Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.228
Filter
1.
Nutrients ; 16(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732497

ABSTRACT

Laurus nobilis L. (LNL) belongs to the evergreen Lauraceae family. It is native to the Mediterranean and widely distributed in the southern United States, Europe, and the Middle East. LNL is rich in active ingredients of the sesquiterpene lactone series and has been reported to have antioxidant, anti-inflammatory, and anticancer effects. And parthenolide, known as a sesquiterpene lactone-based compound, inhibits the activation of lipopolysaccharide-binding protein (LBP), which is a major trigger for leaky gut syndrome. However, the effectiveness of LNL in improving the state of increased intestinal permeability has not yet been reported. Therefore, we demonstrated the efficacy of LNL, which is known to be rich in parthenolide, in improving intestinal permeability induced by IL-13. We investigated the improvement in permeability and analyzed major tight junction proteins (TJs), permeability-related mechanisms, weight and disease activity indices, and corresponding cytokine mechanisms. LNL maintained TJs homeostasis and clinical improvement by reducing increased claudin-2 through the inhibition of IL-13/STAT6 activation in TJ-damaged conditions. These results are expected to be effective in preventing leaky gut syndrome through the TJ balance and to further improve intestinal-related diseases, such as inflammatory bowel disease.


Subject(s)
Laurus , Tight Junction Proteins , Animals , Tight Junction Proteins/metabolism , Laurus/chemistry , Permeability , Plant Extracts/pharmacology , Male , Tight Junctions/drug effects , Tight Junctions/metabolism , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Humans , Cytokines/metabolism
2.
Nutrients ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732595

ABSTRACT

While ketogenic diets (KDs) may have potential as adjunct treatments for gastrointestinal diseases, there is little knowledge on how the fat source of these diets impacts intestinal health. The objective of this study was to investigate how the source of dietary fat of KD influences experimental colitis. We fed nine-week-old male C57BL/6J mice (n = 36) with a low-fat control diet or KD high either in saturated fatty acids (SFA-KD) or polyunsaturated linoleic acid (LA-KD) for four weeks and then induced colitis with dextran sodium sulfate (DSS). To compare the diets, we analyzed macroscopic and histological changes in the colon, intestinal permeability to fluorescein isothiocyanate-dextran (FITC-dextran), and the colonic expression of tight junction proteins and inflammatory markers. While the effects were more pronounced with LA-KD, both KDs markedly alleviated DSS-induced histological lesions. LA-KD prevented inflammation-related weight loss and the shortening of the colon, as well as preserved Il1b and Tnf expression at a healthy level. Despite no significant between-group differences in permeability to FITC-dextran, LA-KD mitigated changes in tight junction protein expression. Thus, KDs may have preventive potential against intestinal inflammation, with the level of the effect being dependent on the dietary fat source.


Subject(s)
Colitis , Colon , Dextran Sulfate , Diet, Ketogenic , Dietary Fats , Disease Models, Animal , Fluorescein-5-isothiocyanate/analogs & derivatives , Mice, Inbred C57BL , Animals , Colitis/chemically induced , Colitis/diet therapy , Male , Mice , Dietary Fats/adverse effects , Colon/pathology , Colon/metabolism , Permeability , Tight Junction Proteins/metabolism , Interleukin-1beta/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Tumor Necrosis Factor-alpha/metabolism , Fatty Acids , Dextrans
3.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731645

ABSTRACT

Ulcerative colitis (UC), as a chronic inflammatory disease, presents a global public health threat. However, the mechanism of Poria cocos (PC) in treating UC remains unclear. Here, LC-MS/MS was carried out to identify the components of PC. The protective effect of PC against UC was evaluated by disease activity index (DAI), colon length and histological analysis in dextran sulfate sodium (DSS)-induced UC mice. ELISA, qPCR, and Western blot tests were conducted to assess the inflammatory state. Western blotting and immunohistochemistry techniques were employed to evaluate the expression of tight junction proteins. The sequencing of 16S rRNA was utilized for the analysis of gut microbiota regulation. The results showed that a total of fifty-two nutrients and active components were identified in PC. After treatment, PC significantly alleviated UC-associated symptoms including body weight loss, shortened colon, an increase in DAI score, histopathologic lesions. PC also reduced the levels of inflammatory cytokines TNF-α, IL-6, and IL-1ß, as evidenced by the suppressed NF-κB pathway, restored the tight junction proteins ZO-1 and Claudin-1 in the colon, and promoted the diversity and abundance of beneficial gut microbiota. Collectively, these findings suggest that PC ameliorates colitis symptoms through the reduction in NF-κB signaling activation to mitigate inflammatory damage, thus repairing the intestinal barrier, and regulating the gut microbiota.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , NF-kappa B , Signal Transduction , Wolfiporia , Animals , Gastrointestinal Microbiome/drug effects , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , NF-kappa B/metabolism , Mice , Signal Transduction/drug effects , Wolfiporia/chemistry , Male , Disease Models, Animal , Cytokines/metabolism , Colon/pathology , Colon/metabolism , Colon/drug effects , Colon/microbiology , Tight Junction Proteins/metabolism , Mice, Inbred C57BL
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732086

ABSTRACT

The ability of the immune system to combat pathogens relies on processes like antigen sampling by dendritic cells and macrophages migrating through endo- and epithelia or penetrating them with their dendrites. In addition, other immune cell subtypes also migrate through the epithelium after activation. For paracellular migration, interactions with tight junctions (TJs) are necessary, and previous studies reported TJ protein expression in several immune cells. Our investigation aimed to characterize, in more detail, the expression profiles of TJ proteins in different immune cells in both naïve and activated states. The mRNA expression analysis revealed distinct expression patterns for TJ proteins, with notable changes, mainly increases, upon activation. At the protein level, LSR appeared predominant, being constitutively present in naïve cell membranes, suggesting roles as a crucial interaction partner. Binding experiments suggested the presence of claudins in the membrane only after stimulation, and claudin-8 translocation to the membrane occurred after stimulation. Our findings suggest a dynamic TJ protein expression in immune cells, implicating diverse functions in response to stimulation, like interaction with TJ proteins or regulatory roles. While further analysis is needed to elucidate the precise roles of TJ proteins, our findings indicate important non-canonical functions of TJ proteins in immune response.


Subject(s)
Tight Junction Proteins , Tight Junctions , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics , Humans , Tight Junctions/metabolism , Dendritic Cells/metabolism , Dendritic Cells/immunology , Animals , Macrophages/metabolism , Macrophages/immunology , Claudins/metabolism , Claudins/genetics , Cell Membrane/metabolism
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 411-419, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38597431

ABSTRACT

OBJECTIVE: To investigate the role of Rho/ROCK signaling pathway in mediating restraint stress-induced blood-brain barrier (BBB) injury in the amygdala of rats. METHODS: Sixty male SD rats were randomized equally into control group (with food and water deprivation for 6 h per day), restraint stress group (with restraint for 6 h per day), stress + fasudil treatment (administered by intraperitoneal injection at 1 mg/100 g 30 min before the 6-h restraint) group, and fasudil treatment alone group. The elevated plus-maze test was used to detect behavioral changes of the rats, serum corticosterone and S100B levels were determined with ELISA, and Evans Blue leakage in the brain tissue was examined to evaluate the changes in BBB permeability. The changes in expression levels of tight junction proteins in the amygdala were detected using immunofluorescence assay and Western blotting, and Rho/ROCK pathway activation was detected by Pull-down test and Western blotting. Ultrastructural changes of the cerebral microvascular endothelial cells were observed using transmission electron microscopy. RESULTS: Compared with those in the control group, the rats in restrain stress group and stress+fasudil group showed obvious anxiety-like behavior with significantly increased serum corticosterone level (P<0.001). Compared with those in the control group and stress+fasudil group, the rat models of restrain stress showed more obvious Evans Blue leakage and higher S100B expression (P<0.01) but lower expressions of tight junction proteins in the amygdala. Pull-down test and Western blotting confirmed that the expression levels of RhoA-GTP, ROCK2 and P-MLC 2 were significantly higher in stress group than in the control group and stress + fasudil group (P<0.05). Transmission electron microscopy revealed obvious ultrastructural changes in the cerebral microvascular endothelial cells in the rat models of restrain stress. CONCLUSION: Restraint stress induces BBB injury in the amygdala of rats by activating the Rho/ROCK signaling pathway.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Blood-Brain Barrier , Endothelial Cells , Rats , Male , Animals , Blood-Brain Barrier/metabolism , Rats, Sprague-Dawley , Evans Blue/metabolism , Corticosterone/metabolism , Tight Junction Proteins/metabolism , Signal Transduction , rho-Associated Kinases/metabolism
6.
Mol Med Rep ; 29(6)2024 06.
Article in English | MEDLINE | ID: mdl-38577927

ABSTRACT

The intestinal mucosal barrier is of great importance for maintaining the stability of the internal environment, which is closely related to the occurrence and development of intestinal inflammation. Octreotide (OCT) has potential applicable clinical value for treating intestinal injury according to previous studies, but the underlying molecular mechanisms have remained elusive. This article is based on a cell model of inflammation induced by lipopolysaccharide (LPS), aiming to explore the effects of OCT in protecting intestinal mucosal barrier function. A Cell Counting Kit­8 assay was used to determine cell viability and evaluate the effectiveness of OCT. Gene silencing technology was used to reveal the mediated effect of somatostatin receptor 2 (SSTR2). The changes in intestinal permeability were detected through trans­epithelial electrical resistance and fluorescein isothiocyanate­dextran 4 experiments, and the alterations in tight junction proteins were detected using immunoblotting and reverse transcription fluorescence­quantitative PCR technology. Autophagosomes were observed by electron microscopy and the dynamic changes of the autophagy process were characterized by light chain (LC)3­II/LC3­I conversion and autophagic flow. The results indicated that SSTR2­dependent OCT can prevent the decrease in cell activity. After LPS treatment, the permeability of monolayer cells decreased and intercellular tight junctions were disrupted, resulting in a decrease in tight junction protein zona occludens 1 in cells. The level of autophagy­related protein LC3 was altered to varying degrees at different times. These abnormal changes gradually returned to normal levels after the combined application of LPS and SSTR2­dependent OCT, confirming the role of OCT in protecting intestinal barrier function. These experimental results suggest that OCT maintains basal autophagy and cell activity mediated by SSTR2 in intestinal epithelial cells, thereby preventing the intestinal barrier dysfunction in inflammation injury.


Subject(s)
Lipopolysaccharides , Octreotide , Humans , Caco-2 Cells , Octreotide/pharmacology , Lipopolysaccharides/pharmacology , Intestinal Mucosa/metabolism , Tight Junction Proteins/metabolism , Autophagy , Inflammation/metabolism , Tight Junctions/metabolism , Permeability
7.
AIDS ; 38(6): 779-789, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38578957

ABSTRACT

OBJECTIVE: This study aims to investigate the functions and mechanistic pathways of Astrocyte Elevated Gene-1 (AEG-1) in the disruption of the blood-retinal barrier (BRB) caused by the HIV-1 envelope glycoprotein gp120. DESIGN: We utilized ARPE-19 cells challenged with gp120 as our model system. METHODS: Several analytical techniques were employed to decipher the intricate interactions at play. These included PCR, Western blot, and immunofluorescence assays for the molecular characterization, and transendothelial electrical resistance (TEER) measurements to evaluate barrier integrity. RESULTS: We observed that AEG-1 expression was elevated, whereas the expression levels of tight junction proteins ZO-1, Occludin, and Claudin5 were downregulated in gp120-challenged cells. TEER measurements corroborated these findings, indicating barrier dysfunction. Additional mechanistic studies revealed that the activation of NFκB and MMP2/9 pathways mediated the AEG-1-induced barrier destabilization. Through the use of lentiviral vectors, we engineered cell lines with modulated AEG-1 expression levels. Silencing AEG-1 alleviated gp120-induced downregulation of tight junction proteins and barrier impairment while concurrently inhibiting the NFκB and MMP2/9 pathways. Conversely, overexpression of AEG-1 exacerbated these pathological changes, further compromising the integrity of the BRB. CONCLUSION: Gp120 upregulates the expression of AEG-1 and activates the NFκB and MMP2/9 pathways. This in turn leads to the downregulation of tight junction proteins, resulting in the disruption of barrier function.


Subject(s)
Blood-Retinal Barrier , HIV Envelope Protein gp120 , HIV Infections , HIV-1 , Membrane Proteins , RNA-Binding Proteins , Humans , Blood-Retinal Barrier/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Matrix Metalloproteinase 2/metabolism , Tight Junction Proteins/metabolism , HIV Envelope Protein gp120/metabolism , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism
8.
Immunol Cell Biol ; 102(5): 396-406, 2024.
Article in English | MEDLINE | ID: mdl-38648862

ABSTRACT

Increased permeability of the intestinal epithelial layer is linked to the pathogenesis and perpetuation of a wide range of intestinal and extra-intestinal diseases. Infecting humans with controlled doses of helminths, such as human hookworm (termed hookworm therapy), is proposed as a treatment for many of the same diseases. Helminths induce immunoregulatory changes in their host which could decrease epithelial permeability, which is highlighted as a potential mechanism through which helminths treat disease. Despite this, the influence of a chronic helminth infection on epithelial permeability remains unclear. This study uses the chronically infecting intestinal helminth Heligmosomoides polygyrus to reveal alterations in the expression of intestinal tight junction proteins and epithelial permeability during the infection course. In the acute infection phase (1 week postinfection), an increase in intestinal epithelial permeability is observed. Consistent with this finding, jejunal claudin-2 is upregulated and tricellulin is downregulated. By contrast, in the chronic infection phase (6 weeks postinfection), colonic claudin-1 is upregulated and epithelial permeability decreases. Importantly, this study also investigates changes in epithelial permeability in a small human cohort experimentally challenged with the human hookworm, Necator americanus. It demonstrates a trend toward small intestinal permeability increasing in the acute infection phase (8 weeks postinfection), and colonic and whole gut permeability decreasing in the chronic infection phase (24 weeks postinfection), suggesting a conserved epithelial response between humans and mice. In summary, our findings demonstrate dynamic changes in epithelial permeability during a chronic helminth infection and provide another plausible mechanism by which chronic helminth infections could be utilized to treat disease.


Subject(s)
Intestinal Mucosa , Permeability , Animals , Humans , Intestinal Mucosa/parasitology , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Chronic Disease , Nematospiroides dubius/immunology , Mice , Necator americanus , Intestinal Diseases, Parasitic/immunology , Tight Junctions/metabolism , Tight Junction Proteins/metabolism , Intestine, Small/parasitology , Intestine, Small/immunology , Female , Mice, Inbred C57BL , Male , Helminthiasis/immunology , Helminthiasis/parasitology , Necatoriasis/immunology , MARVEL Domain Containing 2 Protein/metabolism
9.
J Ethnopharmacol ; 330: 118194, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641077

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Prinsepia utilis Royle, native to the Himalayan region, has a long history of use in traditional medicine for its heat-clearing, detoxification, anti-inflammatory, and analgesic properties. Oils extracted from P. utilis seeds are also used in cooking and cosmetics. With the increasing market demand, this extraction process generates substantial industrial biowastes. Recent studies have found many health benefits with using aqueous extracts of these biowastes, which are also rich in polysaccharides. However, there is limited research related to the reparative effects of the water extracts of P. utilis oil cakes (WEPUOC) on disruptions of the skin barrier function. AIM OF THE STUDY: This study aimed to evaluate the reparative efficacy of WEPUOC in both acute and chronic epidermal permeability barrier disruptions. Furthermore, the study sought to explore the underlying mechanisms involved in repairing the epidermal permeability barrier. MATERIALS AND METHODS: Mouse models with induced epidermal disruptions, employing tape-stripping (TS) and acetone wiping (AC) methods, were used. The subsequent application of WEPUOC (100 mg/mL) was evaluated through various assessments, with a focus on the upregulation of mRNA and protein expression of Corneocyte Envelope (CE) related proteins, lipid synthase-associated proteins, and tight junction proteins. RESULTS: The polysaccharide was the major phytochemicals of WEPUOC and its content was determined as 32.2% by the anthranone-sulfuric acid colorimetric method. WEPUOC significantly reduced transepidermal water loss (TEWL) and improved the damaged epidermal barrier in the model group. Mechanistically, these effects were associated with heightened expression levels of key proteins such as FLG (filaggrin), INV (involucrin), LOR (loricrin), SPT, FASN, HMGCR, Claudins-1, Claudins-5, and ZO-1. CONCLUSIONS: WEPUOC, obtained from the oil cakes of P. utilis, is rich in polysaccharides and exhibits pronounced efficacy in repairing disrupted epidermal barriers through increased expression of critical proteins involved in barrier integrity. Our findings underscore the potential of P. utilis wastes in developing natural cosmetic prototypes for the treatment of diseases characterized by damaged skin barriers, including atopic dermatitis and psoriasis.


Subject(s)
Epidermis , Plant Extracts , Tight Junction Proteins , Up-Regulation , Animals , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tight Junction Proteins/metabolism , Epidermis/drug effects , Epidermis/metabolism , Up-Regulation/drug effects , Water/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Male , Fatty Acid Synthases/metabolism , Fatty Acid Synthases/genetics , Permeability/drug effects
10.
Arch Biochem Biophys ; 756: 109978, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636693

ABSTRACT

A 2D-intestinal epithelial Caco-2/RAW 264.7 macrophage co-culture model was developed to demonstrate the relative efficacy of different phenolic acids to mitigate changes in Caco-2 epithelial cell redox state initiated both directly by autoxidation products, H2O2, and indirectly through cell communication events originating from cytokine stimulated macrophage. An inducer cocktail (lipopolysaccharide + interferon gamma) was used to activate RAW 264.7 cells in the 2D- Caco-2/RAW co-culture and intracellular changes in Caco-2 cell redox signaling occurred in response to positive changes (p < 0.05) in inflammatory biomarkers derived in macrophage that included IL-6, TNF-α, nitric oxide and peroxynitrite, respectively. Phenolic acids varied in relative capacity to reduce NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in cocktail inflamed induced macrophage. This response in addition to the relative predisposition of gallic acid (GA) to undergo autoxidation to generate H2O2 activity (p < 0.05), culminated in downstream cell signaling in Caco-2 nuclear factor erythroid 2-related factor (Nrf2) activity (increase 26.9 %), altered monolayer integrity (increase 33.7 %), and release of interleukin 8 (IL-8) (decrease 80.5 %) (p < 0.05). It can be concluded that the co-culture model described herein was useful to assess the importance of communication between cytokine stimulated macrophage and intestinal cells. Moreover, the relative unique efficacy of GA, compared to other phenolic acids tested to protect against activated macrophage induced changes related to intestinal dysfunction were particularly relevant to epithelial redox signaling, intestinal permeability and regulation of tight junction proteins. This study concludes that phenolic acids are not equal in the capacity to protect against intestinal cell dysfunction despite some indication of biological activity.


Subject(s)
Coculture Techniques , Gallic Acid , Tight Junction Proteins , Caco-2 Cells , Gallic Acid/pharmacology , Humans , Mice , Animals , RAW 264.7 Cells , Tight Junction Proteins/metabolism , Inflammation/metabolism , Oxidation-Reduction/drug effects , Hydrogen Peroxide/metabolism , Macrophages/metabolism , Macrophages/drug effects , Intestines/cytology , Intestines/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
11.
Arch Toxicol ; 98(5): 1533-1542, 2024 May.
Article in English | MEDLINE | ID: mdl-38466352

ABSTRACT

Acetaminophen (APAP) is known to cause a breach of the blood-bile barrier in mice that, via a mechanism called futile bile acid (BA) cycling, increases BA concentrations in hepatocytes above cytotoxic thresholds. Here, we compared this mechanism in mice and rats, because both species differ massively in their susceptibility to APAP and compared the results to available human data. Dose and time-dependent APAP experiments were performed in male C57BL6/N mice and Wistar rats. The time course of BA concentrations in liver tissue and in blood was analyzed by MALDI-MSI and LC-MS/MS. APAP and its derivatives were measured in the blood by LC-MS. APAP-induced liver damage was analyzed by histopathology, immunohistochemistry, and by clinical chemistry. In mice, a transient increase of BA in blood and in peri-central hepatocytes preceded hepatocyte death. The BA increase coincided with oxidative stress in liver tissue and a compromised morphology of bile canaliculi and immunohistochemically visualized tight junction proteins. Rats showed a reduced metabolic activation of APAP compared to mice. However, even at very high doses that caused cell death of hepatocytes, no increase of BA concentrations was observed neither in liver tissue nor in the blood. Correspondingly, no oxidative stress was detectable, and the morphology of bile canaliculi and tight junction proteins remained unaltered. In conclusion, different mechanisms cause cell death in rats and mice, whereby oxidative stress and a breach of the blood-bile barrier are seen only in mice. Since transient cholestasis also occurs in human patients with APAP overdose, mice are a clinically relevant species to study APAP hepatotoxicity but not rats.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Mice , Rats , Humans , Male , Animals , Acetaminophen/toxicity , Acetaminophen/metabolism , Bile/metabolism , Chromatography, Liquid , Chemical and Drug Induced Liver Injury/pathology , Rats, Wistar , Tandem Mass Spectrometry , Liver/metabolism , Hepatocytes/metabolism , Mice, Inbred C57BL , Tight Junction Proteins/metabolism
12.
J Cell Biol ; 223(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38517380

ABSTRACT

Epithelia must be able to resist mechanical force to preserve tissue integrity. While intercellular junctions are known to be important for the mechanical resistance of epithelia, the roles of tight junctions (TJs) remain to be established. We previously demonstrated that epithelial cells devoid of the TJ membrane proteins claudins and JAM-A completely lack TJs and exhibit focal breakages of their apical junctions. Here, we demonstrate that apical junctions fracture when claudin/JAM-A-deficient cells undergo spontaneous cell stretching. The junction fracture was accompanied by actin disorganization, and actin polymerization was required for apical junction integrity in the claudin/JAM-A-deficient cells. Further deletion of CAR resulted in the disruption of ZO-1 molecule ordering at cell junctions, accompanied by severe defects in apical junction integrity. These results demonstrate that TJ membrane proteins regulate the mechanical resistance of the apical junctional complex in epithelial cells.


Subject(s)
Tight Junction Proteins , Tight Junctions , Actins/genetics , Actins/metabolism , Claudins/metabolism , Epithelial Cells/metabolism , Intercellular Junctions/genetics , Intercellular Junctions/metabolism , Tight Junction Proteins/metabolism , Tight Junctions/metabolism , Madin Darby Canine Kidney Cells , Animals , Dogs
13.
Int J Biol Macromol ; 265(Pt 1): 130642, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460644

ABSTRACT

How selectively increase blood-tumor barrier (BTB) permeability is crucial to enhance the delivery of chemotherapeutic agents to brain tumor tissues. In this study, we established in vitro models of the blood-brain barrier (BBB) and BTB using endothelial cells (ECs) co-cultured with human astrocytes (AECs) and glioma cells (GECs), respectively. The findings revealed high expressions of the RNA-binding protein FXR1 and SNORD63 in GECs, where FXR1 was found to bind and stabilize SNORD63. Knockdown of FXR1 resulted in decreased expression of tight-junction-related proteins and increased BTB permeability by down-regulating SNORD63. SNORD63 played a role in mediating the 2'-O-methylation modification of POU6F1 mRNA, leading to the downregulation of POU6F1 protein expression. POU6F1 showed low expression in GECs and acted as a transcription factor to regulate BTB permeability by binding to the promoter regions of ZO-1, occludin, and claudin-5 mRNAs and negatively regulating their expressions. Finally, the targeted regulation of FXR1, SNORD63, and POU6F1 expressions, individually or in combination, effectively enhanced doxorubicin passage through the BTB and induced apoptosis in glioma cells. This study aims to elucidate the underlying mechanism of the FXR1/SNORD63/POU6F1 axis in regulating BTB permeability, offering a novel strategy to improve the efficacy of glioma chemotherapy.


Subject(s)
Brain Neoplasms , Glioma , Hematologic Neoplasms , MicroRNAs , POU Domain Factors , Humans , MicroRNAs/genetics , Endothelial Cells/metabolism , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism , Brain Neoplasms/pathology , Glioma/pathology , Blood-Brain Barrier/metabolism , Tight Junction Proteins/metabolism , Occludin/genetics , Hematologic Neoplasms/pathology , Permeability , Methylation , Capillary Permeability , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
14.
In Vitro Cell Dev Biol Anim ; 60(3): 278-286, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38485819

ABSTRACT

Previous studies have implicated targeting Pim-1 proto-oncogene, serine/threonine kinase (PIM1) as a preventive measure against high glucose-induced cellular stress and apoptosis. This study aimed to reveal the potential role and regulatory mechanism of PIM1 in diabetic retinopathy. Human retinal microvascular endothelial cells (hRMECs) underwent high glucose induction, and fluctuations in PIM1 levels were assessed. By overexpressing PIM1, its effects on the levels of inflammatory factors, oxidative stress indicators, migration and tube formation abilities, tight junction protein expression levels, and ferroptosis in hRMECs were identified. Afterwards, hRMECs were treated with the ferroptosis-inducing agent erastin, and the effect of erastin on the above PIM1 regulatory functions was focused on. PIM1 was downregulated upon high glucose, and its overexpression inhibited the inflammatory response, oxidative stress, cell migration, and tube formation potential in hRMECs, whereas elevated tight junction protein levels. Furthermore, PIM1 overexpression reduced intracellular iron ion levels, lipid peroxidation, and levels of proteins actively involved in ferroptosis. Erastin treatment reversed the impacts of PIM1 on hRMECs, suggesting the mediation of ferroptosis in PIM1 regulation. The current study has yielded critical insights into the role of PIM1 in ameliorating high glucose-induced hRMEC dysfunction through the inhibition of ferroptosis.


Subject(s)
Endothelial Cells , Ferroptosis , Humans , Animals , Retina/metabolism , Tight Junction Proteins/metabolism , Glucose/toxicity , Glucose/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Proto-Oncogene Proteins c-pim-1/pharmacology
15.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338691

ABSTRACT

Tight junction (TJ) protein cingulin (CGN) and transcription factor forkhead box protein O1 (FOXO1) contribute to the development of various cancers. Histone deacetylase (HDAC) inhibitors have a potential therapeutic role for some cancers. HDAC inhibitors affect the expression of both CGN and FOXO1. However, the roles and regulatory mechanisms of CGN and FOXO1 are unknown in non-small cell lung cancer (NSCLC) and normal human lung epithelial (HLE) cells. In the present study, to investigate the effects of CGN and FOXO1 on the malignancy of NSCLC, we used A549 cells as human lung adenocarcinoma and primary human lung epithelial (HLE) cells as normal lung tissues and performed the knockdown of CGN and FOXO1 by siRNAs. Furthermore, to investigate the detailed mechanisms in the antitumor effects of HDAC inhibitors for NSCLC via CGN and FOXO1, A549 cells and HLE cells were treated with the HDAC inhibitors trichostatin A (TSA) and Quisinostat (JNJ-2648158). In A549 cells, the knockdown of CGN increased bicellular TJ protein claudin-2 (CLDN-2) via mitogen-activated protein kinase/adenosine monophosphate-activated protein kinase (MAPK/AMPK) pathways and induced cell migration, while the knockdown of FOXO1 increased claudin-4 (CLDN-4), decreased CGN, and induced cell proliferation. The knockdown of CGN and FOXO1 induced cell metabolism in A549 cells. TSA and Quisinostat increased CGN and tricellular TJ protein angulin-1/lipolysis-stimulated lipoprotein receptor (LSR) in A549. In normal HLE cells, the knockdown of CGN and FOXO1 increased CLDN-4, while HDAC inhibitors increased CGN and CLDN-4. In conclusion, the knockdown of CGN via FOXO1 contributes to the malignancy of NSCLC. Both HDAC inhibitors, TSA and Quisinostat, may have potential for use in therapy for lung adenocarcinoma via changes in the expression of CGN and FOXO1.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Forkhead Box Protein O1 , Hydroxamic Acids , Lung Neoplasms , Tight Junction Proteins , Humans , A549 Cells , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Epithelial Cells/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/metabolism , Lung/pathology , Lung Neoplasms/metabolism , Tight Junction Proteins/metabolism , Transcription Factors/metabolism
16.
J Cell Sci ; 137(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38345099

ABSTRACT

Glycosylated mucin proteins contribute to the essential barrier function of the intestinal epithelium. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in human intestinal epithelial monolayers, MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane. MUC13 deletion resulted in increased transepithelial resistance (TEER) and reduced translocation of small solutes. TEER buildup in ΔMUC13 cells could be prevented by addition of MLCK, ROCK or protein kinase C (PKC) inhibitors. The levels of TJ proteins including claudins and occludin were highly increased in membrane fractions of MUC13 knockout cells. Removal of the MUC13 cytoplasmic tail (CT) also altered TJ composition but did not affect TEER. The increased buildup of TJ complexes in ΔMUC13 and MUC13-ΔCT cells was dependent on PKC. The responsible PKC member might be PKCδ (or PRKCD) based on elevated protein levels in the absence of full-length MUC13. Our results demonstrate for the first time that a mucin protein can negatively regulate TJ function and stimulate intestinal barrier permeability.


Subject(s)
Protein Kinase C , Tight Junction Proteins , Humans , Tight Junction Proteins/metabolism , Protein Kinase C/metabolism , Intestines , Intestinal Mucosa/metabolism , Tight Junctions/metabolism , Occludin , Mucins/metabolism , Epithelial Cells/metabolism
17.
Mol Med ; 30(1): 24, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321393

ABSTRACT

BACKGROUND: Lipid peroxidation is a characteristic metabolic manifestation of diabetic retinopathy (DR) that causes inflammation, eventually leading to severe retinal vascular abnormalities. Selenium (Se) can directly or indirectly scavenge intracellular free radicals. Due to the narrow distinction between Se's effective and toxic doses, porous Se@SiO2 nanospheres have been developed to control the release of Se. They exert strong antioxidant and anti-inflammatory effects. METHODS: The effect of anti-lipid peroxidation and anti-inflammatory effects of porous Se@SiO2 nanospheres on diabetic mice were assessed by detecting the level of Malondialdehyde (MDA), glutathione peroxidase 4 (GPX4), decreased reduced/oxidized glutathione (GSH/GSSG) ratio, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL) -1ß of the retina. To further examine the protective effect of porous Se@SiO2 nanospheres on the retinal vasculopathy of diabetic mice, retinal acellular capillary, the expression of tight junction proteins, and blood-retinal barrier destruction was observed. Finally, we validated the GPX4 as the target of porous Se@SiO2 nanospheres via decreased expression of GPX4 and detected the level of MDA, GSH/GSSG, TNF-α, IFN-γ, IL -1ß, wound healing assay, and tube formation in high glucose (HG) cultured Human retinal microvascular endothelial cells (HRMECs). RESULTS: The porous Se@SiO2 nanospheres reduced the level of MDA, TNF-α, IFN-γ, and IL -1ß, while increasing the level of GPX4 and GSH/GSSG in diabetic mice. Therefore, porous Se@SiO2 nanospheres reduced the number of retinal acellular capillaries, depletion of tight junction proteins, and vascular leakage in diabetic mice. Further, we identified GPX4 as the target of porous Se@SiO2 nanospheres as GPX4 inhibition reduced the repression effect of anti-lipid peroxidation, anti-inflammatory, and protective effects of endothelial cell dysfunction of porous Se@SiO2 nanospheres in HG-cultured HRMECs. CONCLUSION: Porous Se@SiO2 nanospheres effectively attenuated retinal vasculopathy in diabetic mice via inhibiting excess lipid peroxidation and inflammation by target GPX4, suggesting their potential as therapeutic agents for DR.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Nanospheres , Selenium , Humans , Mice , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Selenium/metabolism , Selenium/pharmacology , Selenium/therapeutic use , Silicon Dioxide/metabolism , Silicon Dioxide/pharmacology , Silicon Dioxide/therapeutic use , Diabetes Mellitus, Experimental/metabolism , Endothelial Cells/metabolism , Lipid Peroxidation , Porosity , Tumor Necrosis Factor-alpha/metabolism , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Glutathione Disulfide/therapeutic use , Inflammation/metabolism , Anti-Inflammatory Agents/therapeutic use , Tight Junction Proteins/metabolism
18.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396929

ABSTRACT

Fluorescently labelled compounds are often employed to study the paracellular properties of epithelia. For flux measurements, these compounds are added to the donor compartment and samples collected from the acceptor compartment at regular intervals. However, this method fails to detect rapid changes in permeability. For continuous transepithelial flux measurements in an Ussing chamber setting, a device was developed, consisting of a flow-through chamber with an attached LED, optical filter, and photodiode, all encased in a light-impermeable container. The photodiode output was amplified and recorded. Calibration with defined fluorescein concentration (range of 1 nM to 150 nM) resulted in a linear output. As proof of principle, flux measurements were performed on various cell lines. The results confirmed a linear dependence of the flux on the fluorescein concentration in the donor compartment. Flux depended on paracellular barrier function (expression of specific tight junction proteins, and EGTA application to induce barrier loss), whereas activation of transcellular chloride secretion had no effect on fluorescein flux. Manipulation of the lateral space by osmotic changes in the perfusion solution also affected transepithelial fluorescein flux. In summary, this device allows a continuous recording of transepithelial flux of fluorescent compounds in parallel with the electrical parameters recorded by the Ussing chamber.


Subject(s)
Tight Junction Proteins , Tight Junctions , Tight Junctions/metabolism , Epithelium , Cell Line , Tight Junction Proteins/metabolism , Fluorescein/metabolism
19.
J Exp Clin Cancer Res ; 43(1): 65, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38424547

ABSTRACT

BACKGROUND: Cingulin (CGN) is a pivotal cytoskeletal adaptor protein located at tight junctions. This study investigates the link between CGN mutation and increased cancer susceptibility through genetic and mechanistic analyses and proposes a potential targeted therapeutic approach. METHODS: In a high-cancer-density family without known pathogenic variants, we performed tumor-targeted and germline whole-genome sequencing to identify novel cancer-associated variants. Subsequently, these variants were validated in a 222 cancer patient cohort, and CGN c.3560C > T was identified as a potential cancer-risk allele. Both wild-type (WT) (c.3560C > C) and variant (c.3560C > T) were transfected into cancer cell lines and incorporated into orthotopic xenograft mice model for evaluating their effects on cancer progression. Western blot, immunofluorescence analysis, migration and invasion assays, two-dimensional gel electrophoresis with mass spectrometry, immunoprecipitation assays, and siRNA applications were used to explore the biological consequence of CGN c.3560C > T. RESULTS: In cancer cell lines and orthotopic animal models, CGN c.3560C > T enhanced tumor progression with reduced sensitivity to oxaliplatin compared to the CGN WT. The variant induced downregulation of epithelial marker, upregulation of mesenchymal marker and transcription factor, which converged to initiate epithelial-mesenchymal transition (EMT). Proteomic analysis was conducted to investigate the elements driving EMT in CGN c.3560C > T. This exploration unveiled overexpression of IQGAP1 induced by the variant, contrasting the levels observed in CGN WT. Immunoprecipitation assay confirmed a direct interaction between CGN and IQGAP1. IQGAP1 functions as a regulator of multiple GTPases, particularly the Rho family. This overexpressed IQGAP1 was consistently associated with the activation of Rac1, as evidenced by the analysis of the cancer cell line and clinical sample harboring CGN c.3560C > T. Notably, activated Rac1 was suppressed following the downregulation of IQGAP1 by siRNA. Treatment with NSC23766, a selective inhibitor for Rac1-GEF interaction, resulted in the inactivation of Rac1. This intervention mitigated the EMT program in cancer cells carrying CGN c.3560C > T. Consistently, xenograft tumors with WT CGN showed no sensitivity to NSC23766 treatment, but NSC23766 demonstrated the capacity to attenuate tumor growth harboring c.3560C > T. CONCLUSIONS: CGN c.3560C > T leads to IQGAP1 overexpression, subsequently triggering Rac1-dependent EMT. Targeting activated Rac1 is a strategy to impede the advancement of cancers carrying this specific variant.


Subject(s)
Neoplasms , Tight Junction Proteins , Animals , Humans , Mice , Cell Movement , Cytoskeletal Proteins/metabolism , Epithelial-Mesenchymal Transition/genetics , Neoplasms/genetics , Proteomics , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , RNA, Small Interfering/pharmacology , Tight Junction Proteins/metabolism
20.
Aging (Albany NY) ; 16(4): 3750-3762, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38364236

ABSTRACT

BACKGROUND: Blood-brain barrier (BBB) could aggravate cerebral ischemia injury. Dexmedetomidine (Dex) has been believed to play a protective role in cerebral ischemia injury-induced BBB injury. METHODS: Middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD) models were established to simulate cerebral ischemia injury. Animal experiments included 4 groups, Sham, MCAO, MCAO+Dex, MCAO+Dex+sh-CCN1. Generally applicable gene set enrichment analysis was performed to analyze gene expression difference. Total collagen content and Evans blue staining were performed to measure infarct ratio and BBB breakdown, respectively. The cell apoptosis, mRNA and protein expression were measured through flow cytometry, PCR, and western blotting, respectively. The levels of IL-1ß, TNF-α, and IL-6 in serum were measured with commercial ELISA kits. RESULTS: Dex greatly promoted the expression level of CCN1. Dex suppressed cerebral ischemia injury, increased tight junction protein expression, improved the memory ability and neurological function of MCAO rats through targeting CCN1. The significant increase of inflammatory factors in the serum of MCAO rats were suppressed by Dex. Dex suppressed OGD induced increase of HRP permeability and promoting tight junction protein expression in vitro through regulating CCN1. The neurological function evaluation was performed with Neurological Severity Score (NSS) and Longa Score Scale. CONCLUSIONS: Dex could remarkably alleviate cerebral ischemia injury by inhibiting BBB breakdown, inflammatory response, and promoting neurological function and tight junction protein expression via up-regulating CCN1. This study might provide a novel therapeutic target for the prevention and treatment of cerebral ischemia injury-induced BBB.


Subject(s)
Brain Ischemia , Dexmedetomidine , Rats , Animals , Blood-Brain Barrier/metabolism , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Rats, Sprague-Dawley , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Glucose/metabolism , Oxygen/therapeutic use , Tight Junction Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...