Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.648
Filter
1.
Crit Care Sci ; 36: e20240208en, 2024.
Article in English, Portuguese | MEDLINE | ID: mdl-38747818

ABSTRACT

OBJECTIVE: To evaluate the association between driving pressure and tidal volume based on predicted body weight and mortality in a cohort of patients with acute respiratory distress syndrome caused by COVID-19. METHODS: This was a prospective, observational study that included patients with acute respiratory distress syndrome due to COVID-19 admitted to two intensive care units. We performed multivariable analyses to determine whether driving pressure and tidal volume/kg predicted body weight on the first day of mechanical ventilation, as independent variables, are associated with hospital mortality. RESULTS: We included 231 patients. The mean age was 64 (53 - 74) years, and the mean Simplified Acute and Physiology Score 3 score was 45 (39 - 54). The hospital mortality rate was 51.9%. Driving pressure was independently associated with hospital mortality (odds ratio 1.21, 95%CI 1.04 - 1.41 for each cm H2O increase in driving pressure, p = 0.01). Based on a double stratification analysis, we found that for the same level of tidal volume/kg predicted body weight, the risk of hospital death increased with increasing driving pressure. However, changes in tidal volume/kg predicted body weight were not associated with mortality when they did not lead to an increase in driving pressure. CONCLUSION: In patients with acute respiratory distress syndrome caused by COVID-19, exposure to higher driving pressure, as opposed to higher tidal volume/kg predicted body weight, is associated with greater mortality. These results suggest that driving pressure might be a primary target for lung-protective mechanical ventilation in these patients.


Subject(s)
Body Weight , COVID-19 , Hospital Mortality , Respiration, Artificial , Respiratory Distress Syndrome , Tidal Volume , Humans , COVID-19/mortality , COVID-19/complications , COVID-19/physiopathology , Tidal Volume/physiology , Prospective Studies , Middle Aged , Male , Female , Aged , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/physiopathology , Intensive Care Units , SARS-CoV-2
2.
Crit Care ; 28(1): 171, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773629

ABSTRACT

BACKGROUND: Tidal expiratory flow limitation (EFLT) complicates the delivery of mechanical ventilation but is only diagnosed by performing specific manoeuvres. Instantaneous analysis of expiratory resistance (Rex) can be an alternative way to detect EFLT without changing ventilatory settings. This study aimed to determine the agreement of EFLT detection by Rex analysis and the PEEP reduction manoeuvre using contingency table and agreement coefficient. The patterns of Rex were explored. METHODS: Medical patients ≥ 15-year-old receiving mechanical ventilation underwent a PEEP reduction manoeuvre from 5 cmH2O to zero for EFLT detection. Waveforms were recorded and analyzed off-line. The instantaneous Rex was calculated and was plotted against the volume axis, overlapped by the flow-volume loop for inspection. Lung mechanics, characteristics of the patients, and clinical outcomes were collected. The result of the Rex method was validated using a separate independent dataset. RESULTS: 339 patients initially enrolled and underwent a PEEP reduction. The prevalence of EFLT was 16.5%. EFLT patients had higher adjusted hospital mortality than non-EFLT cases. The Rex method showed 20% prevalence of EFLT and the result was 90.3% in agreement with PEEP reduction manoeuvre. In the validation dataset, the Rex method had resulted in 91.4% agreement. Three patterns of Rex were identified: no EFLT, early EFLT, associated with airway disease, and late EFLT, associated with non-airway diseases, including obesity. In early EFLT, external PEEP was less likely to eliminate EFLT. CONCLUSIONS: The Rex method shows an excellent agreement with the PEEP reduction manoeuvre and allows real-time detection of EFLT. Two subtypes of EFLT are identified by Rex analysis. TRIAL REGISTRATION: Clinical trial registered with www.thaiclinicaltrials.org (TCTR20190318003). The registration date was on 18 March 2019, and the first subject enrollment was performed on 26 March 2019.


Subject(s)
Respiration, Artificial , Humans , Male , Female , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Middle Aged , Aged , Tidal Volume/physiology , Positive-Pressure Respiration/methods , Positive-Pressure Respiration/statistics & numerical data , Positive-Pressure Respiration/standards , Exhalation/physiology , Adult
3.
J Neuroinflammation ; 21(1): 121, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720368

ABSTRACT

BACKGROUND: Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury. METHODS: Preterm fetal sheep (0.85 gestation) were randomly allocated to no ventilation (SHAM; n = 5) or 15 min ex utero high tidal volume ventilation. One hour following ventilation, fetuses were randomly allocated to i.v. administration of saline (VENT; n = 7) or allogeneic term-derived UCB cells (24.5 ± 5.0 million cells/kg; VENT + UCB; n = 7). Twenty-four hours after ventilation, lambs were delivered for magnetic resonance imaging and post-mortem brain tissue collected. Arterial plasma was collected throughout the experiment for cytokine analyses. To further investigate the results from the in vivo study, mononuclear cells (MNCs) isolated from human UCB were subjected to in vitro cytokine-spiked culture medium (TNFα and/or IFNγ; 10 ng/mL; n = 3/group) for 16 h then supernatant and cells collected for protein and mRNA assessments respectively. RESULTS: In VENT + UCB lambs, systemic IFNγ levels increased and by 24 h, there was white matter neuroglial activation, vascular damage, reduced oligodendrocytes, and increased average, radial and mean diffusivity compared to VENT and SHAM. No evidence of white matter inflammation or injury was present in VENT lambs, except for mRNA downregulation of OCLN and CLDN1 compared to SHAM. In vitro, MNCs subjected to TNFα and/or IFNγ displayed both pro- and anti-inflammatory characteristics indicated by changes in cytokine (IL-18 & IL-10) and growth factor (BDNF & VEGF) gene and protein expression compared to controls. CONCLUSIONS: UCB cells administered early after brief high tidal volume ventilation in preterm fetal sheep causes white matter injury, and the mechanisms underlying these changes are likely dysregulated responses of the UCB cells to the degree of injury/inflammation already present. If immunomodulatory therapies such as UCB cells are to become a therapeutic strategy for preterm brain injury, especially after ventilation, our study suggests that the inflammatory state of the preterm infant should be considered when timing UCB cells administration.


Subject(s)
Tidal Volume , Animals , Sheep , Female , Humans , Tidal Volume/physiology , Fetal Blood/cytology , Pregnancy , Cytokines/metabolism , Cord Blood Stem Cell Transplantation/methods , Respiration, Artificial/methods , Respiration, Artificial/adverse effects , Animals, Newborn
4.
Rev Assoc Med Bras (1992) ; 70(5): e20231499, 2024.
Article in English | MEDLINE | ID: mdl-38775509

ABSTRACT

OBJECTIVE: Heart failure is a disease with cardiac dysfunction, and its morbidity and mortality are associated with the degree of dysfunction. The New York Heart Association classifies the heart failure stages based on the severity of symptoms and physical activity. End-tidal carbon dioxide refers to the level of carbon dioxide that a person exhales with each breath. End-tidal carbon dioxide levels can be used in many clinical conditions such as heart failure, asthma, and chronic obstructive pulmonary disease. The aim of the study was to reveal the relationship between end-tidal carbon dioxide levels and the New York Heart Association classification of heart failure stages. METHODS: This study was conducted at Kahramanmaras Sütçü Imam University Faculty of Medicine Adult Emergency Department between 01/03/2019 and 01/09/2019. A total of 80 patients who presented to the emergency department with a history of heart failure or were diagnosed with heart failure during admission were grouped according to the New York Heart Association classification of heart failure stages. The laboratory parameters, ejection fraction values, and end-tidal carbon dioxide levels of the patients were measured and recorded in the study forms. RESULTS: End-tidal carbon dioxide levels and ejection fraction values were found to be significantly lower in the stage 4 group compared to the other groups. Furthermore, pro-B-type natriuretic peptide (BNP) values were found to be significantly higher in stage 4 group compared to the other groups. CONCLUSION: It was concluded that end-tidal carbon dioxide levels could be used together with pro-BNP and ejection fraction values in determining the severity of heart failure.


Subject(s)
Carbon Dioxide , Heart Failure , Severity of Illness Index , Stroke Volume , Humans , Heart Failure/classification , Heart Failure/metabolism , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Female , Male , Middle Aged , Aged , Stroke Volume/physiology , Adult , Tidal Volume/physiology , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/analysis , Breath Tests/methods , Emergency Service, Hospital
5.
Respir Physiol Neurobiol ; 325: 104267, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679308

ABSTRACT

The aim of this study was to characterize the breathing patterns of individuals with obesity during routine activities such as sitting and standing, and to identify potential contributors to alterations in these patterns. Measurements performed in 20 male subjects with obesity (BMI, 31.8±1.5 kg/m2) and 20 controls (BMI, 23.5±1.4 kg/m2) included anthropometric parameters, breathing-patterns in sitting and standing positions, spirometry, maximal respiratory pressures, and diaphragm B-mode ultrasonography. Individuals with obesity exhibited lower tidal volume and increased respiratory rate to maintain a similar minute-ventilation (p<0.05). Subjects with obesity demonstrated impaired spirometry and respiratory muscle strength, with inspiratory functions being notably compromised (p<0.05). Individuals with obesity had a greater diaphragm thickness at end inspiration but lower thickening-fraction at end quiet and forced breathings and reduced diaphragmatic displacement and excursion during maximal breaths (p<0.05). BMI was negatively associated with all respiratory function markers (p<0.05). Individuals with obesity exhibit a higher respiratory rate but lower tidal volume, likely to accommodate decreased compliance and excess thoracic and abdominal fat, further hindering inspiratory function. Moreover, increased adiposity is associated with a thicker but weaker diaphragm, primarily due to the diaphragm's mechanical disadvantage rather than its intrinsic inability to generate force.


Subject(s)
Diaphragm , Obesity , Spirometry , Humans , Male , Obesity/physiopathology , Diaphragm/physiopathology , Diaphragm/diagnostic imaging , Adult , Body Mass Index , Ultrasonography , Tidal Volume/physiology , Middle Aged , Respiration
6.
Intensive Care Med ; 50(5): 752-754, 2024 May.
Article in English | MEDLINE | ID: mdl-38563895
7.
Semin Perinatol ; 48(2): 151886, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38553330

ABSTRACT

Despite strong evidence of important benefits of volume-targeted ventilation, many high-risk extremely preterm infants continue to receive traditional pressure-controlled ventilation in the United States and elesewhere. Reluctance to abandon one's comfort zone, lack of suitable equipment and a lack of understanding of the subtleties of volume-targeted ventilation appear to contribute to the relatively slow uptake of volume-targeted ventilation. This review will underscore the benefits of using tidal volume as the primary control variable, to improve clinicians' understanding of the way volume-targeted ventilation interacts with the awake, breathing infant and to provide information about evidence-based tidal volume targets in various circmstances. Focus on underlying lung pathophysiology, individualized ventilator settings and tidal volume targets are essential to successful use of this approach thereby improving important clinical outcomes.


Subject(s)
Lung , Respiration, Artificial , Infant, Newborn , Humans , Tidal Volume/physiology , Infant, Extremely Premature
8.
J Clin Anesth ; 95: 111440, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38460413

ABSTRACT

STUDY OBJECTIVE: To explore if the pressure-controlled ventilation (PCV) and pressure-controlled ventilation-volume guaranteed (PCV-VG) modes are superior to volume-controlled ventilation (VCV) in optimizing intraoperative respiratory mechanics in infants and young children in the prone position. DESIGN: A single-center prospective randomized study. SETTING: Children's Hospital, Zhejiang University School of Medicine. PATIENTS: Pediatric patients aged 1 month to 3 years undergoing elective spinal cord detethering surgery. INTERVENTIONS: Patients were randomly allocated to the VCV group, PCV group and PCV-VG group. The target tidal volume (VT) was 8 mL/kg and the respiratory rate (RR) was adjusted to maintain a constant end tidal CO2. MEASUREMENTS: The primary outcome was intraoperative peak airway pressure (Ppeak). Secondary outcomes included other respiratory and ventilation variables, gas exchange values, serum lung injury biomarkers concentration, hemodynamic parameters and postoperative respiratory complications. MAIN RESULTS: A total of 120 patients were included in the final analysis (40 in each group). The VCV group showed higher Ppeak at T2 (10 min after prone positioning) and T3 (30 min after prone positioning) than the PCV and PCV-VG groups (T2: P = 0.015 and P = 0.002, respectively; T3: P = 0.007 and P = 0.009, respectively). The prone-related decrease in dynamic compliance was prevented by PCV and PCV-VG ventilation modalities at T2 and T3 than by VCV (T2: P = 0.008 and P = 0.015, respectively; T3: P = 0.015 and P = 0.014, respectively). Additionally, there were no significant differences in other secondary outcomes among the three groups. CONCLUSION: In infants and young children undergoing spinal cord detethering surgery in the prone position, PCV-VG may be a better ventilation mode due to its ability to mitigate the increase in Ppeak and decrease in Cdyn while maintaining consistent VT.


Subject(s)
Respiration, Artificial , Tidal Volume , Humans , Prone Position/physiology , Infant , Prospective Studies , Male , Female , Child, Preschool , Tidal Volume/physiology , Respiration, Artificial/methods , Respiratory Mechanics/physiology , Postoperative Complications/prevention & control , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Patient Positioning/methods , Positive-Pressure Respiration/methods , Positive-Pressure Respiration/adverse effects
9.
Indian Pediatr ; 61(5): 419-424, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38449281

ABSTRACT

OBJECTIVES: To evaluate the role infant pulmonary function tests (Tidal Breathing Flow Volume Loops, TBFVL) in children with airway anomalies and to correlate the TBFVL so obtained with bronchoscopy findings. METHODS: In this prospective cohort study, we enrolled children aged 0-2 years with airway anomalies and performed TBFVL and bronchoscopy. The primary outcome measure was graphic pattern of TBFVL in laryngomalacia. Secondary outcome measures were types of TBFVL results in various airway anomalies and controls. RESULTS: Out of 53 children enrolled, 28 (52.3%) had laryngomalacia. Pattern 3 (fluttering of inspiratory limb) was commonest TBFVL pattern in laryngomalacia. Among TBFVL parameters, the ratio of inspiratory time to expiratory time (Ti/Te) and tPTEF/tE was significantly high in children with isolated laryngomalacia compared to controls. At six months of follow-up, TBFVL pattern 1 (normal) became the commonest pattern. CONCLUSION: A particular type of airway anomaly may have a characteristic graphic pattern in TBFVL and TBFVL pattern may indicate improvement in airway anomalies in follow-up.


Subject(s)
Bronchoscopy , Respiratory Function Tests , Humans , Bronchoscopy/methods , Infant , Prospective Studies , Male , Female , Respiratory Function Tests/methods , Infant, Newborn , Child, Preschool , Laryngomalacia/diagnosis , Laryngomalacia/physiopathology , Respiratory System Abnormalities/diagnosis , Respiratory System Abnormalities/physiopathology , Tidal Volume/physiology
10.
Respir Physiol Neurobiol ; 325: 104254, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552704

ABSTRACT

We sought to determine if peripheral hypercapnic chemosensitivity is related to expiratory flow limitation (EFL) during exercise. Twenty participants completed one testing day which consisted of peripheral hypercapnic chemosensitivity testing and a maximal exercise test to exhaustion. The chemosensitivity testing consisting of two breaths of 10% CO2 (O2∼21%) repeated 5 times during seated rest and the first 2 exercise intensities during the maximal exercise test. Following chemosensitivity testing, participants continued cycling with the intensity increasing 20 W every 1.5 minutes till exhaustion. Maximal expiratory flow-volume curves were derived from forced expiratory capacity maneuvers performed before and after exercise at varying efforts. Inspiratory capacity maneuvers were performed during each exercise stage to determine EFL. There was no difference between the EFL and non-EFL hypercapnic chemoresponse (mean response during exercise 0.96 ± 0.46 and 0.91 ± 0.33 l min-1 mmHg-1, p=0.783). Peripheral hypercapnic chemosensitivity during mild exercise does not appear to be related to the development of EFL during exercise.


Subject(s)
Exercise Test , Exercise , Hypercapnia , Humans , Male , Hypercapnia/physiopathology , Exercise/physiology , Young Adult , Female , Adult , Tidal Volume/physiology , Tidal Volume/drug effects , Carbon Dioxide/metabolism
11.
Respir Physiol Neurobiol ; 325: 104255, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38555042

ABSTRACT

The causes and consequences of excess exercise ventilation (EEV) in patients with fibrosing interstitial lung disease (f-ILD) were explored. Twenty-eight adults with f-ILD and 13 controls performed an incremental cardiopulmonary exercise test. EEV was defined as ventilation-carbon dioxide output (⩒E-⩒CO2) slope ≥36 L/L. Patients showed lower pulmonary function and exercise capacity compared to controls. Lower DLCO was related to higher ⩒E-⩒CO2 slope in patients (P<0.05). 13/28 patients (46.4%) showed EEV, reporting higher dyspnea scores (P=0.033). Patients with EEV showed a higher dead space (VD)/tidal volume (VT) ratio while O2 saturation dropped to a greater extent during exercise compared to those without EEV. Higher breathing frequency and VT/inspiratory capacity ratio were observed during exercise in the former group (P<0.05). An exaggerated ventilatory response to exercise in patients with f-ILD is associated with a blunted decrease in the wasted ventilation in the physiological dead space and greater hypoxemia, prompting higher inspiratory constraints and breathlessness.


Subject(s)
Exercise Test , Exercise , Lung Diseases, Interstitial , Humans , Lung Diseases, Interstitial/physiopathology , Female , Male , Middle Aged , Aged , Exercise/physiology , Pulmonary Ventilation/physiology , Respiratory Function Tests , Tidal Volume/physiology , Dyspnea/physiopathology , Exercise Tolerance/physiology
12.
Medicine (Baltimore) ; 103(6): e37227, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335373

ABSTRACT

BACKGROUND: To compare pressure-controlled ventilation (PCV), volume-controlled ventilation (VCV), and pressure-controlled ventilation-volume guaranteed (PCV-VG) modes in patients undergoing spinal surgery in the prone position under general anesthesia. METHODS: The study included 78 patients aged 20 to 80 years, American Society of Anesthesiologists 1-2, scheduled for lumbar spinal surgery. Patients included in the study were randomly divided into 3 groups Group-VCV; Group-PCV; Group-PCV-VG. Standard anesthesia protocol was applied. In addition to routine monitoring, train of four and BIS monitoring were performed. All ventilation modes were set with a target tidal volume of 6 to 8 mL/kg, FiO2: 0.40-0.45 and a respiratory rate of normocarbia. Positive end-expiratory pressure: 5 cm H2O, inspiration/expiration ratio = 1:2, and the maximum airway pressure:40 cm H2O. Hemodynamic, respiratory variables and arterial blood gases was measured, 15 minutes after induction of anesthesia in the supine position (T1), after prone position 15 minutes (T2), 30 minutes (T3), 45 minutes (T4), 60 minutes (T5), 75 minutes (T6), 90 minutes (T7). RESULTS: There was no significant difference between the groups in patient characteristics. SAP, DAP, mean arterial pressure, and heart rate decreased after being placed in the prone position in all groups. Hemodynamic variables did not differ significantly between the groups. partial arterial oxygen pressure and arterial oxygen saturation levels in blood gas were found to be significantly higher in Group-PCV-VG compared to Group-PCV and Group-VCV in both the supine and prone positions. Ppeak and plateau airway pressure (Pplato) values increased and dynamic lung compliance (Cdyn) values decreased after placing the patients in the prone position in all groups. Lower Ppeak and Pplato values and higher Cdyn values were observed in both the supine and prone positions in the Group-PCV-VG group compared to the Group-PCV and Group-VCV groups. CONCLUSION: PCV-VG provides lower Ppeak and Pplato values, as well as better Cdyn, oxygenation values compared to PCV and VCV. So that PCV-VG may be an effective alternative mode of mechanical ventilation for patients in the prone position during lumbar spine surgery.


Subject(s)
Intervertebral Disc Displacement , Humans , Prone Position , Intervertebral Disc Displacement/surgery , Respiration, Artificial/methods , Positive-Pressure Respiration , Tidal Volume/physiology
13.
Physiol Meas ; 45(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38422515

ABSTRACT

Objective. Data from two-plane electrical impedance tomography (EIT) can be reconstructed into various slices of functional lung images, allowing for more complete visualisation and assessment of lung physiology in health and disease. The aim of this study was to confirm the ability of 3D EIT to visualise normal lung anatomy and physiology at rest and during increased ventilation (represented by rebreathing).Approach. Two-plane EIT data, using two electrode planes 20 cm apart, were collected in 20 standing sedate horses at baseline (resting) conditions, and during rebreathing. EIT data were reconstructed into 3D EIT whereby tidal impedance variation (TIV), ventilated area, and right-left and ventral-dorsal centres of ventilation (CoVRLand CoVVD, respectively) were calculated in cranial, middle and caudal slices of lung, from data collected using the two planes of electrodes.Main results. There was a significant interaction of time and slice for TIV (p< 0.0001) with TIV increasing during rebreathing in both caudal and middle slices. The ratio of right to left ventilated area was higher in the cranial slice, in comparison to the caudal slice (p= 0.0002). There were significant effects of time and slice on CoVVDwhereby the cranial slice was more ventrally distributed than the caudal slice (p< 0.0009 for the interaction).Significance. The distribution of ventilation in the three slices corresponds with topographical anatomy of the equine lung. This study confirms that 3D EIT can accurately represent lung anatomy and changes in ventilation distribution during rebreathing in standing sedate horses.


Subject(s)
Tomography, X-Ray Computed , Tomography , Animals , Horses , Tidal Volume/physiology , Electric Impedance , Tomography/methods , Lung/diagnostic imaging , Lung/physiology
14.
Med Sci Sports Exerc ; 56(6): 1168-1176, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38350462

ABSTRACT

PURPOSE: We set out to understand how underband tightness or pressure of a sports bra relates to respiratory function and the mechanical work of breathing ( during exercise. Our secondary purpose was to quantify the effects of underband pressure on O 2 during submaximal running. METHODS: Nine highly trained female runners with normal pulmonary function completed maximal and submaximal running in three levels of underband restriction: loose, self-selected, and tight. RESULTS: During maximal exercise, we observed a significantly greater during the tight condition (350 ± 78 J·min -1 ) compared with the loose condition (301 ± 78 J·min -1 ; P < 0.05), and a 5% increase in minute ventilation ( ) during the tight condition compared with the loose condition ( P < 0.05). The pattern of breathing also differed between the two conditions; the greater maximal during the tight condition was achieved by a higher breathing frequency (57 ± 6 vs. 52 ± 7 breaths·min -1 ; P < 0.05), despite tidal volume being significantly lower in the tight condition compared with the loose condition (1.97 ± 0.20 vs. 2.05 ± 0.23 L; P < 0.05). During steady-state submaximal running, O 2 increased 1.3 ± 1.1% (range: -0.3 to 3.2%, P < 0.05) in the tight condition compared with the loose condition. CONCLUSIONS: Respiratory function may become compromised by the pressure exerted by the underband of a sports bra when women self-select their bra size. In the current study, loosening the underband pressure resulted in a decreased work of breathing, changed the ventilatory breathing pattern to deeper, less frequent breaths, and decreased submaximal oxygen uptake (improved running economy). Our findings suggest sports bra underbands can impair breathing mechanics during exercise and influence whole-body metabolic rate.


Subject(s)
Respiratory Mechanics , Running , Humans , Female , Running/physiology , Respiratory Mechanics/physiology , Adult , Work of Breathing/physiology , Young Adult , Sports Equipment , Oxygen Consumption/physiology , Tidal Volume/physiology
15.
Curr Opin Anaesthesiol ; 37(2): 184-191, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38390864

ABSTRACT

PURPOSE OF REVIEW: The present review summarizes the current knowledge and the barriers encountered when implementing tailoring lung-protective ventilation strategies to individual patients based on advanced monitoring systems. RECENT FINDINGS: Lung-protective ventilation has become a pivotal component of perioperative care, aiming to enhance patient outcomes and reduce the incidence of postoperative pulmonary complications (PPCs). High-quality research has established the benefits of strategies such as low tidal volume ventilation and low driving pressures. Debate is still ongoing on the most suitable levels of positive end-expiratory pressure (PEEP) and the role of recruitment maneuvers. Adapting PEEP according to patient-specific factors offers potential benefits in maintaining ventilation distribution uniformity, especially in challenging scenarios like pneumoperitoneum and steep Trendelenburg positions. Advanced monitoring systems, which continuously assess patient responses and enable the fine-tuning of ventilation parameters, offer real-time data analytics to predict and prevent impending lung complications. However, their impact on postoperative outcomes, particularly PPCs, is an ongoing area of research. SUMMARY: Refining protective lung ventilation is crucial to provide patients with the best possible care during surgery, reduce the incidence of PPCs, and improve their overall surgical journey.


Subject(s)
Intraoperative Care , Lung Diseases , Humans , Intraoperative Care/methods , Lung/surgery , Lung Diseases/etiology , Lung Diseases/prevention & control , Positive-Pressure Respiration/adverse effects , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Respiration, Artificial/adverse effects , Tidal Volume/physiology
16.
Crit Care ; 28(1): 19, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38217038

ABSTRACT

BACKGROUND: During control mechanical ventilation (CMV), the driving pressure of the respiratory system (ΔPrs) serves as a surrogate of transpulmonary driving pressure (ΔPlung). Expiratory muscle activity that decreases end-expiratory lung volume may impair the validity of ΔPrs to reflect ΔPlung. This prospective observational study in patients with acute respiratory distress syndrome (ARDS) ventilated with proportional assist ventilation (PAV+), aimed to investigate: (1) the prevalence of elevated ΔPlung, (2) the ΔPrs-ΔPlung relationship, and (3) whether dynamic transpulmonary pressure (Plungsw) and effort indices (transdiaphragmatic and respiratory muscle pressure swings) remain within safe limits. METHODS: Thirty-one patients instrumented with esophageal and gastric catheters (n = 22) were switched from CMV to PAV+ and respiratory variables were recorded, over a maximum of 24 h. To decrease the contribution of random breaths with irregular characteristics, a 7-breath moving average technique was applied. In each patient, measurements were also analyzed per deciles of increasing lung elastance (Elung). Patients were divided into Group A, if end-inspiratory transpulmonary pressure (PLEI) increased as Elung increased, and Group B, which showed a decrease or no change in PLEI with Elung increase. RESULTS: In 44,836 occluded breaths, ΔPlung ≥ 12 cmH2O was infrequently observed [0.0% (0.0-16.9%) of measurements]. End-expiratory lung volume decrease, due to active expiration, was associated with underestimation of ΔPlung by ΔPrs, as suggested by a negative linear relationship between transpulmonary pressure at end-expiration (PLEE) and ΔPlung/ΔPrs. Group A included 17 and Group B 14 patients. As Elung increased, ΔPlung increased mainly due to PLEI increase in Group A, and PLEE decrease in Group B. Although ΔPrs had an area receiver operating characteristic curve (AUC) of 0.87 (95% confidence intervals 0.82-0.92, P < 0.001) for ΔPlung ≥ 12 cmH2O, this was due exclusively to Group A [0.91 (0.86-0.95), P < 0.001]. In Group B, ΔPrs showed no predictive capacity for detecting ΔPlung ≥ 12 cmH2O [0.65 (0.52-0.78), P > 0.05]. Most of the time Plungsw and effort indices remained within safe range. CONCLUSION: In patients with ARDS ventilated with PAV+, injurious tidal lung stress and effort were infrequent. In the presence of expiratory muscle activity, ΔPrs underestimated ΔPlung. This phenomenon limits the usefulness of ΔPrs as a surrogate of tidal lung stress, regardless of the mode of support.


Subject(s)
Cytomegalovirus Infections , Respiratory Distress Syndrome , Humans , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Positive-Pressure Respiration/methods , Lung , Respiratory Distress Syndrome/therapy , Respiration , Respiratory Mechanics/physiology , Tidal Volume/physiology
17.
Curr Opin Crit Care ; 30(1): 4-9, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38085885

ABSTRACT

PURPOSE OF REVIEW: Describe the rationale for concern and accumulating pathophysiologic evidence regarding the adverse effects of high-level positive end expiratory pressure (PEEP) on excessive mechanical stress and ventilator-induced lung injury (VILI). RECENT FINDINGS: Although the inclusion of PEEP in numerical estimates of mechanical power may be theoretically debated, its potential to increase stress, strain, and mean airway pressure are not. Recent laboratory data in a variety of animal models demonstrate that higher levels of PEEP coupled with additional fluids needed to offset its impediment of hemodynamic function are associated with increased VILI. Moreover, counteracting end-tidal hyperinflation by external chest wall pressure may paradoxically improve respiratory mechanics, indicating that lower PEEP helps protect the small 'baby lung' of advanced acute respiratory distress syndrome (ARDS). SUMMARY: The potentially adverse effects of PEEP on VILI can be considered in three broad categories. First, the contribution of PEEP to total mechanical energy expressed through mechanical power, raised mean airway pressure, and end-tidal hyperinflation; second, the hemodynamic consequences of altered cardiac loading, heightened pulmonary vascular stress and total lung water; and third, the ventilatory consequences of compromised carbon dioxide eliminating efficiency. Minimizing ventilation demands, optimized body positioning and care to avoid unnecessary PEEP are central to lung protection in all stages of ARDS.


Subject(s)
Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , Animals , Humans , Tidal Volume/physiology , Positive-Pressure Respiration/adverse effects , Lung , Ventilator-Induced Lung Injury/prevention & control
18.
BMJ Open Respir Res ; 10(1)2023 12 22.
Article in English | MEDLINE | ID: mdl-38135461

ABSTRACT

INTRODUCTION: Individuals with asthma breathe at higher operating lung volumes during exercise compared with healthy individuals, which contributes to increased exertional dyspnoea. In health, females are more likely to develop exertional dyspnoea than males at a given workload or ventilation, and therefore, it is possible that females with asthma may develop disproportional dyspnoea on exertion. The purpose of this study was to compare operating lung volume and dyspnoea responses during exercise in females with and without asthma. METHODS: Sixteen female controls and 16 females with asthma were recruited for the study along with 16 male controls and 16 males with asthma as a comparison group. Asthma was confirmed using American Thoracic Society criteria. Participants completed a cycle ergometry cardiopulmonary exercise test to volitional exhaustion. Inspiratory capacity manoeuvres were performed to estimate inspiratory reserve volume (IRV) and dyspnoea was evaluated using the Modified Borg Scale. RESULTS: Females with asthma exhibited elevated dyspnoea during submaximal exercise compared with female controls (p<0.05). Females with asthma obtained a similar IRV and dyspnoea at peak exercise compared with healthy females despite lower ventilatory demand, suggesting mechanical constraint to tidal volume (VT) expansion. VT-inflection point was observed at significantly lower ventilation and V̇O2 in females with asthma compared with female controls. Forced expired volume in 1 s was significantly associated with VT-inflection point in females with asthma (R2=0.401; p<0.01) but not female controls (R2=0.002; p=0.88). CONCLUSION: These results suggest that females with asthma are more prone to experience exertional dyspnoea, secondary to dynamic mechanical constraints during submaximal exercise when compared with females without asthma.


Subject(s)
Asthma , Humans , Male , Female , Tidal Volume/physiology , Lung , Lung Volume Measurements , Dyspnea/etiology
19.
Ann Emerg Med ; 82(5): 558-563, 2023 11.
Article in English | MEDLINE | ID: mdl-37865487

ABSTRACT

STUDY OBJECTIVE: End-tidal carbon dioxide (etCO2) is used to guide ventilation after achieving return of spontaneous circulation (ROSC) in certain out-of-hospital systems, despite an unknown difference between arterial and end-tidal CO2 (partial pressure of carbon dioxide [paCO2]-etCO2 difference) levels in this population. The primary aim of this study was to evaluate and quantify the paCO2-etCO2 difference in out-of-hospital patients with ROSC after nontraumatic cardiac arrest. METHODS: This retrospective single-center study included patients aged 18 years and older with sustained ROSC after nontraumatic out-of-hospital cardiac arrest. In patients with an existing out-of-hospital arterial blood gas analysis within 30 minutes after achieving ROSC, matching etCO2 values were evaluated. Linear regression and Bland-Altman plot analysis were performed to ascertain the primary endpoint of interest. RESULTS: We included data of 60 patients in the final analysis. The mean paCO2-etCO2 difference was 32 (±18) mmHg. Only a moderate correlation (R2=0.453) between paCO2 and etCO2 was found. Bland-Altman analysis showed a bias of 32 mmHg (95% confidence interval [CI], 27 to 36) [the upper limit of agreement of 67 mmHg (95% CI, 59 to 74) and the lower limit of agreement of -3 mmHg (95% CI, -11 to 5)]. CONCLUSION: The paCO2-etCO2 difference in patients with ROSC after out-of-hospital cardiac arrest is far from physiologic ranges, and the between-patient variability is high. Therefore, etCO2-guided adaption of ventilation might not provide adequate accuracy in this setting.


Subject(s)
Cardiopulmonary Resuscitation , Out-of-Hospital Cardiac Arrest , Humans , Carbon Dioxide/analysis , Retrospective Studies , Out-of-Hospital Cardiac Arrest/therapy , Return of Spontaneous Circulation , Tidal Volume/physiology , Hospitals
20.
J Theor Biol ; 573: 111590, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37562673

ABSTRACT

We propose an integrated dynamical model for oxygen and carbon dioxide transfer from the lung into the blood, coupled with a lumped mechanical model for the ventilation process, for healthy patients as well as in pathological cases. In particular, we take into account the nonlinear interaction between oxygen and carbon dioxide in the blood volume, referred to as the Bohr and Haldane effects. We also propose a definition of the physiological dead space volume (the lung volume that does not contribute to gas exchange) which depends on the pathological state and the breathing scenario. This coupled ventilation-gas diffusion model is driven by the sole action of the respiratory muscles. We analyse its sensitivity with respect to characteristic parameters: the resistance of the bronchial tree, the elastance of the lung tissue and the oxygen and carbon dioxide diffusion coefficients of the alveolo-capillary membrane. Idealized pathological situations are also numerically investigated. We obtain realistic qualitative tendencies, which represent a first step towards classification of the pathological behaviours with respect to the considered input parameters.


Subject(s)
Carbon Dioxide , Respiratory Dead Space , Humans , Tidal Volume/physiology , Respiratory Dead Space/physiology , Lung , Oxygen , Pulmonary Gas Exchange
SELECTION OF CITATIONS
SEARCH DETAIL
...