geographic distribution of D. auratus is largely dependent on the movement of wild pigs and whether or not these wild pigs are able to overcome dispersal barriers. We also review the potential pathogens and the diseases that may be associated with D. auratus and provide an updated host index for this tick.


Subject(s)
Dermacentor , Animals , Dermacentor/microbiology , Dermacentor/virology , Humans , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/virology , Swine , Tick Infestations/veterinary , Tick Infestations/epidemiology , Asia, Southeastern/epidemiology , Rickettsia/isolation & purification , Rickettsia/classification , Asia , Zoonoses/parasitology
3.
Vector Borne Zoonotic Dis ; 23(9): 447-457, 2023 09.
Article in English | MEDLINE | ID: mdl-37695821

ABSTRACT

Objective: We aim to investigate the species composition of ticks and the pathogen characteristics they carry in the Argun port area of the China-Russia border. Materials and Methods: Ticks were collected in surrounding grassland, mixed forest land, and other different habitats around the Argun port area at the Sino-Russian Border of Inner Mongolia in China in April 2019. The presence of 16 potential pathogens, including Yersinia Pestis, Francisella tularensis, Coxiella burnetii (Cb), Anaplasma sp. (Ap), spotted fever group rickettsiae (SFG Rk), Borrelia sp. (Bl), Leptospira, Bartonella spp., Babesia, Crimean-Congo hemorrhagic fever virus, tick-borne encephalitis virus, Bhanja virus, West Nile Virus, severe fever with thrombocytopenia syndrome bunyavirus, Hantaan virus, and bocavirus (boca) was analyzed by polymerase chain reaction. The DNA and amino acid sequences of tick-borne pathogens were compared for homology, and the phylogenetic trees were constructed by using Mega and Lasergene software. Results: A total of 210 ticks were collected and they belonged to three species: Dermacentor nuttalli, Ixodes persulcatus, and Haemaphysalis verticalis. Among them, 165 (78.57%) ticks tested positive for 5 pathogens, namely Ap, SFG Rk, Cb, Bl, and boca. Fifteen (7.14%) ticks were detected coinfection with two pathogens, and none were coinfected with three or more pathogens. Conclusion: This study shows the prevalence of at least five tick-borne pathogens in Argun, and there is a risk of coinfection by two pathogens in one tick. This study reveals the great importance of controlling tick-borne diseases in this region.


Subject(s)
Coinfection , Tick-Borne Diseases , Ticks , Animals , Coinfection/microbiology , Coinfection/virology , Coxiella burnetii , Ixodes , Phylogeny , China , Russia , Tick-Borne Diseases/genetics , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/virology , Ticks/classification , Ticks/genetics , Ticks/microbiology , Ticks/virology
4.
PLoS Pathog ; 17(12): e1010119, 2021 12.
Article in English | MEDLINE | ID: mdl-34860862

ABSTRACT

Disease vectors such as mosquitoes and ticks play a major role in the emergence and re-emergence of human and animal viral pathogens. Compared to mosquitoes, however, much less is known about the antiviral responses of ticks. Here we showed that Asian longhorned ticks (Haemaphysalis longicornis) produced predominantly 22-nucleotide virus-derived siRNAs (vsiRNAs) in response to severe fever with thrombocytopenia syndrome virus (SFTSV, an emerging tick-borne virus), Nodamura virus (NoV), or Sindbis virus (SINV) acquired by blood feeding. Notably, experimental acquisition of NoV and SINV by intrathoracic injection also initiated viral replication and triggered the production of vsiRNAs in H. longicornis. We demonstrated that a mutant NoV deficient in expressing its viral suppressor of RNAi (VSR) replicated to significantly lower levels than wildtype NoV in H. longicornis, but accumulated to higher levels after knockdown of the tick Dicer2-like protein identified by phylogeny comparison. Moreover, the expression of a panel of known animal VSRs in cis from the genome of SINV drastically enhanced the accumulation of the recombinant viruses. This study establishes a novel model for virus-vector-mouse experiments with longhorned ticks and provides the first in vivo evidence for an antiviral function of the RNAi response in ticks. Interestingly, comparing the accumulation levels of SINV recombinants expressing green fluorescent protein or SFTSV proteins identified the viral non-structural protein as a putative VSR. Elucidating the function of ticks' antiviral RNAi pathway in vivo is critical to understand the virus-host interaction and the control of tick-borne viral pathogens.


Subject(s)
Host-Pathogen Interactions/physiology , RNA Interference , RNA Virus Infections/virology , Ticks/virology , Animals , Disease Models, Animal , Mice , Nodaviridae , RNA, Small Interfering , Severe Fever with Thrombocytopenia Syndrome , Sindbis Virus , Tick-Borne Diseases/virology
5.
Viruses ; 13(11)2021 10 27.
Article in English | MEDLINE | ID: mdl-34834970

ABSTRACT

Tick-borne flaviviruses (TBFV) can cause severe neurological complications in humans, but differences in tissue tropism and pathogenicity have been described for individual virus strains. Viral protein synthesis leads to the induction of the unfolded protein response (UPR) within infected cells. The IRE1 pathway has been hypothesized to support flavivirus replication by increasing protein and lipid biogenesis. Here, we investigated the role of the UPR in TBFV infection in human astrocytes, neuronal and intestinal cell lines that had been infected with tick-borne encephalitis virus (TBEV) strains Neudoerfl and MucAr-HB-171/11 as well as Langat virus (LGTV). Both TBEV strains replicated better than LGTV in central nervous system (CNS) cells. TBEV strain MucAr-HB-171/11, which is associated with gastrointestinal symptoms, replicated best in intestinal cells. All three viruses activated the inositol-requiring enzyme 1 (IRE1) pathway via the X-box binding protein 1 (XBP1). Interestingly, the neurotropic TBEV strain Neudoerfl induced a strong upregulation of XBP1 in all cell types, but with faster kinetics in CNS cells. In contrast, TBEV strain MucAr-HB-171/11 failed to activate the IRE1 pathway in astrocytes. The low pathogenic LGTV led to a mild induction of IRE1 signaling in astrocytes and intestinal cells. When cells were treated with IRE1 inhibitors prior to infection, TBFV replication in astrocytes was significantly reduced. This confirms a supporting role of the IRE1 pathway for TBFV infection in relevant viral target cells and suggests a correlation between viral tissue tropism and the cell-type dependent induction of the unfolded protein response.


Subject(s)
Endoribonucleases/metabolism , Flavivirus , Protein Serine-Threonine Kinases/metabolism , Tick-Borne Diseases/virology , Unfolded Protein Response , Animals , Astrocytes/virology , Cell Line , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/virology , Endoribonucleases/genetics , Humans , Neurons/virology , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Ticks , Viral Tropism , Virus Replication
6.
Infect Genet Evol ; 96: 105103, 2021 12.
Article in English | MEDLINE | ID: mdl-34619391

ABSTRACT

Ticks are a group of obligate blood-sucking ectoparasites that play a critical role in transmitting several important zoonotic pathogens that can infect animals and humans. Viruses are part of the tick microbiome and are involved in the transmission of important diseases. Furthermore, the little information on these as etiological agents of zoonoses suggests the need to study these microorganisms. For this reason, in this study, we sought to characterize the virome in Rhipicephalus microplus, Dermacentor nitens, and Rhipicephalus sanguineus s.l., which were collected from different domestic animals in Antioquia, Colombia. RNA sequencing was used for virome characterization in these three tick species, using RNA-dependent polymerase as a marker gene. Forty-eight sequences corresponding to 14 different viruses were identified, some of which were previously identified in the tick's virome. Overall, these data indicate that ticks from domestic animals in cattle farms harbor a wide viral diversity at the local scale. Thus, the metatranscriptomic approach provides important baseline information for monitoring the tick virome and to develop future studies on their biology, host-virus interactions, host range, worldwide distribution, and finally, their potential role as emerging vector-borne agents.


Subject(s)
Animals, Domestic/virology , Dermacentor/virology , Rhipicephalus/virology , Tick Infestations/veterinary , Tick-Borne Diseases/veterinary , Virome , Animals , Cattle , Cattle Diseases/virology , Colombia , Dog Diseases/virology , Dogs , Female , Horse Diseases/virology , Horses , Male , Sheep , Sheep Diseases/virology , Sheep, Domestic , Tick Infestations/parasitology , Tick-Borne Diseases/virology
7.
Emerg Microbes Infect ; 10(1): 1975-1987, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34570681

ABSTRACT

ABSTRACTTick-borne viruses (TBVs) capable of transmitting between ticks and hosts have been increasingly recognized as a global public health concern. In this study, Hyalomma ticks and serum samples from camels were collected using recorded sampling correlations in eastern Kenya. Viromes of pooled ticks were profiled by metagenomic sequencing, revealing a diverse community of viruses related to at least 11 families. Five highly abundant viruses, including three novel viruses (Iftin tick virus, Mbalambala tick virus [MATV], and Bangali torovirus [BanToV]) and new strains of previously identified viruses (Bole tick virus 4 [BLTV4] and Liman tick virus [LMTV]), were characterized in terms of genome sequences, organizations, and phylogeny, and their molecular prevalence was investigated in individual ticks. Moreover, viremia and antibody responses to these viruses have been investigated in camels. MATV, BLTV4, LMTV, and BanToV were identified as viral pathogens that can potentially cause zoonotic diseases. The transmission patterns of these viruses were summarized, suggesting three different types according to the sampling relationships between viral RNA-positive ticks and camels positive for viral RNA and/or antibodies. They also revealed the frequent transmission of BanToV and limited but effective transmission of other viruses between ticks and camels. Furthermore, follow-up surveys on TBVs from tick, animal, and human samples with definite sampling relationships are suggested. The findings revealed substantial threats from the emerging TBVs and may guide the prevention and control of TBV-related zoonotic diseases in Kenya and in other African countries.


Subject(s)
Camelus/virology , RNA Virus Infections/transmission , RNA Virus Infections/veterinary , RNA Viruses/genetics , Tick-Borne Diseases/virology , Ticks/virology , Animals , Genome, Viral/genetics , Humans , Kenya/epidemiology , RNA, Viral/genetics , Tick Infestations/epidemiology , Tick-Borne Diseases/epidemiology , Ticks/classification , Virome/genetics
8.
Ticks Tick Borne Dis ; 12(6): 101820, 2021 11.
Article in English | MEDLINE | ID: mdl-34555711

ABSTRACT

Ticks are vectors of a wide range of zoonotic viruses of medical and veterinary importance. Recently, metagenomics studies demonstrated that they are also the source of potentially pathogenic novel viruses. During the period from 2015 to 2017, questing ticks were collected by dragging the vegetation from geographically distant locations in the Republic of Korea (ROK) and a target-independent high-throughput sequencing method was utilized to study their virome. A total of seven viruses, including six putative novel viral entities, were identified. Genomic analysis showed that the novel viruses were most closely related to members in the orders Jingchuvirales and Bunyavirales. Phylogenetic reconstruction showed that the Bunyavirales-like viruses grouped in the same clade with other viruses within the Nairovirus and Phlebovirus genera, while the novel Jingchuvirales-like virus grouped together with other viruses within the family Chuviridae. Real-time RT-PCR was used to determine the geographic distribution and prevalence of these viruses in adult ticks. These novel viruses have a wide geographic distribution in the ROK with prevalences ranging from 2% to 18%. Our study expands the knowledge about the composition of the tick virome and highlights the wide diversity of viruses they harbor in the ROK. The discovery of novel viruses associated with ticks in the ROK highlights the need for an active tick-borne disease surveillance program to identify possible reservoirs of putative novel human pathogens.


Subject(s)
Ixodidae/virology , Viruses/isolation & purification , Animals , Ixodidae/growth & development , Larva/growth & development , Larva/virology , Nymph/growth & development , Nymph/virology , Republic of Korea , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/transmission , Tick-Borne Diseases/virology
9.
Viruses ; 13(7)2021 07 18.
Article in English | MEDLINE | ID: mdl-34372602

ABSTRACT

Arthropod-borne infections are a medical and economic threat to humans and livestock. Over the last three decades, several unprecedented viral outbreaks have been recorded in the Western part of the Arabian Peninsula. However, little is known about the circulation and diversity of arthropod-borne viruses in this region. To prepare for new outbreaks of vector-borne diseases, it is important to detect which viruses circulate in each vector population. In this study, we used a metagenomics approach to characterize the RNA virome of ticks infesting dromedary camels (Camelus dromedaries) in Makkah province, Saudi Arabia. Two hundred ticks of species Hyalomma dromedarii (n = 196) and Hyalomma impeltatum (n = 4) were collected from the Alkhurma district in Jeddah and Al-Taif city. Virome analysis showed the presence of several tick-specific viruses and tick-borne viruses associated with severe illness in humans. Some were identified for the first time in the Arabian Peninsula. The human disease-associated viruses detected included Crimean Congo Hemorrhagic fever virus and Tamdy virus (family Nairoviridae), Guertu virus (family Phenuiviridae), and a novel coltivirus that shares similarities with Tarumizu virus, Tai forest reovirus and Kundal virus (family Reoviridae). Furthermore, Alkhurma hemorrhagic virus (Flaviviridae) was detected in two tick pools by specific qPCR. In addition, tick-specific viruses in families Phenuiviridae (phleboviruses), Iflaviridae, Chuviridae, Totiviridae and Flaviviridae (Pestivirus) were detected. The presence of human pathogenetic viruses warrants further efforts in tick surveillance, xenosurveillence, vector control, and sero-epidemiological investigations in human and animal populations to predict, contain and mitigate future outbreaks in the region.


Subject(s)
Metagenomics/methods , RNA, Viral/genetics , Tick-Borne Diseases/virology , Ticks/virology , Virome/genetics , Viruses/genetics , Animals , Camelus , Humans , Saudi Arabia , Tick-Borne Diseases/prevention & control , Viruses/classification , Viruses/isolation & purification
10.
Viruses ; 13(7)2021 07 19.
Article in English | MEDLINE | ID: mdl-34372604

ABSTRACT

Dugbe orthonairovirus (DUGV) and Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) are tick-borne arboviruses within the order Bunyavirales. Both viruses are endemic in several African countries and can induce mild (DUGV, BSL 3) or fatal (CCHFV, BSL 4) disease in humans. Ruminants play a major role in their natural transmission cycle. Therefore, they are considered as suitable indicator animals for serological monitoring studies to assess the risk for human infections. Although both viruses do not actually belong to the same serogroup, cross-reactivities have already been reported earlier-hence, the correct serological discrimination of DUGV and CCHFV antibodies is crucial. In this study, 300 Nigerian cattle sera (150 CCHFV seropositive and seronegative samples, respectively) were screened for DUGV antibodies via N protein-based ELISA, indirect immunofluorescence (iIFA) and neutralization assays. Whereas no correlation between the CCHFV antibody status and DUGV seroprevalence data could be demonstrated with a newly established DUGV ELISA, significant cross-reactivities were observed in an immunofluorescence assay. Moreover, DUGV seropositive samples did also cross-react in a species-adapted commercial CCHFV iIFA. Therefore, ELISAs seem to be able to reliably differentiate between DUGV and CCHFV antibodies and should preferentially be used for monitoring studies. Positive iIFA results should always be confirmed by ELISAs.


Subject(s)
Antibodies, Viral/blood , Coinfection/veterinary , Coinfection/virology , Enzyme-Linked Immunosorbent Assay/standards , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Nairobi sheep disease virus/immunology , Tick-Borne Diseases/veterinary , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/virology , Coinfection/epidemiology , Coinfection/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G/blood , Nigeria/epidemiology , Ruminants/immunology , Ruminants/virology , Seroepidemiologic Studies , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/immunology , Tick-Borne Diseases/virology , Ticks/virology
11.
Ticks Tick Borne Dis ; 12(6): 101800, 2021 11.
Article in English | MEDLINE | ID: mdl-34352531

ABSTRACT

Lyme borreliosis is a zoonotic tick-borne infection representing the most frequent vector-borne disease in the northern hemisphere. The Mediterranean rim is generally described as unsuitable for the European vector, Ixodes ricinus. We conducted an epidemiological study to assess whether I. ricinus was present and study its infection status for tick-borne bacteria. Ticks originating from southeastern France were obtained from flagging sampling and removed from animals and tick-bitten patients. Species level identification used morphological keys and MALDI-TOF MS. Quantitative PCR and sequencing assays were used to detect and identify tick-associated bacteria (Borrelia, Rickettsia, Anaplasmataceae, Bartonella, Coxiella burnetii) in each specimen. A total of 1232 ticks were collected in several localities. Among these, 863 were identified as I. ricinus (70%). Bacterial screening allowed identification of Lyme group Borrelia among I. ricinus ticks originating from various regional areas. Other emerging tick-borne pathogens like Borrelia miyamotoi and Rickettsia species were also detected. The Alpes-Maritimes region, part of the French Riviera, harbours I. ricinus ticks infected with Lyme group Borrelia and several other tick-borne bacterial agents. Clinicians and outdoor activity participants should be aware of the local Lyme borreliosis transmission risk.


Subject(s)
Animal Distribution , Communicable Diseases, Emerging/epidemiology , Ixodes , Tick-Borne Diseases/epidemiology , Animals , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/parasitology , Communicable Diseases, Emerging/virology , France/epidemiology , Ixodes/microbiology , Ixodes/parasitology , Ixodes/physiology , Ixodes/virology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/virology
12.
Viruses ; 13(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-34200385

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tickborne infectious disease in China, Korea, and Japan caused by the SFTS virus (SFTSV). SFTS has a high mortality rate due to multiorgan failure. Recently, there are several reports on SFTS patients with mycosis. Here, we report a middle-aged Japanese SFTS patient with invasive pulmonary aspergillosis (IPA) revealed by an autopsy. A 61-year-old man with hypertension working in forestry was bitten by a tick and developed fever, diarrhea, and anorexia in 2 days. On day 4, consciousness disorder was appearing, and the patient was transferred to the University of Miyazaki Hospital. A blood test showed leukocytopenia, thrombocytopenia, as well as elevated levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and creatine kinase. The SFTSV gene was detected in serum using a reverse-transcription polymerase chain reaction. On day 5, respiratory failure appeared and progressed rapidly, and on day 7, the patient died. An autopsy was performed that revealed hemophagocytosis in the bone marrow and bleeding of several organs. IPA was observed in lung specimens. SFTSV infection may be a risk factor for developing IPA. Early diagnosis and treatment of IPA may be important in patients with SFTS.


Subject(s)
Invasive Pulmonary Aspergillosis/diagnostic imaging , Invasive Pulmonary Aspergillosis/virology , Phlebovirus/pathogenicity , Severe Fever with Thrombocytopenia Syndrome/complications , Animals , Autopsy , Bone Marrow/virology , Fatal Outcome , Humans , Invasive Pulmonary Aspergillosis/microbiology , Japan , Lung/pathology , Lung/virology , Male , Middle Aged , Risk Factors , Severe Fever with Thrombocytopenia Syndrome/diagnosis , Thrombocytopenia/etiology , Tick-Borne Diseases/transmission , Tick-Borne Diseases/virology , Ticks/virology
13.
Viruses ; 13(7)2021 06 22.
Article in English | MEDLINE | ID: mdl-34206476

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a widespread, tick-borne pathogen that causes Crimean-Congo hemorrhagic fever (CCHF) with high morbidity and mortality. CCHFV is transmitted to humans through tick bites or direct contact with patients or infected animals with viremia. Currently, climate change and globalization have increased the transmission risk of this biosafety level (BSL)-4 virus. The treatment options of CCHFV infection remain limited and there is no FDA-approved vaccine or specific antivirals, which urges the identification of potential therapeutic targets and the design of CCHF therapies with greater effort. In this article, we discuss the current progress and some future directions in the development of antiviral strategies against CCHFV.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hemorrhagic Fever Virus, Crimean-Congo/drug effects , Hemorrhagic Fever, Crimean/drug therapy , Tick-Borne Diseases/drug therapy , Tick-Borne Diseases/virology , Animals , Arachnid Vectors/virology , Hemorrhagic Fever, Crimean/transmission , Hemorrhagic Fever, Crimean/virology , Humans , Mice , Tick-Borne Diseases/transmission , Ticks/virology
14.
Sci Rep ; 11(1): 15472, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326447

ABSTRACT

Ixodes ricinus is the most widely distributed tick species in Europe. Mainly deciduous and mixed forests, pastures, and urban parks are habitats preferred by this species. I. ricinus ticks are also one of the most important reservoirs and vectors of human and animal infectious diseases on the continent. Borrelia burgdorferi s.l. spirochetes causing Lyme borreliosis (LB) in humans and tick borne encephalitis virus (TBEV), which is a causative agent of tick-borne encephalitis (TBE), are pathogens with the highest medical importance transmitted by this species. Investigations of the environmental determinants of the occurrence and activity of I. ricinus are crucial for elucidation of the environmental background of tick-borne diseases. In eastern Poland, I. ricinus is a common species with peak activity recorded in May in the entire region. During this period, 49 females, 32 males, and 55 I. ricinus nymphs were collected from an area of 900 m2. The results of the present study show that the occurrence and seasonal activity of this tick species are mainly influenced by microhabitat conditions, and saturation deficit has a significant effect on the activity of the species. Eastern Poland is characterized by a high incidence of LB and TBE. We have shown a correlation between the forest cover and the number of reported cases of tick-borne diseases.


Subject(s)
Borrelia burgdorferi , Ixodes/microbiology , Ixodes/virology , Animals , Ecosystem , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne/virology , Environment , Female , Forests , Geography , Incidence , Lyme Disease/microbiology , Male , Poland/epidemiology , Prevalence , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/virology
15.
Emerg Microbes Infect ; 10(1): 1200-1208, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34044749

ABSTRACT

ABSTRACTSeveral nairo-like viruses have been discovered in ticks in recent years, but their relevance to public health remains unknown. Here, we found a patient who had a history of tick bite and suffered from a febrile illness was infected with a previously discovered RNA virus, Beiji nairovirus (BJNV), in the nairo-like virus group of the order Bunyavirales. We isolated the virus by cell culture assay. BJNV could induce cytopathic effects in the baby hamster kidney and human hepatocellular carcinoma cells. Negative-stain electron microscopy revealed enveloped and spherical viral particles, morphologically similar to those of nairoviruses. We identified 67 patients as BJNV infection in 2017-2018. The median age of patients was 48 years (interquartile range 41-53 years); the median incubation period was 7 days (interquartile range 3-12 days). Most patients were men (70%), and a few (10%) had underlying diseases. Common symptoms of infected patients included fever (100%), headache (99%), depression (63%), coma (63%), and fatigue (54%), myalgia or arthralgia (45%); two (3%) patients became critically ill and one died. BJNV could cause growth retardation, viremia and histopathological changes in infected suckling mice. BJNV was also detected in sheep, cattle, and multiple tick species. These findings demonstrated that the newly discovered nairo-like virus may be associated with a febrile illness, with the potential vectors of ticks and reservoirs of sheep and cattle, highlighting its public health significance and necessity of further investigation in the tick-endemic areas worldwide.


Subject(s)
Bunyaviridae Infections/virology , Communicable Diseases, Emerging/virology , Nairovirus , Tick-Borne Diseases/virology , Adult , Animals , Antibodies, Viral/blood , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/immunology , Bunyaviridae Infections/physiopathology , China/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/immunology , Communicable Diseases, Emerging/physiopathology , Female , Fever , Genome, Viral , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Nairovirus/classification , Nairovirus/genetics , Nairovirus/immunology , Nairovirus/isolation & purification , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/immunology , Tick-Borne Diseases/physiopathology , Ticks/virology , Viremia
16.
PLoS Pathog ; 17(5): e1009587, 2021 05.
Article in English | MEDLINE | ID: mdl-33974679

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne emerging phlebovirus with high mortality rates of 6.0 to 30%. SFTSV infection is characterized by high fever, thrombocytopenia, leukopenia, hemorrhage and multiple organ failures. Currently, specific therapies and vaccines remain elusive. Suitable small animal models are urgently needed to elucidate the pathogenesis and evaluate the potential drug and vaccine for SFTSV infection. Previous models presented only mild or no pathogenesis of SFTS, limiting their applications in SFTSV infection. Therefore, it is an urgent need to develop a small animal model for the investigation of SFTSV pathogenesis and evaluation of therapeutics. In the current report, we developed a SFTSV infection model based on the HuPBL-NCG mice that recapitulates many pathological characteristics of SFTSV infection in humans. Virus-induced histopathological changes were identified in spleen, lung, kidney, and liver. SFTSV was colocalized with macrophages in the spleen and liver, suggesting that the macrophages in the spleen and liver could be the principle target cells of SFTSV. In addition, histological analysis showed that the vascular endothelium integrity was severely disrupted upon viral infection along with depletion of platelets. In vitro cellular assays further revealed that SFTSV infection increased the vascular permeability of endothelial cells by promoting tyrosine phosphorylation and internalization of the adhesion molecule vascular endothelial (VE)-cadherin, a critical component of endothelial integrity. In addition, we found that both virus infection and pathogen-induced exuberant cytokine release dramatically contributed to the vascular endothelial injury. We elucidated the pathogenic mechanisms of hemorrhage syndrome and developed a humanized mouse model for SFTSV infection, which should be helpful for anti-SFTSV therapy and pathogenesis study.


Subject(s)
Disease Models, Animal , Phlebovirus/pathogenicity , Severe Fever with Thrombocytopenia Syndrome/pathology , Tick-Borne Diseases/pathology , Animals , Blood Platelets/pathology , Blood Platelets/virology , Cell Adhesion Molecules/metabolism , Endothelial Cells/pathology , Endothelial Cells/virology , Female , Humans , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology , Macrophages/pathology , Macrophages/virology , Mice , Phosphorylation , Severe Fever with Thrombocytopenia Syndrome/virology , Tick-Borne Diseases/virology
17.
Front Immunol ; 12: 625993, 2021.
Article in English | MEDLINE | ID: mdl-33643313

ABSTRACT

Ticks and tick transmitted infectious agents are increasing global public health threats due to increasing abundance, expanding geographic ranges of vectors and pathogens, and emerging tick-borne infectious agents. Greater understanding of tick, host, and pathogen interactions will contribute to development of novel tick control and disease prevention strategies. Tick-borne pathogens adapt in multiple ways to very different tick and vertebrate host environments and defenses. Ticks effectively pharmacomodulate by its saliva host innate and adaptive immune defenses. In this review, we examine the idea that successful synergy between tick and tick-borne pathogen results in host immune tolerance that facilitates successful tick infection and feeding, creates a favorable site for pathogen introduction, modulates cutaneous and systemic immune defenses to establish infection, and contributes to successful long-term infection. Tick, host, and pathogen elements examined here include interaction of tick innate immunity and microbiome with tick-borne pathogens; tick modulation of host cutaneous defenses prior to pathogen transmission; how tick and pathogen target vertebrate host defenses that lead to different modes of interaction and host infection status (reservoir, incompetent, resistant, clinically ill); tick saliva bioactive molecules as important factors in determining those pathogens for which the tick is a competent vector; and, the need for translational studies to advance this field of study. Gaps in our understanding of these relationships are identified, that if successfully addressed, can advance the development of strategies to successfully disrupt both tick feeding and pathogen transmission.


Subject(s)
Adaptive Immunity , Immune Tolerance , Immunity, Innate , Salivary Glands/immunology , Skin/immunology , Tick Bites/immunology , Tick-Borne Diseases/immunology , Ticks/immunology , Animals , Host-Pathogen Interactions , Humans , Salivary Glands/microbiology , Salivary Glands/virology , Skin/microbiology , Skin/virology , Tick Bites/microbiology , Tick Bites/virology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/transmission , Tick-Borne Diseases/virology , Ticks/microbiology , Ticks/virology
18.
PLoS Negl Trop Dis ; 15(3): e0009280, 2021 03.
Article in English | MEDLINE | ID: mdl-33720942

ABSTRACT

Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a geographically widespread tick-borne arbovirus that has been recognized by the WHO as an emerging pathogen needing urgent attention to ensure preparedness for potential outbreaks. Therefore, availability of accurate diagnostic tools for identification of acute cases is necessary. A panel comprising 121 sequential serum samples collected during acute, convalescent and subsided phase of PCR-proven CCHFV infection from 16 Kosovar patients was used to assess sensitivity. Serum samples from 60 healthy Kosovar blood donors were used to assess specificity. All samples were tested with two IgM/IgG immunofluorescence assays (IFA) from BNITM, the CCHFV Mosaic 2 IgG and IgM indirect immunofluorescence tests (IIFT) from EUROIMMUN, two BlackBox ELISAs for the detection of CCHFV-specific IgM and IgG antibodies (BNITM), two Anti-CCHFV ELISAs IgM and IgG from EUROIMMUN using recombinant structural proteins of CCHFV antigens, and two ELISAs from Vector-Best (IgM: µ-capture ELISA, IgG: indirect ELISA using immobilized CCHFV antigen). Diagnostic performances were compared between methods using sensitivity, specificity, concordance and degree of agreement with particular focus on the phase of the infection. In early and convalescent phases of infection, the sensitivities for detecting specific IgG antibodies differed for the ELISA test. The BlackBox IgG ELISA yielded the highest, followed by the EUROIMMUN IgG ELISA and finally the VectorBest IgG ELISA with the lowest sensitivities. In the subsided phase, the VectorBest IgM ELISA detected a high rate of samples that were positive for anti-CCHFV IgM antibodies. Both test systems based on immunofluorescence showed an identical sensitivity for detection of anti-CCHFV IgM antibodies in acute and convalescent phases of infection. Available serological test systems detect anti-CCHFV IgM and IgG antibodies accurately, but their diagnostic performances vary with respect to the phase of the infection.


Subject(s)
Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay/methods , Fluorescent Antibody Technique, Direct/methods , Fluorescent Antibody Technique, Indirect/methods , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Hemorrhagic Fever, Crimean/diagnosis , Adolescent , Adult , Animals , Child , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Kosovo , Male , Middle Aged , Sensitivity and Specificity , Tick-Borne Diseases/diagnosis , Tick-Borne Diseases/virology , Ticks/virology , Young Adult
19.
Nat Med ; 27(3): 434-439, 2021 03.
Article in English | MEDLINE | ID: mdl-33603240

ABSTRACT

The genus Orthonairovirus, which is part of the family Nairoviridae, includes the important tick-transmitted pathogens Crimean-Congo hemorrhagic fever virus and Nairobi sheep disease virus, as well as many other poorly characterized viruses found in ticks, birds and mammals1,2. In this study, we identified a new orthonairovirus, Songling virus (SGLV), from patients who reported being bitten by ticks in Heilongjiang Province in northeastern China. SGLV shared similar genomic and morphological features with orthonairoviruses and phylogenetically formed a unique clade in Tamdy orthonairovirus of the Nairoviridae family. The isolated SGLV induced cytopathic effects in human hepatoma cells in vitro. SGLV infection was confirmed in 42 hospitalized patients analyzed between 2017 and 2018, with the main clinical manifestations being headache, fever, depression, fatigue and dizziness. More than two-thirds (69%) of patients generated virus-specific antibody responses in the acute phase. Taken together, these results suggest that this newly discovered orthonairovirus is associated with human febrile illness in China.


Subject(s)
Fever/complications , Nairovirus/isolation & purification , Nairovirus/pathogenicity , Tick-Borne Diseases/virology , Virus Diseases/virology , Adult , Aged , China , Female , Fever/virology , Humans , Male , Middle Aged , Tick-Borne Diseases/complications , Virus Diseases/complications
20.
Arch Virol ; 166(3): 915-919, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33475831

ABSTRACT

Tick-borne pathogens are an emerging public health threat worldwide. However, information on tick-borne viruses is scanty in sub-Saharan Africa. Here, by RT-PCR, 363 ticks (Amblyomma, Hyalomma and Rhipicephalus) in the Namwala and Livingstone districts of Zambia were screened for tick-borne phleboviruses (TBPVs). TBPVs (L gene) were detected in 19 (5.2%) Rhipicephalus ticks in Namwala. All the detected TBPVs were Shibuyunji viruses. Phylogenetically, they were closely related to American dog tick phlebovirus. This study highlights the possible role of Rhipicephalus ticks as the main host of Shibuyunji virus and suggests that these viruses may be present outside the area where they were initially discovered.


Subject(s)
Amblyomma/virology , Phlebotomus Fever/epidemiology , Phlebovirus/isolation & purification , Rhipicephalus/virology , Tick-Borne Diseases/epidemiology , Animals , Genetic Variation/genetics , Phlebotomus Fever/transmission , Phlebotomus Fever/virology , Phlebovirus/genetics , Phylogeny , Prevalence , Sequence Analysis, DNA , Tick-Borne Diseases/virology , Zambia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...