Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.315
Filter
1.
Front Cell Infect Microbiol ; 14: 1384284, 2024.
Article in English | MEDLINE | ID: mdl-38725451

ABSTRACT

Japanese spotted fever (JSF) is caused by Rickettsia japonica, mainly vectored by hard ticks. However, whether R. japonica can be transmitted by other arthropods remains unknown. Moreover, it is of interest to investigate whether other Rickettsia species cause spotted fever in endemic areas. In this study, a survey of Rickettsia species was performed in hematophagous arthropods (mosquitoes, tabanids, and ticks) from endemic areas for JSF in Hubei Province, central China. The results showed that the diversity and prevalence of Rickettsia species in mosquitoes are low, suggesting that mosquitoes may not be the vector of zoonotic Rickettsia species. A novel Rickettsia species showed a high prevalence (16.31%, 23/141) in tabanids and was named "Candidatus Rickettsia tabanidii." It is closely related to Rickettsia from fleas and mosquitoes; however, its pathogenicity in humans needs further investigation. Five Rickettsia species were identified in ticks. Rickettsia japonica, the agent of JSF, was detected only in Haemaphysalis longicornis and Haemaphysalis hystricis, suggesting that they may be the major vectors of R. japonica. Notably, two novel species were identified in H. hystricis ticks, one belonging to the spotted fever group and the other potentially belonging to the ancestral group. The latter one named "Candidatus Rickettsia hubeiensis" may provide valuable insight into the evolutionary history of Rickettsia.


Subject(s)
Phylogeny , Rickettsia , Spotted Fever Group Rickettsiosis , Animals , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , China/epidemiology , Spotted Fever Group Rickettsiosis/microbiology , Spotted Fever Group Rickettsiosis/epidemiology , Ticks/microbiology , Humans , Arthropods/microbiology , DNA, Bacterial/genetics , Culicidae/microbiology , RNA, Ribosomal, 16S/genetics , Endemic Diseases , Sequence Analysis, DNA , Siphonaptera/microbiology
2.
PLoS One ; 19(5): e0302874, 2024.
Article in English | MEDLINE | ID: mdl-38722910

ABSTRACT

Lyme disease is the most common wildlife-to-human transmitted disease reported in North America. The study of this disease requires an understanding of the ecology of the complex communities of ticks and host species involved in harboring and transmitting this disease. Much of the ecology of this system is well understood, such as the life cycle of ticks, and how hosts are able to support tick populations and serve as disease reservoirs, but there is much to be explored about how the population dynamics of different host species and communities impact disease risk to humans. In this study, we construct a stage-structured, empirically-informed model with host dynamics to investigate how host population dynamics can affect disease risk to humans. The model describes a tick population and a simplified community of three host species, where primary nymph host populations are made to fluctuate on an annual basis, as commonly observed in host populations. We tested the model under different environmental conditions to examine the effect of environment on the interactions of host dynamics and disease risk. Results show that allowing for host dynamics in the model reduces mean nymphal infection prevalence and increases the maximum annual prevalence of nymphal infection and the density of infected nymphs. Effects of host dynamics on disease measures of nymphal infection prevalence were nonlinear and patterns in the effect of dynamics on amplitude in nymphal infection prevalence varied across environmental conditions. These results highlight the importance of further study of the effect of community dynamics on disease risk. This will involve the construction of further theoretical models and collection of robust field data to inform these models. With a more complete understanding of disease dynamics we can begin to better determine how to predict and manage disease risk using these models.


Subject(s)
Lyme Disease , Population Dynamics , Lyme Disease/epidemiology , Animals , Humans , Ixodes/microbiology , Ixodes/physiology , Models, Theoretical , Ticks/microbiology , Ticks/physiology , Models, Biological , Borrelia burgdorferi/physiology , Borrelia burgdorferi/pathogenicity , Host-Parasite Interactions , Nymph
3.
PLoS Negl Trop Dis ; 18(5): e0012141, 2024 May.
Article in English | MEDLINE | ID: mdl-38728365

ABSTRACT

BACKGROUND: Francisella tularensis, the bacterium that causes tularemia, has been a persistent and widespread pathogen in various regions of the world for centuries. Francisella tularensis can affect humans and various domestic and wild animals. The current study aimed to determine the epidemiological status of tularemia in countries of the WHO Eastern Mediterranean Region (EMRO) through a systematic review and meta-analysis. METHODS: All included studies were identified through a systematic search of online databases, including Scopus, PubMed, Web of Science, and EMBASE, through July 26, 2022, using keywords and suitable combinations. We focused on cross-sectional studies investigating the prevalence of F. tularensis. The weighted pooled prevalence was calculated using a random-effects model. RESULTS: A total of 206 studies were identified, of which 20 were finally included in the analysis. The human seroprevalence of tularemia in WHO-EMRO countries was 6.2% (95% CI, 4.2 9.2). In the subgroup analysis, anti-F. tularensis antibodies were found in 6.92% and 5.5% of the high-risk individuals and Iran, respectively. The pooled prevalence of F. tularensis in environmental samples (water and soil) from the WHO-EMRO countries was 5.8% (9.4% by PCR and 0.5% by culture). In addition, 2.5% (95% CI, 0.2 0.22.7) of ticks in WHO-EMRO countries were positive for F. tularensis. The pooled prevalence of F. tularensis in rodents is 2.0% (1.1% by PCR and 3.7% by serology). In addition, 0.6% of domestic ruminants (0.4% by PCR and 2.4% by serology) were positive for F. tularensis in WHO-EMRO countries. CONCLUSION: According to the results of the present study, tularemia is an endemic but neglected disease in the WHO-EMRO region. However, most studies on tularemia are limited to a few countries in this region. Studies on tularemia in human populations, reservoirs, and vectors have been conducted in all countries in the WHO-EMRO region to obtain more detailed information about the epidemiology of tularemia in these regions.


Subject(s)
Francisella tularensis , Tularemia , Tularemia/epidemiology , Tularemia/microbiology , Humans , Animals , Francisella tularensis/isolation & purification , Mediterranean Region/epidemiology , Prevalence , Seroepidemiologic Studies , World Health Organization , Cross-Sectional Studies , Ticks/microbiology
4.
Front Cell Infect Microbiol ; 14: 1382228, 2024.
Article in English | MEDLINE | ID: mdl-38698904

ABSTRACT

Background: Tick-borne pathogen (TBP) surveillance studies often use whole-tick homogenates when inferring tick-pathogen associations. However, localized TBP infections within tick tissues (saliva, hemolymph, salivary glands, and midgut) can inform pathogen transmission mechanisms and are key to disentangling pathogen detection from vector competence. Methods: We screened 278 camel blood samples and 504 tick tissue samples derived from 126 camel ticks sampled in two Kenyan counties (Laikipia and Marsabit) for Anaplasma, Ehrlichia, Coxiella, Rickettsia, Theileria, and Babesia by PCR-HRM analysis. Results: Candidatus Anaplasma camelii infections were common in camels (91%), but absent in all samples from Rhipicephalus pulchellus, Amblyomma gemma, Hyalomma dromedarii, and Hyalomma rufipes ticks. We detected Ehrlichia ruminantium in all tissues of the four tick species, but Rickettsia aeschlimannii was only found in Hy. rufipes (all tissues). Rickettsia africae was highest in Am. gemma (62.5%), mainly in the hemolymph (45%) and less frequently in the midgut (27.5%) and lowest in Rh. pulchellus (29.4%), where midgut and hemolymph detection rates were 17.6% and 11.8%, respectively. Similarly, in Hy. dromedarii, R. africae was mainly detected in the midgut (41.7%) but was absent in the hemolymph. Rickettsia africae was not detected in Hy. rufipes. No Coxiella, Theileria, or Babesia spp. were detected in this study. Conclusions: The tissue-specific localization of R. africae, found mainly in the hemolymph of Am. gemma, is congruent with the role of this tick species as its transmission vector. Thus, occurrence of TBPs in the hemolymph could serve as a predictor of vector competence of TBP transmission, especially in comparison to detection rates in the midgut, from which they must cross tissue barriers to effectively replicate and disseminate across tick tissues. Further studies should focus on exploring the distribution of TBPs within tick tissues to enhance knowledge of TBP epidemiology and to distinguish competent vectors from dead-end hosts.


Subject(s)
Babesia , Camelus , Ehrlichia , Theileria , Ticks , Animals , Kenya/epidemiology , Camelus/parasitology , Camelus/microbiology , Theileria/isolation & purification , Theileria/genetics , Babesia/isolation & purification , Babesia/genetics , Ehrlichia/isolation & purification , Ehrlichia/genetics , Ticks/microbiology , Ticks/parasitology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/parasitology , Anaplasma/isolation & purification , Anaplasma/genetics , Rickettsia/isolation & purification , Rickettsia/genetics , Coxiella/isolation & purification , Coxiella/genetics , Hemolymph/microbiology , Hemolymph/parasitology , Salivary Glands/microbiology , Salivary Glands/parasitology
5.
Nat Commun ; 15(1): 3988, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734682

ABSTRACT

Tick-borne bacteria of the genera Ehrlichia and Anaplasma cause several emerging human infectious diseases worldwide. In this study, we conduct an extensive survey for Ehrlichia and Anaplasma infections in the rainforests of the Amazon biome of French Guiana. Through molecular genetics and metagenomics reconstruction, we observe a high indigenous biodiversity of infections circulating among humans, wildlife, and ticks inhabiting these ecosystems. Molecular typing identifies these infections as highly endemic, with a majority of new strains and putative species specific to French Guiana. They are detected in unusual rainforest wild animals, suggesting they have distinctive sylvatic transmission cycles. They also present potential health hazards, as revealed by the detection of Candidatus Anaplasma sparouinense in human red blood cells and that of a new close relative of the human pathogen Ehrlichia ewingii, Candidatus Ehrlichia cajennense, in the tick species that most frequently bite humans in South America. The genome assembly of three new putative species obtained from human, sloth, and tick metagenomes further reveals the presence of major homologs of Ehrlichia and Anaplasma virulence factors. These observations converge to classify health hazards associated with Ehrlichia and Anaplasma infections in the Amazon biome as distinct from those in the Northern Hemisphere.


Subject(s)
Anaplasma , Animals, Wild , Ehrlichia , Phylogeny , Rainforest , Ticks , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/pathogenicity , Anaplasma/classification , Ehrlichia/genetics , Ehrlichia/isolation & purification , Ehrlichia/classification , Humans , Animals , Ticks/microbiology , Animals, Wild/microbiology , Anaplasmosis/microbiology , Anaplasmosis/epidemiology , Anaplasmosis/transmission , French Guiana , Ehrlichiosis/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/transmission , Metagenomics/methods , Genome, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
6.
J Vector Borne Dis ; 61(1): 5-22, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648402

ABSTRACT

Rickettsial infections are emerging and/or re-emerging disease that poses a serious global threat to humans and animals. Transmission to humans and animals is through the bite of the ectoparasites including ticks, fleas and chigger mites. Most of the rickettsial diseases are endemic in India, but underdiagnosed. This review is aimed at analyzing the prevalence of rickettsiosis in India and the advancement of rickettsial diagnosis. We have conducted a systematic review on the prevalence of rickettsial disease in India ranging from 1.3% to 46.6% for spotted fever, 2.4% to 77.8% for scrub typhus and 1% to 46.4% for Q fever, based on the literature published with the evidence of isolation, serological, and molecular diagnostics. Search engines Medline/PubMed, Science Direct, ProQuest, and EBSCO were used to retrieve the articles from electronic databases by using appropriate keywords to track the emergence of these rickettsial diseases in India for the period of 1865 to till date. We retrieved 153 published rickettsial articles on hospital-based studies from India that were purely made on the basis of prevalence and the laboratory parameters viz., Weil-Felix test (WF) and Rapid Immunochromatographic tests (RICT) with reference to the gold standard IFA and ELISA. More epidemiological studies are required for epidemic typhus to know the exact prevalence status of this louse-borne rickettsiosis in India. Currently, there is no confirmed specific inflammatory marker for rickettsial diseases. Moreover, serological cross-reactivity is an important aspect, and it should be investigated in endemic areas, there is also a need to include molecular diagnostic techniques for further confirmation in healthcare settings.


Subject(s)
Rickettsia Infections , Animals , Humans , India/epidemiology , Prevalence , Rickettsia/isolation & purification , Rickettsia/immunology , Rickettsia Infections/epidemiology , Rickettsia Infections/diagnosis , Scrub Typhus/epidemiology , Scrub Typhus/diagnosis , Ticks/microbiology
7.
Biomed Environ Sci ; 37(3): 266-277, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38582991

ABSTRACT

Objective: The purpose of this study was to investigate the bacterial communities of biting midges and ticks collected from three sites in the Poyang Lake area, namely, Qunlu Practice Base, Peach Blossom Garden, and Huangtong Animal Husbandry, and whether vectors carry any bacterial pathogens that may cause diseases to humans, to provide scientific basis for prospective pathogen discovery and disease prevention and control. Methods: Using a metataxonomics approach in concert with full-length 16S rRNA gene sequencing and operational phylogenetic unit (OPU) analysis, we characterized the species-level microbial community structure of two important vector species, biting midges and ticks, including 33 arthropod samples comprising 3,885 individuals, collected around Poyang Lake. Results: A total of 662 OPUs were classified in biting midges, including 195 known species and 373 potentially new species, and 618 OPUs were classified in ticks, including 217 known species and 326 potentially new species. Surprisingly, OPUs with potentially pathogenicity were detected in both arthropod vectors, with 66 known species of biting midges reported to carry potential pathogens, including Asaia lannensis and Rickettsia bellii, compared to 50 in ticks, such as Acinetobacter lwoffii and Staphylococcus sciuri. We found that Proteobacteria was the most dominant group in both midges and ticks. Furthermore, the outcomes demonstrated that the microbiota of midges and ticks tend to be governed by a few highly abundant bacteria. Pantoea sp7 was predominant in biting midges, while Coxiella sp1 was enriched in ticks. Meanwhile, Coxiella spp., which may be essential for the survival of Haemaphysalis longicornis Neumann, were detected in all tick samples. The identification of dominant species and pathogens of biting midges and ticks in this study serves to broaden our knowledge associated to microbes of arthropod vectors. Conclusion: Biting midges and ticks carry large numbers of known and potentially novel bacteria, and carry a wide range of potentially pathogenic bacteria, which may pose a risk of infection to humans and animals. The microbial communities of midges and ticks tend to be dominated by a few highly abundant bacteria.


Subject(s)
Ceratopogonidae , Microbiota , Ticks , Animals , Humans , Ticks/microbiology , Ceratopogonidae/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Prospective Studies , Coxiella/genetics
8.
Parasit Vectors ; 17(1): 167, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566227

ABSTRACT

BACKGROUND: Hyalomma ticks are widely distributed in semi-arid zones in Northwest China. They have been reported to harbor a large number of zoonotic pathogens. METHODS: In this study, a total of 334 Hyalomma asiaticum ticks infesting domestic animals were collected from four locations in Xinjiang, Northwest China, and the bacterial agents in them were investigated. RESULTS: A putative novel Borrelia species was identified in ticks from all four locations, with an overall positive rate of 6.59%. Rickettsia sibirica subsp. mongolitimonae, a human pathogen frequently reported in Europe, was detected for the second time in China. Two Ehrlichia species (Ehrlichia minasensis and Ehrlichia sp.) were identified. Furthermore, two Anaplasma species were characterized in this study: Candidatus Anaplasma camelii and Anaplasma sp. closely related to Candidatus Anaplasma boleense. It is the first report of Candidatus Anaplasma camelii in China. CONCLUSIONS: Six bacterial agents were reported in this study, many of which are possible or validated pathogens for humans and animals. The presence of these bacterial agents may suggest a potential risk for One Health in this area.


Subject(s)
Ixodidae , Rickettsia , Tick-Borne Diseases , Ticks , Animals , Humans , Ticks/microbiology , Tick-Borne Diseases/microbiology , Rickettsia/genetics , Ixodidae/microbiology , Ehrlichia , Anaplasma , China
9.
PLoS One ; 19(4): e0296597, 2024.
Article in English | MEDLINE | ID: mdl-38687700

ABSTRACT

Ticks are arachnid ectoparasites that rank second only to mosquitoes in the transmission of human diseases including bacteria responsible for anaplasmosis, ehrlichiosis, spotted fevers, and Lyme disease among other febrile illnesses. Due to the paucity of data on bacteria transmitted by ticks in Kenya, this study undertook a bacterial metagenomic-based characterization of ticks collected from Isiolo, a semi-arid pastoralist County in Eastern Kenya, and Kwale, a coastal County with a monsoon climate in the southern Kenyan border with Tanzania. A total of 2,918 ticks belonging to 3 genera and 10 species were pooled and screened in this study. Tick identification was confirmed through the sequencing of the Cytochrome C Oxidase Subunit 1 (COI) gene. Bacterial 16S rRNA gene PCR amplicons obtained from the above samples were sequenced using the MinION (Oxford Nanopore Technologies) platform. The resulting reads were demultiplexed in Porechop, followed by trimming and filtering in Trimmomatic before clustering using Qiime2-VSearch. A SILVA database pretrained naïve Bayes classifier was used to classify the Operational Taxonomic Units (OTUs) taxonomically. The bacteria of clinical interest detected in pooled tick assays were as follows: Rickettsia spp. 59.43% of pools, Coxiella burnetii 37.88%, Proteus mirabilis 5.08%, Cutibacterium acnes 6.08%, and Corynebacterium ulcerans 2.43%. These bacteria are responsible for spotted fevers, query fever (Q-fever), urinary tract infections, skin and soft tissue infections, eye infections, and diphtheria-like infections in humans, respectively. P. mirabilis, C. acnes, and C. ulcerans were detected only in Isiolo. Additionally, COI sequences allowed for the identification of Rickettsia and Coxiella species to strain levels in some of the pools. Diversity analysis revealed that the tick genera had high levels of Alpha diversity but the differences between the microbiomes of the three tick genera studied were not significant. The detection of C. acnes, commonly associated with human skin flora suggests that the ticks may have contact with humans potentially exposing them to bacterial infections. The findings in this study highlight the need for further investigation into the viability of these bacteria and the competency of ticks to transmit them. Clinicians in these high-risk areas also need to be appraised for them to include Rickettsial diseases and Q-fever as part of their differential diagnosis.


Subject(s)
Bacteria , Metagenomics , RNA, Ribosomal, 16S , Ticks , Kenya , Animals , Metagenomics/methods , Ticks/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Humans , Phylogeny
10.
Ticks Tick Borne Dis ; 15(3): 102330, 2024 May.
Article in English | MEDLINE | ID: mdl-38460340

ABSTRACT

In several urban and peri­urban areas of Brazil, populations of Amblyomma sculptum and Amblyomma dubitatum ticks are maintained by capybaras (Hydrochoerus hydrochaeris). In some of these areas, this host and these tick species are associated with Brazilian spotted fever (BSF), a lethal human disease caused by the bacterium Rickettsia rickettsii. In this work, we evaluated the risk of human exposure to these tick species using four collection techniques to discern host-seeking behavior. The study was carried out in 10 urban sites inhabited by capybaras in Uberlândia, a BSF-free municipality in southeastern Brazil. Ticks were collected in areas of 400 m2 at each site and at three seasons. Within the same municipality, the distance and speed of A. sculptum nymphs moving towards the CO2 traps were evaluated. In a sample of ticks Rickettsia DNA was investigated. During the study period, 52,953 ticks were collected. Among these, 83.4 % were A. sculptum (1,523 adults, 10,545 nymphs and 32,104 larvae) and 16.6 % were A. dubitatum (464 adults, 2,153 nymphs and 6,164 larvae). An average annual questing tick density of 4.4/m² was observed, with the highest density recorded at one site in autumn (31.8/m²) and the lowest in summer at another site (0.03/m²). The visual search yielded the highest proportion of A. sculptum larvae, constituting 47 % of the total and 63.6 % of all A. sculptum larvae. In contrast, CO2 traps collected a greater proportion of nymphs and adults of A. sculptum ticks. In the case of A. dubitatum, the CO2 trap was the most efficient technique with 57.7 % of captures of this species, especially of nymphs (94.5 % of captures) and adults (97.8 % of captures). Ticks' ambush height on vegetation (9 to 77 cm), observed by visual search 30 times, yielded a total of 20,771 ticks. Of these, 28 (93 %) were A. sculptum ticks, with only two (7 %) identified as A. dubitatum ticks. Among A. sculptum ticks, the nymph was the most attracted stage to humans and larva in the case of A. dubitatum. Amblyomma sculptum adults and nymphs were significantly more attracted to humans than those of A. dubitatum, but A. dubitatum larvae were significantly more attracted than the same stage of A. sculptum. The maximum distance and speed of horizontal displacement for A. sculptum nymphs were five meters and 2.0 m/h, respectively. The only species of Rickettsia detected in ticks, exclusively in A. dubitatum, was R. bellii. Importantly, it was observed that the higher the proportion of A. sculptum in the community of ticks, the lower the rate of infection of A. dubitatum by R. bellii. In conclusion, host-seeking behavior differed between the two tick species, as well as between stages of the same species. A greater restriction of A. dubitatum ticks to the soil was observed, while larvae and nymphs of A. sculptum dispersed higher in the vegetation. The behavior presented by A. sculptum provides greater opportunities for contact with the hosts, while A. dubitatum depends more on an active search for a host, the hunter behavior. Taken together, these observations show that a human being crossing an area infested with A. sculptum and A. dubitatum ticks will have almost exclusive contact with A. sculptum larvae and/or nymphs. Humans in a stationary position (sitting, lying or immobile) are exposed to both tick species, but they are more attractive to adults and mainly nymphs of A. sculptum compared to the corresponding stages of the tick A. dubitatum. The negative effect of A. sculptum on A. dubitatum infection by R. bellii deserves further studies.


Subject(s)
Ixodidae , Rickettsia Infections , Rickettsia , Rocky Mountain Spotted Fever , Ticks , Animals , Humans , Ticks/microbiology , Ixodidae/microbiology , Rodentia/microbiology , Amblyomma , Carbon Dioxide , Rocky Mountain Spotted Fever/microbiology , Larva/microbiology , Brazil/epidemiology , Nymph/microbiology
11.
Front Cell Infect Microbiol ; 14: 1346595, 2024.
Article in English | MEDLINE | ID: mdl-38533383

ABSTRACT

Multiple ticks (Acari: Ixodoidea) carrying Rickettsiales bacteria have significant importance for both human and animal health. Thus, the purpose of this work was to genetically analyze tick species and their associated Rickettsiales bacteria in animal hosts. In order to achieve these objectives, various animals (including camels, cattle, goats, sheep, dogs, and mice) were inspected in four districts (Mardan, Peshawar, Kohat, and Karak) of Khyber Pakhtunkhwa to collect ticks, while blood samples were collected from all the symptomatic and asymptomatic cattle in all four districts. A total of 234 ticks were obtained from 86 out of 143 (60.14%) host animals, which were morphologically identified as Rhipicephalus turanicus, Rhipicephalus microplus, Haemaphysalis cornupunctata, and Hyalomma asiaticum. Among these, their representative ticks (126/234, 53.85%) were processed for molecular confirmation using cytochrome c oxidase (cox1) gene. Obtained cox1 sequences of four different tick species showed 99.72%-100% maximum identity with their corresponding species reported from Pakistan, China, India, and Kazakhstan and clustered phylogenetically. This study presented the first genetic report of Hy. asiaticum ticks in Pakistan. Moreover, genetically confirmed tick species were molecularly analyzed by PCR for detection of Rickettsiales DNA using partial fragments of 16S rDNA, 190-kDa outer membrane protein A (ompA), and 120-kDa outer membrane protein B (ompB) genes. In addition, blood samples were analyzed to identify Rickettsiales bacteria using the aforementioned genes. Rickettsiales bacteria were found in 24/126 (19.05%) ticks and 4/16 (25.00%) in symptomatic cattle's blood. The obtained ompA and ompB sequences from Hy. asiaticum ticks showed 99.73%-99.87% with Candidatus Rickettsia shennongii and unidentified Rickettsia sp., whereas the obtained 16S rDNA sequences from cattle's blood and ticks (Hae. cornupunctata) showed 99.67% highest identity with Anaplasma phagocytophilum. The 16S rDNA sequence of Rickettsiales DNA from Rh. turanicus ticks showed 100% identity with Ehrlichia canis and unidentified Ehrlichia sp. Obtained sequences of Rickettsiales bacteria were grouped along with their respective species in phylogenetic trees, which were previously reported in Greece, Cuba, Iraq, Turkey, Pakistan, South Korea, and China (mainland and Taiwan). This extensive study explores the wide range of damaging ticks and their corresponding tick-borne bacteria in the area, suggesting a possible danger to both livestock and human communities.


Subject(s)
Ixodidae , Rickettsia , Ticks , Humans , Cattle , Animals , Sheep/genetics , Dogs , Mice , Ticks/microbiology , Phylogeny , Pakistan , Genotype , Ixodidae/genetics , DNA, Ribosomal/genetics
12.
East Mediterr Health J ; 30(2): 145-155, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38491900

ABSTRACT

Background: Tick-borne rickettsioses have become a health concern worldwide following the increasing incidence in recent decades. However, there is limited information about these diseases in Islamic Republic of Iran. Aim: This cross-sectional study was conducted to estimate the Rickettsia infection among ixodid ticks collected from cattle, sheep and goats in Islamic Republic of Iran. Methods: The DNA of ixodid ticks collected from cattle, sheep and goats in 54 villages of Zanjan Province, Islamic Republic of Iran, were collected and analysed using a spectrophotometer. Rickettsial-positive samples were screened by targeting the htrA gene and fragments of gltA gene were analysed. The variables were analysed using descriptive statistics and the χ2 test was used to compare the variables. Results: A total of 528 ticks were tested. Overall, Rickettsia infection rate was 6.44%. Nine of the 12 tick species were infected. Rickettsial positive rates in Hyalomma marginatum and Dermacentor marginatus were 21.33% and 12.77%, respectively. R. aeschlimannii, the predominant rickettsia, was detected only in Hy. marginatum. R. raoultii, R. sibirica and R. slovaca comprised about half of the positive ticks and were recovered from more than one tick species. Conclusion: Considering the discovery of infected ticks in the Islamic Republic of Iran, there is a need to establish a tick control programme in the country, paying attention to populations at high-risk.


Subject(s)
Ixodidae , Rickettsia Infections , Rickettsia , Spotted Fever Group Rickettsiosis , Ticks , Animals , Humans , Cattle , Sheep , Iran/epidemiology , Cross-Sectional Studies , DNA, Bacterial/genetics , Spotted Fever Group Rickettsiosis/epidemiology , Spotted Fever Group Rickettsiosis/microbiology , Rickettsia/genetics , Rickettsia Infections/epidemiology , Rickettsia Infections/veterinary , Rickettsia Infections/microbiology , Ticks/genetics , Ticks/microbiology , Goats
13.
Arch Microbiol ; 206(4): 149, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466437

ABSTRACT

Domestic yak (Bos grunniens) is an economically important feature of the mountainous region of Gilgit-Baltistan in Pakistan where agriculture is restricted and yaks play multiple roles which includes being a source of milk, meat, hides, fuel and power. However little is known about the parasitic infections in Pakistani yaks. Aim of this research was to report the prevalence and genetic diversity of protozoa parasite (Theileria ovis, 18 S rDNA gene was targeted) and an obligate bacterium (Anaplasma marginale, msp-1 gene was amplified) in the blood that was sampled from 202 yaks collected from four districts in Gilgit-Baltistan during January 2023 till January 2024. Results revealed that 6/202 (3%) yaks were of Theileria ovis while 8/202 (4%) were Anaplasma marginale infected. Positive PCR products of both parasites were confirmed by DNA sequencing and their similarity with previously available pathogen sequences was determined by BLAST analysis. Phylogenetic tree indicated that isolates of both parasites displayed genetic. Anaplasma marginale infection varied with the sampling districts and Shigar district had the highest rate of bacterial infection. Cows were significantly more prone to Theileria ovis infection than bulls. Calf and hybrid yaks were more prone to Anaplasma marginale infection. In conclusion, this is the first report that yaks residing the Gilgit-Baltistan region in Pakistan are infected with Theileria ovis and Anaplasma marginale. Similar larger scales studies are recommended in various regions of Gilgit-Baltistan to document the infection rates of these parasites to formulate strategies that will lead to the effective control of these pathogens.


Subject(s)
Anaplasma marginale , Anaplasmosis , Theileria , Ticks , Female , Cattle , Animals , Sheep , Anaplasma marginale/genetics , Theileria/genetics , Pakistan/epidemiology , Anaplasma/genetics , Prevalence , Ticks/microbiology , Ticks/parasitology , Phylogeny , Anaplasmosis/epidemiology , Anaplasmosis/microbiology
14.
Acta Trop ; 253: 107172, 2024 May.
Article in English | MEDLINE | ID: mdl-38447703

ABSTRACT

Tick-borne rickettsial pathogens pose significant threats to public and animal health. In Upper Egypt, limited information exists regarding the prevalence and diversity of such tick-borne pathogens. Therefore, this study aimed to conduct a comprehensive investigation to elucidate the presence and variety of tick-borne rickettsial pathogens in Upper Egyptian camels. Our results revealed a prevalence of 2.96 % for Anaplasma marginale and 0.34 % for Candidatus Anaplasma camelii among Hyalomma ticks. However, Ehrlichia spp. weren't detected in our study. The identification of Ca. A. camelii in H. dromedari ticks was documented for the first time, suggesting a potential mode of transmission in camels. Notably, this study marks the first documentation of Rickettsia aeschlimannii with a prevalence of 6.06 % in the study area. Furthermore, we detected Coxiella burnetii in a prevalence of 8.08 % in Hyalomma ticks, indicating a potential risk of Q fever transmission. Molecular techniques results were confirmed by sequencing and phylogenetic analysis and provided valuable insights into the epidemiology of these pathogens, revealing their diversity. This study is vital in understanding tick-borne rickettsial pathogens' prevalence, distribution, and transmission dynamics in Upper Egypt. In conclusion, our findings emphasize the importance of continued research to enhance our understanding of the epidemiology and impact of these pathogens on both animal and human populations.


Subject(s)
Ixodidae , Rickettsia , Tick-Borne Diseases , Ticks , Animals , Humans , Ticks/microbiology , Camelus/microbiology , Egypt/epidemiology , Phylogeny , Rickettsia/genetics , Ehrlichia , Ixodidae/microbiology , Tick-Borne Diseases/epidemiology
15.
Vaccine ; 42(11): 2801-2809, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38508929

ABSTRACT

Ticks as obligate blood-feeding arthropod vectors of pathogenic viruses, bacteria, protozoa and helminths associated with prevalent tick-borne diseases (TBDs) worldwide. These arthropods constitute the second vector after mosquitoes that transmit pathogens to humans and the first vector in domestic animals. Vaccines constitute the safest and more effective approach to control tick infestations and TBDs, but research is needed to identify new antigens and improve vaccine formulations. The tick protein Subolesin (Sub) is a well-known vaccine protective antigen with a highly conserved sequence at both gene and protein levels in the Ixodidae and among arthropods and vertebrates. In this study, transcriptomics and proteomics analyses were conducted together with graph theory data analysis in wild type and Sub knockdown (KD) tick ISE6 cells in order to identify and characterize the functional implications of Sub in tick cells. The results support a key role for Sub in the regulation of gene expression in ticks and the relevance of this antigen in vaccine development against ticks and TBDs. Proteins with differential representation in response to Sub KD provide insights into vaccine protective mechanisms and candidate tick protective antigens.


Subject(s)
Tick Infestations , Tick-Borne Diseases , Ticks , Vaccines , Animals , Humans , Ticks/microbiology , Mosquito Vectors , Antigens , Tick Infestations/prevention & control , Arthropod Proteins/genetics , Tick-Borne Diseases/prevention & control
16.
Ticks Tick Borne Dis ; 15(3): 102323, 2024 May.
Article in English | MEDLINE | ID: mdl-38387163

ABSTRACT

The Amblyomma marmoreum complex includes afrotropical species, such as Amblyomma sparsum, a three-host tick that parasitizes reptiles, birds, and mammals, and is a recognized vector of Ehrlichia ruminantium. However, the lack of morphological, genetic and ecological data on A. sparsum has caused considerable confusion in its identification. In this study, we used microscopy and metagenomic approaches to analyze A. sparsum ticks collected from a puff adder snake (Bitis arietans) in southwest Senegal (an endemic rickettsioses area) in order to supplement previous morphological descriptions, provide novel genomic data for the A. marmoreum complex, and describe the genome of a novel spotted fever group Rickettsia strain. Based on stereoscope and scanning electron microscopy (SEM) morphological evaluations, we provide high-quality images and new insights about punctation and enameling in the adult male of A. sparsum to facilitate identification for future studies. The metagenomic approach allowed us assembly the complete mitochondrial genome of A. sparsum, as well as the nearly entire chromosome and complete plasmid sequences of a novel Rickettsia africae strain. Phylogenomic analyses demonstrated a close relationship between A. sparsum and Amblyomma nuttalli for the first time and confirmed the position of A. sparsum within the A. marmoreum complex. Our results provide new insights into the systematics of A. sparsum and A. marmoreum complex, as well as the genetic diversity of R. africae in the Afrotropical region. Future studies should consider the possibility that A. sparsum may be a vector for R. africae.


Subject(s)
Ixodidae , Rickettsia , Ticks , Male , Animals , Ixodidae/microbiology , Amblyomma , Rickettsia/genetics , Ticks/microbiology , Mammals
17.
Parasit Vectors ; 17(1): 92, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414058

ABSTRACT

BACKGROUND: Haemaphysalis concinna, carrying multiple pathogens, has attracted increasing attention because of its expanded geographical range and significant role in disease transmission. This study aimed to identify the potential public health risks posed by H. concinna and H. concinna-associated pathogens. METHODS: A comprehensive database integrating a field survey, literature review, reference book, and relevant websites was developed. The geographical distribution of H. concinna and its associated pathogens was illustrated using ArcGIS. Meta-analysis was performed to estimate the prevalence of H. concinna-associated microbes. Phylogenetic and geographical methods were used to investigate the role of birds in the transmission of H. concinna-associated microbes. The potential global distribution of H. concinna was predicted by ecological niche modeling. RESULTS: Haemaphysalis concinna was distributed in 34 countries across the Eurasian continent, predominantly in China, Russia, and Central Europe. The tick species carried at least 40 human pathogens, including six species in the Anaplasmataceae family, five species of Babesia, four genospecies in the complex Borrelia burgdorferi sensu lato, ten species of spotted fever group rickettsiae, ten species of viruses, as well as Francisella, Coxiella, and other bacteria. Haemaphysalis concinna could parasitize 119 host species, with nearly half of them being birds, which played a crucial role in the long-distance transmission of tick-borne microbes. Our predictive modeling suggested that H. concinna could potentially survive in regions where the tick has never been previously recorded such as central North America, southern South America, southeast Oceania, and southern Africa. CONCLUSIONS: Our study revealed the wide distribution, broad host range, and pathogen diversity of H. concinna. Authorities, healthcare professionals, and the entire community should address the growing threat of H. concinna and associated pathogens. Tick monitoring and control, pathogen identification, diagnostic tools, and continuous research should be enhanced.


Subject(s)
Babesia , Ixodes , Ticks , Animals , Europe , Ixodidae/microbiology , Phylogeny , Ticks/microbiology
18.
Infect Genet Evol ; 118: 105562, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307395

ABSTRACT

The present study was conducted with the aim of investigating the prevalence and genetic structure of Coxiella burnetii in tick samples collected from domestic animals in Hormozgan province146 tick samples were randomly collected from cattle, sheep, goat, camel and dog herds in seven cities of Hormozgan. After the DNA was extracted from each tick sample; Nested-PCR method was used to identify the presence of C. burnetii using IS1111 transposon gene and isocitrate dehydrogenase icd gene. In addition, phylogenetic analysis and tree diagram were constructed based on IS1111 and icd genes. The results showed that out of 146 pool tick samples, 40 pool samples based on IS1111 gene and 32 pool samples based on icd gene were infected with C. burnetii. When results were stratified by livestock type, infection rates were highest in sheep ticks (37.5%, 95% CI: 21.2% - 57.29%), followed by cattle ticks (32.14%, 95% CI: 17.90% - 50.66%) and dog tick (15%, 95% CI: 70.6% - 29%). In camel and goat ticks, the infection rate was 15.90 and 23.07%, respectively. In conclusion, this study emphasizes the role of ticks as potential carriers of C. burneti. The results indicate the importance of cattle, sheep, goats, camels and dogs in Hormozgan region as effective factors in the epidemiology of Q fever and its impact on public health. In addition, a high degree of similarity (from 99% to 100%) was observed between IS1111 and icd genes in this study and recorded sequences from different regions of the world.


Subject(s)
Coxiella burnetii , Ticks , Animals , Dogs , Camelus , Coxiella burnetii/genetics , Goats , Iran/epidemiology , Phylogeny , Rhipicephalus sanguineus , Ticks/microbiology
19.
Microb Pathog ; 189: 106588, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369169

ABSTRACT

Heartwater is one of the most economically important tick-borne fatal diseases of livestock. The disease is caused by the bacteria Ehrlichia ruminantium transmitted by Amblyomma ticks. Although there is evidence that interferon-gamma controls E. ruminantium growth and that cellular immune responses are protective, an effective recombinant vaccine for this disease is lacking. Analyses of markers associated with infection as well as protection will lead to a better understanding of the E. ruminantium immune response and corresponding pathways induced in sheep peripheral blood mononuclear cells (PBMC) will assist in development of such a vaccine. In this study, Biomarkers of infection (BMI) were identified as uniquely expressed genes during primary infection and biomarkers of protection (BMP) associated with immune to heartwater were identified post challenge. Sheep were experimentally infected and challenged with E. ruminantium infected ticks. The immune phenotypic and transcriptome profile of their PBMC were compared to their own naïve PBMC collected before infection. The study revealed 305 differentially expressed genes (DEGs) as BMI, of these 17 were upregulated at all three time-points investigated. These DEGs, form part of the bacterial invasion of epithelial cells Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway, and others detected from day 1 post infection and are considered predictive markers for early heartwater infection in ruminants. Similarly, a total of 332 DEGs were identified as BMP, of these 100 were upregulated and 75 were downregulated at all three time-points investigated. However, at D1PC most DEGs were downregulated (n = 1312) that correlated with a reduction in the % CD4 and CD8 T cells detected with flow cytometry. KEGG pathway analyses showed complete down regulation of T cell specific pathways possibly due to homing of immune cells to the site of infection after acquired immunity developed. At D4PC, expression levels of most of these downregulated genes increased and by D6PC they were upregulated. This indicates that the sampling time-point for biomarker analyses is important when results for acquired immune responses are inferred. This data identified DEGs that could be considered as biomarkers of protective immunity that can be used for identification of vaccine antigens and provides a strong foundation to further development of heartwater recombinant vaccines.


Subject(s)
Ehrlichia ruminantium , Heartwater Disease , Ticks , Sheep , Animals , Ehrlichia ruminantium/genetics , Leukocytes, Mononuclear , Heartwater Disease/diagnosis , Heartwater Disease/prevention & control , Vaccines, Synthetic , Ticks/microbiology , Biomarkers , RNA
20.
Infect Genet Evol ; 118: 105569, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354994

ABSTRACT

Ticks pose significant health risks to both wildlife and humans due to their role as vectors for various pathogens. In this study, we investigated tick infestation patterns, tick-associated pathogens, and genetic relationships within the tick species Amblyomma gervaisi, focusing on its prevalence in monitor lizards (Varanus bengalensis) across different districts in Pakistan. We examined 85 monitor lizards and identified an overall mean intensity of 19.59 ticks per infested lizard and an overall mean abundance of 11.98 ticks per examined lizard. All collected ticks (n = 1019) were morphologically identified as A. gervaisi, including 387 males, 258 females, 353 nymphs, and 21 larvae. The highest tick prevalence was observed in the Buner district, followed by Torghar and Shangla, with the lowest prevalence in Chitral. Lizard captures primarily occurred from May to October, correlating with the period of higher tick infestations. Molecular analysis was conducted on tick DNA, revealing genetic similarities among A. gervaisi ticks based on 16S rDNA and ITS2 sequences. Notably, we found the absence of A. gervaisi ITS2 sequences in the NCBI GenBank, highlighting a gap in existing genetic data. Moreover, our study identified the presence of pathogenic microorganisms, including Ehrlichia sp., Candidatus Ehrlichia dumleri, Anaplasma sp., Francisella sp., Rickettsia sp., and Coxiella sp., in these ticks. BLAST analysis revealed significant similarities between these pathogenic sequences and known strains, emphasizing the potential role of these ticks as vectors for zoonotic diseases. Phylogenetic analyses based on nuclear ITS2 and mitochondrial 16S rDNA genes illustrated the genetic relationships of A. gervaisi ticks from Pakistan with other Amblyomma species, providing insights into their evolutionary history. These findings contribute to our understanding of tick infestation patterns, and tick-borne pathogens in monitor lizards, which has implications for wildlife health, zoonotic disease transmission, and future conservation efforts. Further research in this area is crucial for a comprehensive assessment of the risks associated with tick-borne diseases in both wildlife and humans.


Subject(s)
Lizards , Rickettsia , Tick Infestations , Tick-Borne Diseases , Ticks , Animals , Humans , Male , Female , Ticks/microbiology , Rickettsia/genetics , Ehrlichia/genetics , Amblyomma/genetics , Tick Infestations/epidemiology , Tick Infestations/veterinary , Anaplasma/genetics , Phylogeny , Pakistan/epidemiology , Animals, Wild/genetics , Tick-Borne Diseases/epidemiology , Zoonoses , DNA, Ribosomal
SELECTION OF CITATIONS
SEARCH DETAIL
...