Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.408
Filter
1.
J Biomed Mater Res B Appl Biomater ; 112(6): e35415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773744

ABSTRACT

This study reports the synthesis and characterization of hydroxyapatite (HA)-based bio-composites reinforced with varying amounts (by weight, 1-15 wt.%) of bio-medium entropy alloy (BioMEA) for load-bearing implant applications. BioMEA powders consisting of Ti, Nb, Zr, and Mo were mechanically alloyed for 100 h and subsequently added to HA using powder metallurgy techniques. To show the effect of BioMEA, the microstructure, density, and mechanical tests have been conducted and the synthesized BioMEA was characterized by scanning electron microscope (SEM), x-ray diffractometer (XRD), and Fourier-transform infrared spectroscopy (FTIR) analysis. In addition, in vitro degradation behavior and bioactivity analyses of bio-composites have been conducted. XRD analysis revealed the formation of BioMEA after 20 h of mechanical alloying. The highest density value of 2.47 g/cm3 was found in 15 wt.% BioMEA-reinforced bio-composite. The addition of BioMEA reinforcement led to a significant increase in hardness and tensile strength values, with the highest values observed at 15 wt.% reinforcement. Compression tests demonstrated a significant increase in compressive strength and deformation capability of the bio-composites with the highest values observed at 15 wt.% BioMEA addition. The highest toughness of 7.68 kJ/m2 was measured in 10 wt.% MEA-reinforced bio-composites. The produced bio-composite materials have an elastic modulus between 3.5-5.5 GPa, which may provide a solution to the stress shielding problems caused by the high elastic modulus of metallic implant materials. The most severe degradation occurred in 15 wt.% MEA-reinforced bio-composites, and the effect of degradation caused a decrease in Ca and an increase in Ti-Ni-Zr-Mo in all bio-composites. These findings suggest that HA/BioMEA bio-composites have the potential to be developed as advanced biomaterials with moderate mechanical and biological properties for load-bearing implant applications.


Subject(s)
Alloys , Durapatite , Materials Testing , Titanium , Zirconium , Zirconium/chemistry , Durapatite/chemistry , Alloys/chemistry , Titanium/chemistry , Entropy , Niobium/chemistry , Biocompatible Materials/chemistry
2.
Dental Press J Orthod ; 29(2): e2423282, 2024.
Article in English | MEDLINE | ID: mdl-38775601

ABSTRACT

OBJECTIVE: This study aimed to compare the insertion torque (IT), flexural strength (FS) and surface alterations between stainless steel (SS-MIs) and titanium alloy (Ti-MIs) orthodontic mini-implants. METHODS: Twenty-four MIs (2 x 10 mm; SS-MIs, n = 12; Ti-MIs, n = 12) were inserted on artificial bone blocks of 20 lb/ft3 (20 PCF) and 40 lb/ft3 (40 PCF) density. The maximum IT was recorded using a digital torque meter. FS was evaluated at 2, 3 and 4 mm-deflection. Surface topography and chemical composition of MIs were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). General linear and mixed models were used to assess the effect of the MI type, bone density and deflection on the evaluated outcomes. RESULTS: The IT of Ti-MIs was 1.1 Ncm greater than that obtained for the SS-MIs (p= 0.018). The IT for MIs inserted in 40 PCF test blocks was 5.4 Ncm greater than that for those inserted in 20 PCF test blocks (p < 0.001). SS-MIs inserted in higher density bone (40 PCF) had significantly higher flexural strength than the other groups, at 2 mm (98.7 ± 5.1 Ncm), 3 mm (112.0 ± 3.9 Ncm) and 4 mm (120.0 ± 3.4 Ncm) of deflection (p< 0.001). SEM evidenced fractures in the Ti-MIs. EDS revealed incorporation of 18% of C and 2.06% of O in the loaded SS-MIs, and 3.91% of C in the loaded Ti-MIs. CONCLUSIONS: Based on the findings of this in vitro study, it seems that SS-MIs offer sufficient stability and exhibit greater mechanical strength, compared to Ti-MIs when inserted into higher density bone.


Subject(s)
Dental Alloys , Dental Implants , Flexural Strength , Materials Testing , Microscopy, Electron, Scanning , Orthodontic Anchorage Procedures , Stainless Steel , Surface Properties , Titanium , Torque , Titanium/chemistry , Stainless Steel/chemistry , Orthodontic Anchorage Procedures/instrumentation , Orthodontic Anchorage Procedures/methods , Dental Alloys/chemistry , In Vitro Techniques , Spectrometry, X-Ray Emission , Dental Stress Analysis , Humans , Stress, Mechanical , Bone Density
3.
Langmuir ; 40(20): 10718-10725, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728259

ABSTRACT

For accurate in vivo detection, nonspecific adsorption of biomacromolecules such as proteins and cells is a severe issue. The adsorption leads to electrode passivation, significantly compromising both the sensitivity and precision of sensing. Meanwhile, common antibiofouling modifications, such as polymer coatings, still grapple with issues related to biocompatibility, electrode passivation, and miniaturization. Herein, we propose a composite antibiofouling coating strategy based on zwitterionic metal-organic frameworks (Z-MOFs) and a combination of acrylamide hydrogels. On a well-designed TiO2/Z-MOF/hydrogel photoelectrode, we achieve highly sensitive and selective detection of dopamine in complex biological environments. The hydrogel's three-dimensional porous structure combined with unique microporous architecture of Z-MOF ensures effective sieving of interfering macromolecules while preserving efficient small molecules and electron transport. This innovative approach paves the way for constructing miniature, in vivo antibiofouling sensors for molecule monitoring in living organisms with complicated chemical environments.


Subject(s)
Biosensing Techniques , Dopamine , Hydrogels , Titanium , Hydrogels/chemistry , Dopamine/analysis , Dopamine/chemistry , Biosensing Techniques/methods , Titanium/chemistry , Biofouling/prevention & control , Electrochemical Techniques/methods , Photochemical Processes , Metal-Organic Frameworks/chemistry , Biocompatible Materials/chemistry , Electrodes
4.
Langmuir ; 40(20): 10589-10599, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728854

ABSTRACT

Optically transparent glass with antifogging and antibacterial properties is in high demand for endoscopes, goggles, and medical display equipment. However, many of the previously reported coatings have limitations in terms of long-term antifogging and efficient antibacterial properties, environmental friendliness, and versatility. In this study, inspired by catfish and sphagnum moss, a novel photoelectronic synergy antifogging and antibacterial coating was prepared by cross-linking polyethylenimine-modified titanium dioxide (PEI-TiO2), polyvinylpyrrolidone (PVP), and poly(acrylic acid) (PAA). The as-prepared coating could remain fog-free under hot steam for more than 40 min. The experimental results indicate that the long-term antifogging properties are due to the water absorption and spreading characteristics. Moreover, the organic-inorganic hybrid of PEI and TiO2 was first applied to enhance the antibacterial performance. The Staphylococcus aureus and the Escherichia coli growth inhibition rates of the as-prepared coating reached 97 and 96% respectively. A photoelectronic synergy antifogging and antibacterial mechanism based on the positive electrical and photocatalytic properties of PEI-TiO2 was proposed. This investigation provides insight into designing multifunctional bioinspired surface materials to realize antifogging and antibacterial that can be applied to medicine and daily lives.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Staphylococcus aureus , Titanium , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Titanium/chemistry , Titanium/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Microbial Sensitivity Tests , Povidone/chemistry , Surface Properties
5.
Sci Adv ; 10(19): eadm9561, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718119

ABSTRACT

Lactic acid (LA) accumulation in the tumor microenvironment poses notable challenges to effective tumor immunotherapy. Here, an intelligent tumor treatment microrobot based on the unique physiological structure and metabolic characteristics of Veillonella atypica (VA) is proposed by loading Staphylococcus aureus cell membrane-coating BaTiO3 nanocubes (SAM@BTO) on the surface of VA cells (VA-SAM@BTO) via click chemical reaction. Following oral administration, VA-SAM@BTO accurately targeted orthotopic colorectal cancer through inflammatory targeting of SAM and hypoxic targeting of VA. Under in vitro ultrasonic stimulation, BTO catalyzed two reduction reactions (O2 → •O2- and CO2 → CO) and three oxidation reactions (H2O → •OH, GSH → GSSG, and LA → PA) simultaneously, effectively inducing immunogenic death of tumor cells. BTO catalyzed the oxidative coupling of VA cells metabolized LA, effectively disrupting the immunosuppressive microenvironment, improving dendritic cell maturation and macrophage M1 polarization, and increasing effector T cell proportions while decreasing regulatory T cell numbers, which facilitates synergetic catalysis and immunotherapy.


Subject(s)
Colorectal Neoplasms , Immunotherapy , Tumor Microenvironment , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Immunotherapy/methods , Animals , Mice , Humans , Catalysis , Cell Line, Tumor , Nanostructures/chemistry , Biomimetic Materials/chemistry , Administration, Oral , Titanium/chemistry , Biomimetics/methods , Lactic Acid/chemistry , Dendritic Cells/immunology , Dendritic Cells/metabolism , Barium Compounds
6.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731427

ABSTRACT

Dopamine (DA) and uric acid (UA) are essential for many physiological processes in the human body. Abnormal levels of DA and UA can lead to multiple diseases, such as Parkinson's disease and gout. In this work, a three-dimensional reduced graphene oxide-MXene (3D rGO-Ti3C2) composite electrode was prepared using a simple one-step hydrothermal reduction process, which could separate the oxidation potentials of DA and UA, enabling the simultaneous detection of DA and UA. The 3D rGO-Ti3C2 electrode exhibited excellent electrocatalytic activity towards both DA and UA. In 0.01 M PBS solution, the linear range of DA was 0.5-500 µM with a sensitivity of 0.74 µA·µM-1·cm-2 and a detection limit of 0.056 µM (S/N = 3), while the linear range of UA was 0.5-60 µM and 80-450 µM, with sensitivity of 2.96 and 0.81 µA·µM-1·cm-2, respectively, and a detection limit of 0.086 µM (S/N = 3). In 10% fetal bovine serum (FBS) solution, the linear range of DA was 0.5-500 µM with a sensitivity of 0.41 µA·µM-1·cm-2 and a detection limit of 0.091 µM (S/N = 3). The linear range of UA was 2-500 µM with a sensitivity of 0.11 µA·µM-1·cm-2 and a detection limit of 0.6 µM (S/N = 3). The modified electrode exhibited advantages such as high sensitivity, a strong anti-interference capability, and good repeatability. Furthermore, the modified electrode was successfully used for DA measurement in vivo. This could present a simple reliable route for neurotransmitter detection in neuroscience.


Subject(s)
Dopamine , Electrochemical Techniques , Electrodes , Graphite , Uric Acid , Graphite/chemistry , Uric Acid/analysis , Uric Acid/blood , Dopamine/analysis , Dopamine/blood , Electrochemical Techniques/methods , Limit of Detection , Oxidation-Reduction , Humans , Titanium/chemistry , Animals
7.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731581

ABSTRACT

In this study, TiO2/P, K-containing grapefruit peel biochar (TiO2/P, K-PC) composites were synthesized in situ biomimetically using grapefruit peel as the bio-template and carbon source and tetrabutyl titanate as the titanium source. This was achieved using the two-step rotary impregnation-calcination method. Adjusting the calcination temperature of the sample in an air atmosphere could regulate the mass ratio of TiO2 to carbon. The prepared samples were subjected to an analysis of their compositions, structures, morphologies, and properties. It demonstrated that the prepared samples were complexes of anatase TiO2 and P, K-containing carbon, with the presence of graphitic carbon. They possessed a unique morphological structure with abundant pores and a large surface area. The grapefruit peel powder played a crucial role in the induction and assembly of TiO2/P, K-PC composites. The sample PCT-400-550 had the best photocatalytic activity, with the degradation rate of RhB, MO, and MB dye solutions reaching more than 99% within 30 min, with satisfactory cyclic stability. The outstanding photocatalytic activity can be credited to its unique morphology and the efficient collaboration between TiO2 and P, K-containing biochar.


Subject(s)
Charcoal , Citrus paradisi , Titanium , Titanium/chemistry , Citrus paradisi/chemistry , Charcoal/chemistry , Catalysis , Biomass
8.
Mikrochim Acta ; 191(6): 305, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38713444

ABSTRACT

A multifunctional surface-enhanced Raman scattering (SERS) platform integrating sensitive detection and drug resistance analysis was developed for Gram-positive bacteria. The substrate was based on self-assembled Ti3C2Tx@Au NPs films and capture molecule phytic acid (IP6) to achieve specific capture of Gram-positive bacteria and different bacteria were analyzed by fingerprint signal. It had advantages of good stability and homogeneity (RSD = 8.88%). The detection limit (LOD) was 102 CFU/mL for Staphylococcus aureus and 103 CFU/mL for MRSA, respectively. A sandwich structure was formed on the capture substrate by signal labels prepared by antibiotics (penicillin G and vancomycin) and non-interference SERS probe molecules (4-mercaptobenzonitrile (2223 cm-1) and 2-amino-4-cyanopyridine (2240 cm-1)) to improve sensitivity. The LOD of Au NPs@4-MBN@PG to S. aureus and Au NPs@AMCP@Van to MRSA and S. aureus were all improved to 10 CFU/mL, with a wide dynamic linear range from 108 to 10 CFU/mL (R2 ≥ 0.992). The SERS platform can analyze the drug resistance of drug-resistant bacteria. Au NPs@4-MBN@PG was added to the substrate and captured MRSA to compare the SERS spectra of 4-MBN. The intensity inhomogeneity of 4-MBN at the same concentrations of MRSA and the nonlinearity at the different concentrations of MRSA revealed that MRSA was resistant to PG. Finally, the SERS platform achieved the determination of MRSA in blood. Therefore, this SERS platform has great significance for the determination and analysis of Gram-positive bacteria.


Subject(s)
Anti-Bacterial Agents , Gold , Limit of Detection , Metal Nanoparticles , Spectrum Analysis, Raman , Staphylococcus aureus , Titanium , Spectrum Analysis, Raman/methods , Gold/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Titanium/chemistry , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Vancomycin/pharmacology , Vancomycin/chemistry , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Penicillin G/pharmacology , Penicillin G/chemistry , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification
9.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732166

ABSTRACT

This current study assessed the impacts of morphology adjustment of perovskite BiFeO3 (BFO) on the construction and photocatalytic activity of P-infused g-C3N4/U-BiFeO3 (U-BFO/PCN) heterostructured composite photocatalysts. Favorable formation of U-BFO/PCN composites was attained via urea-aided morphology-controlled hydrothermal synthesis of BFO followed by solvosonication-mediated fusion with already synthesized P-g-C3N4 to form U-BFO/PCN composites. The prepared bare and composite photocatalysts' morphological, textural, structural, optical, and photocatalytic performance were meticulously examined through various analytical characterization techniques and photodegradation of aqueous rhodamine B (RhB). Ellipsoids and flakes morphological structures were obtained for U-BFO and BFO, and their effects on the successful fabrication of the heterojunctions were also established. The U-BFO/PCN composite exhibits 99.2% efficiency within 20 min of visible-light irradiation, surpassing BFO/PCN (88.5%), PCN (66.8%), and U-BFO (26.1%). The pseudo-first-order kinetics of U-BFO/PCN composites is 2.41 × 10-1 min-1, equivalent to 2.2 times, 57 times, and 4.3 times of BFO/PCN (1.08 × 10-1 min-1), U-BFO, (4.20 × 10-3 min-1), and PCN, (5.60 × 10-2 min-1), respectively. The recyclability test demonstrates an outstanding photostability for U-BFO/PCN after four cyclic runs. This improved photocatalytic activity exhibited by the composites can be attributed to enhanced visible-light utilization and additional accessible active sites due to surface and electronic band modification of CN via P-doping and effective charge separation achieved via successful composites formation.


Subject(s)
Bismuth , Photolysis , Rhodamines , Catalysis , Bismuth/chemistry , Rhodamines/chemistry , Light , Ferric Compounds/chemistry , Nitrogen Compounds/chemistry , Titanium/chemistry , Photochemical Processes , Nitriles/chemistry , Kinetics , Graphite , Oxides , Calcium Compounds
10.
J Biomed Mater Res B Appl Biomater ; 112(5): e35417, 2024 May.
Article in English | MEDLINE | ID: mdl-38742468

ABSTRACT

Stress shielding is one of the major concerns for total ankle replacement implants nowadays, because it is responsible for implant-induced bone resorption. The bone resorption contributes to the aseptic loosening and failure of ankle implants in later stages. To reduce the stress shielding, improvements can be made in the implant material by decreasing the elastic mismatch between the implant and the tibia bone. This study proposes a new functionally graded material (FGM) based tibial implant for minimizing the problem of stress shielding. Three-dimensional finite element (FE) models of the intact tibia and the implanted tibiae were created to study the influence of material gradation law and volume fraction index on stress shielding and implant-bone micromotion. Different implant materials were considered that is, cobalt-chromium, titanium (Ti), and FGM with Ti at the bottom and hydroxyapatite (HA) at the top. The FE models of FGM implants were generated by using different volume fractions and the rule of mixtures. The rule of mixtures was used to calculate the FGM properties based on the local volume fraction. The volume fraction was defined by using exponential, power, and sigmoid laws. For the power and sigmoid law varying volume fraction indices (0.1, 0.2, 0.5, 1, 2, and 5) were considered. The geometry resembling STAR® ankle system tibial implant was considered for the present study. The results indicate that FGMs lower stress shielding but also marginally increase implant-bone micromotion; however, the values were within the acceptable limit for bone ingrowth. It is observed that the material gradation law and volume fraction index influence the performance of FGM tibial implants. The tibial implant composed of FGM using power law with a volume fraction index of 0.1 was the preferred option because it showed the least stress shielding.


Subject(s)
Arthroplasty, Replacement, Ankle , Finite Element Analysis , Tibia , Titanium , Titanium/chemistry , Humans , Durapatite/chemistry , Prosthesis Design , Stress, Mechanical , Materials Testing
11.
BMC Oral Health ; 24(1): 545, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730391

ABSTRACT

BACKGROUND: This Finite Element Analysis was conducted to analyze the biomechanical behaviors of titanium base abutments and several crown materials with respect to fatigue lifetime and stress distribution in implants and prosthetic components. METHODS: Five distinct designs of implant-supported single crowns were modeled, including a polyetheretherketone (PEEK), polymer-infiltrated ceramic network, monolithic lithium disilicate, and precrystallized and crystallized zirconia-reinforced lithium silicates supported by a titanium base abutment. For the static load, a 100 N oblique load was applied to the buccal incline of the palatal cusp of the maxillary right first premolar. The dynamic load was applied in the same way as in static loading with a frequency of 1 Hz. The principal stresses in the peripheral bone as well as the von Mises stresses and fatigue strength of the implants, abutments, prosthetic screws, and crowns were assessed. RESULTS: All of the models had comparable von Mises stress values from the implants and abutments, as well as comparable maximum and minimum principal stress values from the cortical and trabecular bones. The PEEK crown showed the lowest stress (46.89 MPa) in the cervical region. The prosthetic screws and implants exhibited the highest von Mises stress among the models. The lithium disilicate crown model had approximately 9.5 times more cycles to fatique values for implants and 1.7 times more cycles to fatique values for abutments than for the lowest ones. CONCLUSIONS: With the promise of at least ten years of clinical success and favorable stress distributions in implants and prosthetic components, clinicians can suggest using an implant-supported lithium disilicate crown with a titanium base abutment.


Subject(s)
Benzophenones , Crowns , Dental Abutments , Dental Prosthesis, Implant-Supported , Dental Stress Analysis , Finite Element Analysis , Titanium , Titanium/chemistry , Humans , Dental Porcelain/chemistry , Polyethylene Glycols/chemistry , Dental Materials/chemistry , Polymers , Ketones/chemistry , Zirconium/chemistry , Dental Implants, Single-Tooth , Materials Testing , Dental Implant-Abutment Design , Biomechanical Phenomena
12.
PLoS One ; 19(5): e0302551, 2024.
Article in English | MEDLINE | ID: mdl-38696475

ABSTRACT

Recently developed Nickel-Titanium (NiTi) instruments with practical changes have resulted in safer instrumentation. In addition, topographical features on the file surface are a contributing factor to clinical durability. Therefore, this study aimed to investigate both the cyclic fatigue resistance and the roughness change of MTwo and Rotate instruments (VDW, Munich, Germany). Each instrument (n = 6/each group) was scanned with an atomic force microscopy prior to and after instrumentation. In addition, cyclic fatigue testing was conducted for each instrument (n = 11/each group) with stainless-steel blocks, including 45°-60°-90° degrees of curvature milled to the instruments' size. The roughness parameters increased for both systems after instrumentation (p<0.05). Both systems presented an increased roughness following instrumentation (p<0.05). The cyclic fatigue resistance was lowest at 90° for both systems (p<0.05), whereas the Rotate files presented a higher resistance than that of the Mtwo files (p<0.05). Compared to the Mtwo files, Rotate files presented better resistance, while the resistance decreased as the curvature increased.


Subject(s)
Nickel , Surface Properties , Titanium , Titanium/chemistry , Nickel/chemistry , Microscopy, Atomic Force , Materials Testing , Root Canal Preparation/instrumentation
13.
Phys Chem Chem Phys ; 26(19): 14131-14139, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690682

ABSTRACT

Cancer is one of the primary health concerns among humans due to its high incidence rate and lack of effective treatment. Currently, medical techniques to achieve the precise elimination of local cancer lesions with negligible damage to normal tissues are still intensely desired. Herein, we synthesized BaTiO3-TiO2 hollow spheres (BTHSs) for use in microwave dynamic therapy (MWDT) for cancer. Under UV irradiation, BTHSs can mediate the production of multiple reactive oxygen species (ROS), mainly 1O2, which results in a rapid photocatalytic degradation rate (97%), 1.6-fold that of commercial P25. Importantly, the ROS production process can be triggered by microwaves to effectively execute MWDT for cancer. Under microwave irradiation, BTHSs exhibit a remarkable therapeutic effect and slight cytotoxicity. In terms of mechanism, the enhanced ROS production efficiency of BTHSs can be attributed to their unique hollow structure and the formation of a type-II heterojunction by the incorporation of BaTiO3. The hollow structure increases the availability of active sites and enhances light scattering, while the BaTiO3-TiO2 heterojunction enhances the photocatalytic activity of TiO2 through charge transfer and electron-hole separation. Overall, this study provides important insights into the design and optimization of sensitizers for MWDT applications.


Subject(s)
Barium Compounds , Microwaves , Reactive Oxygen Species , Titanium , Titanium/chemistry , Barium Compounds/chemistry , Humans , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Neoplasms , Catalysis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
14.
J Nanobiotechnology ; 22(1): 242, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735936

ABSTRACT

BACKGROUND: Two-dimensional ultrathin Ti3C2 (MXene) nanosheets have gained significant attention in various biomedical applications. Although previous studies have described the accumulation and associated damage of Ti3C2 nanosheets in the testes and placenta. However, it is currently unclear whether Ti3C2 nanosheets can be translocated to the ovaries and cause ovarian damage, thereby impairing ovarian functions. RESULTS: We established a mouse model with different doses (1.25, 2.5, and 5 mg/kg bw/d) of Ti3C2 nanosheets injected intravenously for three days. We demonstrated that Ti3C2 nanosheets can enter the ovaries and were internalized by granulosa cells, leading to a decrease in the number of primary, secondary and antral follicles. Furthermore, the decrease in follicles is closely associated with higher levels of FSH and LH, as well as increased level of E2 and P4, and decreased level of T in mouse ovary. In further studies, we found that exposure toTi3C2 nanosheets increased the levels of Beclin1, ATG5, and the ratio of LC3II/Ι, leading to autophagy activation. Additionally, the level of P62 increased, resulting in autophagic flux blockade. Ti3C2 nanosheets can activate autophagy through the PI3K/AKT/mTOR signaling pathway, with oxidative stress playing an important role in this process. Therefore, we chose the ovarian granulosa cell line (KGN cells) for in vitro validation of the impact of autophagy on the hormone secretion capability. The inhibition of autophagy initiation by 3-Methyladenine (3-MA) promoted smooth autophagic flow, thereby partially reduced the secretion of estradiol and progesterone by KGN cells; Whereas blocking autophagic flux by Rapamycin (RAPA) further exacerbated the secretion of estradiol and progesterone in cells. CONCLUSION: Ti3C2 nanosheet-induced increased secretion of hormones in the ovary is mediated through the activation of autophagy and impairment of autophagic flux, which disrupts normal follicular development. These results imply that autophagy dysfunction may be one of the underlying mechanisms of Ti3C2-induced damage to ovarian granulosa cells. Our findings further reveal the mechanism of female reproductive toxicity induced by Ti3C2 nanosheets.


Subject(s)
Autophagy , Granulosa Cells , Nanostructures , Ovary , Titanium , Animals , Female , Autophagy/drug effects , Titanium/toxicity , Titanium/chemistry , Titanium/pharmacology , Mice , Ovary/drug effects , Ovary/metabolism , Nanostructures/chemistry , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism
15.
ACS Appl Mater Interfaces ; 16(19): 24321-24340, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700914

ABSTRACT

In current clinical practices related to orthopedics, dental, and cardiovascular surgeries, a number of biomaterial coatings, such as hydroxyapatite (HAp), diamond-like carbon (DLC), have been used in combination with metallic substrates (stainless steel, Ti6Al4V alloy, etc.). Although SiBCN coatings are widely explored in material science for diverse applications, their potential remains largely unexplored for biomedical applications. With this motivation, the present work reports the development of SiBxCyNzOm coatings on a Ti6Al4V substrate, employing a reactive radiofrequency (RF) magnetron sputtering technique. Three different coating compositions (Si0.27B0.10C0.31N0.07O0.24, Si0.23B0.06C0.21N0.22O0.27, and Si0.20B0.05C0.19N0.20O0.35) were obtained using a Si2BC2N target and varying nitrogen flow rates. The hydrophilic properties of the as-synthesized coatings were rationalized in terms of an increase in the number of oxygen-containing functional groups (OH and NO) on the surface, as probed using XPS and FTIR analyses. Furthermore, the cellular monoculture of SVEC4-10 endothelial cells and L929 fibroblasts established good cytocompatibility. More importantly, the coculture system of SVEC4-10 and L929, in the absence of growth factors, demonstrated clear cellular phenotypical changes, with extensive sprouting leading to tube-like morphologies on the coating surfaces, when stimulated using a customized cell stimulator (StimuCell) with 1.15 V/cm direct current (DC) electric field strength for 1 h. In addition, the hemocompatibility assessment using human blood samples revealed clinically acceptable hemolysis, less erythrocyte adhesion, shorter plasma recalcification, and reduced risk for thrombosis on the SiBxCyNzOm coatings, when compared to uncoated Ti6Al4V. Taken together, the present study unambiguously establishes excellent cytocompatibility, hemocompatibility, and defines the preangiogenic properties of SiBxCyNzOm bioceramic coatings for potential biomedical applications.


Subject(s)
Alloys , Coated Materials, Biocompatible , Materials Testing , Titanium , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Alloys/chemistry , Alloys/pharmacology , Titanium/chemistry , Titanium/pharmacology , Humans , Animals , Mice , Endothelial Cells/drug effects , Endothelial Cells/cytology , Cell Line , Surface Properties , Fibroblasts/drug effects , Fibroblasts/cytology , Neovascularization, Physiologic/drug effects
16.
ACS Appl Mater Interfaces ; 16(19): 24410-24420, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709954

ABSTRACT

Sonophotodynamic antimicrobial therapy (SPDAT) is recognized as a highly efficient biomedical treatment option, known for its versatility and remarkable healing outcomes. Nevertheless, there is a scarcity of sonophotosensitizers that demonstrate both low cytotoxicity and exceptional antibacterial effectiveness in clinical applications. In this paper, a novel ZnO nanowires (NWs)@TiO2-xNy core-sheath composite was developed, which integrates the piezoelectric effect and heterojunction to build dual built-in electric fields. Remarkably, it showed superb antibacterial effectiveness (achieving 95% within 60 min against S. aureus and ∼100% within 40 min against E. coli, respectively) when exposed to visible light and ultrasound. Due to the continuous interference caused by light and ultrasound, the material's electrostatic equilibrium gets disrupted. The modification in electrical properties facilitates the composite's ability to attract bacterial cells through electrostatic forces. Moreover, Zn-O-Ti and Zn-N-Ti bonds formed at the interface of ZnO NWs@TiO2-xNy, further enhancing the dual internal electric fields to accelerate the excited carrier separation to generate more reactive oxygen species (ROS), and thereby boosting the antimicrobial performance. In addition, the TiO2 layer limited Zn2+ dissolution into solution, leading to good biocompatibility and low cytotoxicity. Lastly, we suggest a mechanistic model to offer practical direction for the future development of antibacterial agents that are both low in toxicity and high in efficacy. In comparison to the traditional photodynamic therapy systems, ZnO NWs@TiO2-xNy composites exhibit super piezo-photocatalytic antibacterial activity with low toxicity, which shows great potential for clinical application as an antibacterial nanomaterial.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Nanowires , Staphylococcus aureus , Titanium , Zinc Oxide , Titanium/chemistry , Titanium/pharmacology , Titanium/radiation effects , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Nanowires/chemistry , Catalysis , Reactive Oxygen Species/metabolism , Microbial Sensitivity Tests , Humans , Light , Mice , Animals
17.
Anal Chim Acta ; 1309: 342665, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772653

ABSTRACT

BACKGROUND: The concentration of cytochrome C is demonstrated to be an effective indicator of the microbial corrosion strength of metals. Traditional cytochrome C sensor can detect cytochrome C with a low detection limit, but their use is limited by their high cost, cumbersome operation, and susceptibility to malignant environments. In addition, studies on the monitoring of cytochrome C in the field of microbial corrosion has still not been carried out. Therefore, there is a need for a highly sensitive, selective, low-cost, anti-interference, and stable cytochrome C sensor with online monitoring and remote sensing capabilities for in-situ measurement of microbial corrosion strength. RESULTS: This paper proposed a highly sensitive label-free fiber-optic sensor based on Mach-Zehnder interferometer (MZI) for in-situ measurement of the microbial corrosion marker cytochrome C. Two-dimensional Ti2C-MXene material is uniformly immobilized onto the surface of the sensing area to improve the sensitivity, hydrophilicity, and specific surface area of the sensing area, as well as to facilitate the immobilization of specific sensitive materials. The cytochrome C antibody is modified on the surface of Ti2C-MXene to specifically recognize cytochrome C, whose concentration variation can be measured by monitoring the spectral shift of MZI sensor. Results demonstrate a measurement sensitivity of 1.428 nm/µM for cytochrome C concentrations ranging from 0 to 7.04 µM. The detection limit of the sensor is calculated to be 0.392 µM with remarkable performance, including selectivity, stability, and reliability. Besides, the measurement result of the proposed sensor in real microbial corrosive environment is consistent with that of the ideal environment. SIGNIFICANCE AND NOVELTY: This is the first instance of achieving in-situ and label-free measurement of cytochrome C by using a fiber-optic MZI sensor, which undoubtedly provides a feasible solution for the effective monitoring of microbial metal corrosion in the environment.


Subject(s)
Cytochromes c , Fiber Optic Technology , Interferometry , Titanium , Cytochromes c/analysis , Cytochromes c/metabolism , Titanium/chemistry , Biosensing Techniques/methods , Limit of Detection , Optical Fibers , Corrosion
18.
Nano Lett ; 24(20): 6069-6077, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739779

ABSTRACT

Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold-NP-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic NPs based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable to or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. Since the main cost of Au NPs in commercial testing kits is the colloidal synthesis, our development with the Cu@Au and the laser-ablation-fabricated TiN NPs is exciting, offering potentially inexpensive plasmonic nanomaterials for various bioapplications. Moreover, our machine learning study showed that biodetection with TiN is more accurate than that with Au.


Subject(s)
Copper , Gold , Metal Nanoparticles , Titanium , Metal Nanoparticles/chemistry , Titanium/chemistry , Gold/chemistry , Copper/chemistry , Biosensing Techniques/methods , Biosensing Techniques/economics , Humans , COVID-19/virology , COVID-19/diagnosis , Gold Colloid/chemistry , SARS-CoV-2/isolation & purification
19.
Biomed Mater ; 19(4)2024 May 22.
Article in English | MEDLINE | ID: mdl-38740037

ABSTRACT

The purpose of this study was to construct a rutin-controlled release system on the surface of Ti substrates and investigate its effects on osteogenesis and osseointegration on the surface of implants. The base layer, polyethylenimine (PEI), was immobilised on a titanium substrate. Then, hyaluronic acid (HA)/chitosan (CS)-rutin (RT) multilayer films were assembled on the PEI using layer-by-layer (LBL) assembly technology. We used scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and contact angle measurements to examine all Ti samples. The drug release test of rutin was also carried out to detect the slow-release performance. The osteogenic abilities of the samples were evaluated by experiments on an osteoporosis rat model and MC3T3-E1 cells. The results (SEM, FTIR and contact angle measurements) all confirmed that the PEI substrate layer and HA/CS-RT multilayer film were effectively immobilised on titanium. The drug release test revealed that a rutin controlled release mechanism had been successfully established. Furthermore, thein vitrodata revealed that osteoblasts on the coated titanium matrix had greater adhesion, proliferation, and differentiation capacity than the osteoblasts on the pure titanium surface. When MC3T3-E1 cells were exposed to H2O2-induced oxidative stressin vitro, cell-based tests revealed great tolerance and increased osteogenic potential on HA/CS-RT substrates. We also found that the HA/CS-RT coating significantly increased the new bone mass around the implant. The LBL-deposited HA/CS-RT multilayer coating on the titanium base surface established an excellent rutin-controlled release system, which significantly improved osseointegration and promoted osteogenesis under oxidative stress conditions, suggesting a new implant therapy strategy for patients with osteoporosis.


Subject(s)
Coated Materials, Biocompatible , Hyaluronic Acid , Osseointegration , Osteoblasts , Osteogenesis , Osteoporosis , Prostheses and Implants , Rutin , Surface Properties , Titanium , Animals , Titanium/chemistry , Rutin/chemistry , Rutin/pharmacology , Osteogenesis/drug effects , Rats , Osteoporosis/drug therapy , Mice , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Osseointegration/drug effects , Hyaluronic Acid/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Oxidation-Reduction , Chitosan/chemistry , Female , Rats, Sprague-Dawley , Cell Adhesion/drug effects , Spectroscopy, Fourier Transform Infrared , Cell Differentiation/drug effects , Microscopy, Electron, Scanning , Cell Proliferation/drug effects , Polyethyleneimine/chemistry , 3T3 Cells , Oxidative Stress/drug effects , Layer-by-Layer Nanoparticles
20.
ACS Appl Bio Mater ; 7(5): 3096-3109, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764432

ABSTRACT

Wire arc additive manufacturing (WAAM) holds promise for producing medium to large industrial components. Application of WAAM in the manufacturing of biomedical materials has not yet been evaluated. The current study addresses two key research questions: first, the suitability of the WAAMed Ti6Al4V alloy for biomedical applications, and second, the effect of Ti6Al4V's constituents (α and ß phases) on the cell viability. The WAAMed Ti6Al4V alloy was fabricated (as-deposited: AD) using a metal inert gas (MIG)-based wire arc system using an in-house designed shielding chamber filled with argon. Subsequently, samples were subjected to solution treatment (950 °C for 1 h), followed by aging at 480 °C (T1), 530 °C (T2), and 580 °C (T3) for 8 h and subsequent normalization to ambient conditions. Microstructural analysis revealed ∼45.45% of α'-Ti colonies in the as-deposited samples, reducing to 23.26% postaging at 580 °C (T3). The α-lath thickness and interstitial oxygen content in the sample were observed to be proportional to the aging temperature, peaking at 580 °C (T3). Remarkably, during tribocorrosion analysis in simulated body fluid, the 580 °C-aged T3 sample displayed the lowest corrosion rate (7.9 µm/year) and the highest coefficient of friction (CoF) at 0.58, showing the effect of increasing oxygen content in the alloy matrix. Cell studies showed significant growth at 530 and 580 °C by day 7, correlated with higher oxygen content, while other samples had declining cell density. Additionally, optimal metallurgical property ranges were identified to enhance the Ti6Al4V alloy's biocompatibility, providing crucial insights for biomedical implant development.


Subject(s)
Alloys , Biocompatible Materials , Cell Survival , Hot Temperature , Materials Testing , Titanium , Titanium/chemistry , Alloys/chemistry , Cell Survival/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals , Particle Size , Mice , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...