Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neuroimmunol ; 358: 577654, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34265624

ABSTRACT

Increasing evidence suggests that SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is associated with increased risk of developing neurological or psychiatric conditions such as depression, anxiety or dementia. While the precise mechanism underlying this association is unknown, aberrant activation of toll-like receptor (TLR)3, a viral recognizing pattern recognition receptor, may play a key role. Synthetic cannabinoids and enhancing cannabinoid tone via inhibition of fatty acid amide hydrolase (FAAH) has been demonstrated to modulate TLR3-induced neuroimmune responses and associated sickness behaviour. However, the role of individual FAAH substrates, and the receptor mechanisms mediating these effects, are unknown. The present study examined the effects of intracerebral or systemic administration of the FAAH substrates N-oleoylethanolamide (OEA), N-palmitoylethanolamide (PEA) or the anandamide (AEA) analogue meth-AEA on hyperthermia and hypothalamic inflammatory gene expression following administration of the TLR3 agonist, and viral mimetic, poly I:C. The data demonstrate that meth-AEA does not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. In comparison, OEA and PEA attenuated the TLR3-induced hyperthermia, although only OEA attenuated the expression of hyperthermia-related genes (IL-1ß, iNOS, COX2 and m-PGES) in the hypothalamus. OEA, but not PEA, attenuated TLR3-induced increases in the expression of all IRF- and NFκB-related genes examined in the hypothalamus, but not in the spleen. Antagonism of PPARα prevented the OEA-induced attenuation of IRF- and NFκB-related genes in the hypothalamus following TLR3 activation but did not significantly alter temperature. PPARα agonism did not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. These data indicate that OEA may be the primary FAAH substrate that modulates TLR3-induced neuroinflammation and hyperthermia, effects partially mediated by PPARα.


Subject(s)
Ethanolamines/pharmacology , Hyperthermia, Induced/methods , Inflammation Mediators/metabolism , PPAR alpha/metabolism , Toll-Like Receptor 3/administration & dosage , Amidohydrolases/pharmacology , Animals , Female , Gene Expression , PPAR alpha/agonists , PPAR alpha/antagonists & inhibitors , Poly I-C/toxicity , Rats , Rats, Sprague-Dawley
3.
J Immunol ; 183(6): 3712-9, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19710451

ABSTRACT

TLR3 is known to respond to dsRNA from viruses, apoptotic cells, and/or necrotic cells. Dying cells are a rich source of ligands that can activate TLRs, such as TLR3. TLR3 expressed in the liver is likely to be a mediator of innate activation and inflammation in the liver. The importance of this function of TLR3 during acute hepatitis has not previously been fully explored. We used the mouse model of Con A-induced hepatitis and observed a novel role for TLR3 in hepatocyte damage in the absence of an exogenous viral stimulus. Interestingly, TLR3 expression in liver mononuclear cells and sinus endothelial cells was up-regulated after Con A injection and TLR3(-/-) mice were protected from Con A-induced hepatitis. Moreover, splenocytes from TLR3(-/-) mice proliferated less to Con A stimulation in the presence of RNA derived from damaged liver tissue compared with wild-type (WT) mice. To determine the relative contribution of TLR3 expression by hematopoietic cells or nonhematopoietic to liver damage during Con A-induced hepatitis, we generated bone marrow chimeric mice. TLR3(-/-) mice engrafted with WT hematopoietic cells were protected in a similar manner to WT mice reconstituted with TLR3(-/-) bone marrow, indicating that TLR3 signaling in both nonhematopoietic and hematopoietic cells plays an important role in mediating liver damage. In summary, our data suggest that TLR3 signaling is necessary for Con A-induced liver damage in vivo and that TLR3 regulates inflammation and the adaptive T cell immune response in the absence of viral infection.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Inflammation/etiology , Toll-Like Receptor 3/physiology , Acute Disease , Animals , Chemical and Drug Induced Liver Injury/etiology , Concanavalin A , Gene Expression Regulation , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Hepatocytes/pathology , Liver/metabolism , Liver/pathology , Mice , T-Lymphocytes/immunology , Toll-Like Receptor 3/administration & dosage , Toll-Like Receptor 3/deficiency , Toll-Like Receptor 3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...