Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.729
Filter
1.
Tunis Med ; 102(4): 241-244, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38746965

ABSTRACT

INTRODUCTION: Toll-like- receptors (TLR) control important aspects of innate and adaptive immune responses. Renal cells are among the non-immune cells that express (TLR). Therefore, their activation might be implicated in renal tubulo-interstitial injury. AIM: The study aimed to compare TLR9 expression in patients with primary membranous nephropathy (MN) to patients with lupus membranous nephropathy. METHODS: Kidney sections from 10 Lupus nephritis (LN) patients and ten patients with primary MN were analyzed by immunohistochemistry using anti-human TLR9 antibody. RESULTS: Results showed that TLR9 expression was weak and exclusively tubular in primary MN patients' biopsies. There was a significant difference between LN patients' biopsies and primary MN patients' biopsies. TLR9 expression was more diffused in LN patients' specimen than in those with primary MN. CONCLUSION: This study focuses on molecular level pathogenesis of MN. The data suggest that the receptors TLR9 may play role in tubulointerstitial injury in the pathogenesis of LN but not primary membranous nephropathy.


Subject(s)
Glomerulonephritis, Membranous , Lupus Nephritis , Toll-Like Receptor 9 , Humans , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/biosynthesis , Glomerulonephritis, Membranous/metabolism , Glomerulonephritis, Membranous/pathology , Glomerulonephritis, Membranous/immunology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Lupus Nephritis/immunology , Female , Adult , Male , Middle Aged , Kidney Tubules/pathology , Kidney Tubules/metabolism , Biopsy , Immunohistochemistry , Young Adult
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731877

ABSTRACT

Epstein-Barr virus (EBV) DNA is known to be shed upon reactivation of latent EBV. Based on our previous findings linking Toll-like receptor-9 (TLR9) to an EBV DNA-driven surge in IL-17A production, we aimed to examine the therapeutic potential of TLR9 inhibition in EBV DNA-exacerbated arthritis in a collagen-induced arthritis (CIA) mouse model. C57BL/6J mice were administered either collagen, EBV DNA + collagen, EBV DNA + collagen + TLR9 inhibitor, or only the TLR9 inhibitor. After 70 days, paw thicknesses, clinical scores, and gripping strength were recorded. Moreover, affected joints, footpads, and colons were histologically scored. Furthermore, the number of cells co-expressing IL-17A, IFN-γ, and FOXP3 in joint sections was determined by immunofluorescence assays. Significantly decreased paw thicknesses, clinical scores, and histological scores with a significantly increased gripping strength were observed in the group receiving EBV DNA + collagen + TLR9 inhibitor, compared to those receiving EBV DNA + collagen. Similarly, this group showed decreased IL-17A+ IFN-γ+, IL-17A+ FOXP3+, and IL-17A+ IFN-γ+ FOXP3+ foci counts in joints. We show that inhibiting TLR9 limits the exacerbation of arthritis induced by EBV DNA in a CIA mouse model, suggesting that TLR9 could be a potential therapeutic target for rheumatoid arthritis management in EBV-infected individuals.


Subject(s)
Arthritis, Experimental , DNA, Viral , Disease Models, Animal , Herpesvirus 4, Human , Mice, Inbred C57BL , Toll-Like Receptor 9 , Animals , Toll-Like Receptor 9/metabolism , Mice , Herpesvirus 4, Human/physiology , Arthritis, Experimental/virology , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , DNA, Viral/genetics , Interleukin-17/metabolism , Male , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/pathology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/virology
3.
Sci Rep ; 14(1): 11540, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773176

ABSTRACT

Antisense oligonucleotides (ASOs) are synthetic single-stranded oligonucleotides that bind to RNAs through Watson-Crick base pairings. They are actively being developed as therapeutics for various human diseases. ASOs containing unmethylated deoxycytidylyl-deoxyguanosine dinucleotide (CpG) motifs are known to trigger innate immune responses via interaction with toll-like receptor 9 (TLR9). However, the TLR9-stimulatory properties of ASOs, specifically those with lengths equal to or less than 20 nucleotides, phosphorothioate linkages, and the presence and arrangement of sugar-modified nucleotides-crucial elements for ASO therapeutics under development-have not been thoroughly investigated. In this study, we first established SY-ODN18, an 18-nucleotide phosphorothioate oligodeoxynucleotide with sufficient TLR9-stimulatory activity. We demonstrated that an unmethylated CpG motif near its 5'-end was indispensable for TLR9 activation. Moreover, by utilizing various sugar-modified nucleotides, we systematically generated model ASOs, including gapmer, mixmer, and fully modified designs, in accordance with the structures of ASO therapeutics. Our results illustrated that introducing sugar-modified nucleotides in such designs significantly reduces TLR9-stimulatory activity, even without methylation of CpG motifs. These findings would be useful for drug designs on several types of ASOs.


Subject(s)
Oligonucleotides, Antisense , Toll-Like Receptor 9 , Toll-Like Receptor 9/metabolism , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/chemistry , Humans , CpG Islands , Animals , Mice , Nucleotides/metabolism , Nucleotides/chemistry , Sugars/metabolism , Sugars/chemistry , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/pharmacology
5.
Nat Commun ; 15(1): 4232, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762479

ABSTRACT

Toll-like receptor 9 (TLR9) recognizes bacterial, viral and self DNA and play an important role in immunity and inflammation. However, the role of TLR9 in obesity is less well-studied. Here, we generate B-cell-specific Tlr9-deficient (Tlr9fl/fl/Cd19Cre+/-, KO) B6 mice and model obesity using a high-fat diet. Compared with control mice, B-cell-specific-Tlr9-deficient mice exhibited increased fat tissue inflammation, weight gain, and impaired glucose and insulin tolerance. Furthermore, the frequencies of IL-10-producing-B cells and marginal zone B cells were reduced, and those of follicular and germinal center B cells were increased. This was associated with increased frequencies of IFNγ-producing-T cells and increased follicular helper cells. In addition, gut microbiota from the KO mice induced a pro-inflammatory state leading to immunological and metabolic dysregulation when transferred to germ-free mice. Using 16 S rRNA gene sequencing, we identify altered gut microbial communities including reduced Lachnospiraceae, which may play a role in altered metabolism in KO mice. We identify an important network involving Tlr9, Irf4 and Il-10 interconnecting metabolic homeostasis, with the function of B and T cells, and gut microbiota in obesity.


Subject(s)
B-Lymphocytes , Diet, High-Fat , Dysbiosis , Gastrointestinal Microbiome , Inflammation , Interleukin-10 , Mice, Knockout , Obesity , Toll-Like Receptor 9 , Animals , Obesity/immunology , Obesity/microbiology , Obesity/metabolism , Dysbiosis/immunology , Dysbiosis/microbiology , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Inflammation/metabolism , Mice , Diet, High-Fat/adverse effects , Interleukin-10/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Interferon Regulatory Factors
6.
Vet Microbiol ; 293: 110096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636174

ABSTRACT

IgA plays a vital role in defending against the infectious pathogens. However, the specific regulatory pathways involved in IgA secretion in the context of PEDV infection have remained elusive. Therefore, in this study, we explore the molecular mechanisms underlying IgA secretion in response to infection, with a particular focus on PEDV, a devastating enteric virus affecting global swine production. Our investigation begins by examining changes in IgA concentrations in both serum and small intestinal contents following PEDV infection in 2- and 4-week-old pigs. Remarkably, a significant increase in IgA levels in these older pigs post-infection were observed. To delve deeper into the regulatory mechanisms governing IgA secretion in response to PEDV infection, isolated porcine intestinal B cells were co-cultured with monocytes derived DCs (Mo-DCs) in vitro. In the intestinal DC-B cell co-cultures, IgA secretion was found to increase significantly after PEDV infection, as well as upregulating the expression of AID, GLTα and PSTα reflecting isotype switching to IgA. In addition, the expression of TLR9 was upregulated in these cultures, as determined by RT-qPCR and western blotting. Moreover, our findings extend to in vivo observations, where we detected higher levels of TLR9 expression in the ileum of pig post PEDV infection. Collectively, our results highlight the ability of PEDV to stimulate the generation of IgA, particularly in elder pigs, and identify TLR9 as a critical mediator of IgA production within the porcine intestinal microenvironment during PEDV infection.


Subject(s)
Coronavirus Infections , Immunoglobulin A , Intestine, Small , Porcine epidemic diarrhea virus , Swine Diseases , Toll-Like Receptor 9 , Animals , Swine , Porcine epidemic diarrhea virus/immunology , Swine Diseases/immunology , Swine Diseases/virology , Intestine, Small/immunology , Immunoglobulin A/immunology , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , B-Lymphocytes/immunology , Coculture Techniques , Dendritic Cells/immunology
7.
Mitochondrion ; 76: 101886, 2024 May.
Article in English | MEDLINE | ID: mdl-38663836

ABSTRACT

Aging probably is the most complexed process in biology. It is manifested by a variety of hallmarks. These hallmarks weave a network of aging; however, each hallmark is not uniformly strong for the network. It is the weakest link determining the strengthening of the network of aging, or the maximum lifespan of an organism. Therefore, only improvement of the weakest link has the chance to increase the maximum lifespan but not others. We hypothesize that mitochondrial dysfunction is the weakest link of the network of aging. It may origin from the innate intramitochondrial immunity related to the activities of pathogen DNA recognition receptors. These receptors recognize mtDNA as the PAMP or DAMP to initiate the immune or inflammatory reactions. Evidence has shown that several of these receptors including TLR9, cGAS and IFI16 can be translocated into mitochondria. The potentially intramitochondrial presented pathogen DNA recognition receptors have the capacity to attack the exposed second structures of the mtDNA during its transcriptional or especially the replicational processes, leading to the mtDNA mutation, deletion, heteroplasmy colonization, mitochondrial dysfunction, and alterations of other hallmarks, as well as aging. Pre-consumption of the intramitochondrial presented pathogen DNA recognition receptors by medical interventions including development of mitochondrial targeted small molecule which can neutralize these receptors may retard or even reverse the aging to significantly improve the maximum lifespan of the organisms.


Subject(s)
Aging , DNA, Mitochondrial , Immunity, Innate , Mitochondria , Humans , Mitochondria/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , Animals , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
8.
J Immunol Res ; 2024: 9399524, 2024.
Article in English | MEDLINE | ID: mdl-38660059

ABSTRACT

Toll-like receptors (TLRs) have a critical role in recognizing pathogenic patterns and initiating immune responses against TB and HIV. Previously, studies described the gene expression of TLRs in patients with TB and HIV. Here, we demonstrated TLRs protein expressions and their association with clinical status and plasma markers in TB, HIV, and TB/HIV coinfection. The phenotyping of TLR2, TLR4, and TLR9 on CD14+ monocytes and their subsets were determined by multicolor flow cytometry. Host plasma biomarkers and microbial indices were measured using Luminex Multiplex assay and standard of care tools, respectively. TLR2 expression significantly enhanced in TB, slightly increased in HIV but slightly reduced in TB/HIV coinfection compared to apparently health controls (HC). On the other hand, TLR4 expression was significantly increased in TB, HIV, and TB/HIV compared to HC. Expression of TLR4 was equally enhanced on classical and intermediate monocytes while higher TLR2 expression on intermediate than classical monocytes. TLR4 had a positive correlation pattern with plasma biomarkers while TLR2 had an inverse correlation pattern. TLR4 is associated with disease severity while TLR2 is with the immune-competent status of patients. Our findings demonstrated that the pattern of TLR expression is disease as well as monocyte subset specific and distinct factors drive these differences.


Subject(s)
Biomarkers , Coinfection , HIV Infections , Monocytes , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Toll-Like Receptor 9 , Tuberculosis , Female , Humans , Male , Coinfection/immunology , HIV Infections/blood , HIV Infections/immunology , Monocytes/immunology , Monocytes/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 9/metabolism , Tuberculosis/immunology , Tuberculosis/blood
9.
J Ethnopharmacol ; 330: 118208, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38636581

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zhilong Huoxue Tongyu Capsule (ZL) is clinically prescribed for acute ischemic stroke (AIS). However, only a few studies have addressed the mechanisms of ZL in treating AIS. AIM OF THE STUDY: To explore the underlying mechanism of macrophage polarization and inflammation mediated by ZL, and to provide a reference for AIS treatment. MATERIALS AND METHODS: Sixteen SD rats were fed with different dose of ZL (0, 0.4, 0.8, and 1.6 g/kg/d) for 4 days to prepare ZL serum. After 500 ng/mL lipopolysaccharide (LPS) stimulation, RAW264.7 cells were administrated with ZL serum. Then, experiments including ELISA, flow cytometry, real-time quantitative PCR and Western blot were performed to verify the effects of ZL on macrophage polarization and inflammation. Next, let-7i inhibitor was transfected in RAW264.7 cells when treated with LPS and ZL serum to verify the regulation of ZL on the let-7i/TLR9/MyD88 signaling pathway. Moreover, the interaction between let-7i and TLR9 was confirmed by the dual-luciferase assay. RESULTS: ZL serum significantly decreased the expression of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and increased the expression of IL-10 and transforming growth factor ß1 (TGF-ß1) of LPS stimulated-macrophages. Furthermore, ZL serum polarized macrophages toward M2, decreased the expressions of TLR9, MyD88, and iNOS, as well as increased the expressions of let-7i, CHIL3, and Arginase-1. It is worth mentioning that the effect of ZL serum is dose-dependent. However, let-7i inhibitor restored all the above effects in LPS stimulated-macrophages. In addition, TLR9 was the target of let-7i. CONCLUSIONS: ZL targeted let-7i to inhibit TLR9 expression, thereby inhibiting the activation of the TLR9/MyD88 pathway, promoting the M2 polarization, and inhibiting the development of inflammation in AIS.


Subject(s)
Drugs, Chinese Herbal , Macrophages , MicroRNAs , Myeloid Differentiation Factor 88 , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 9 , Animals , Myeloid Differentiation Factor 88/metabolism , Mice , RAW 264.7 Cells , Signal Transduction/drug effects , Macrophages/drug effects , Macrophages/metabolism , Toll-Like Receptor 9/metabolism , Drugs, Chinese Herbal/pharmacology , MicroRNAs/metabolism , Rats , Male , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides , Anti-Inflammatory Agents/pharmacology
10.
J Immunol ; 212(11): 1680-1692, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38607278

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are strongly implicated as a major source of IFN-I in systemic lupus erythematosus (SLE), triggered through TLR-mediated recognition of nucleic acids released from dying cells. However, relatively little is known about how TLR signaling and IFN-I production are regulated in pDCs. In this article, we describe a role for integrin αvß3 in regulating TLR responses and IFN-I production by pDCs in mouse models. We show that αv and ß3-knockout pDCs produce more IFN-I and inflammatory cytokines than controls when stimulated through TLR7 and TLR9 in vitro and in vivo. Increased cytokine production was associated with delayed acidification of endosomes containing TLR ligands, reduced LC3 conjugation, and increased TLR signaling. This dysregulated TLR signaling results in activation of B cells and promotes germinal center (GC) B cell and plasma cell expansion. Furthermore, in a mouse model of TLR7-driven lupus-like disease, deletion of αvß3 from pDCs causes accelerated autoantibody production and pathology. We therefore identify a pDC-intrinsic role for αvß3 in regulating TLR signaling and preventing activation of autoreactive B cells. Because αvß3 serves as a receptor for apoptotic cells and cell debris, we hypothesize that this regulatory mechanism provides important contextual cues to pDCs and functions to limit responses to self-derived nucleic acids.


Subject(s)
Autoimmunity , Dendritic Cells , Integrin alphaVbeta3 , Lupus Erythematosus, Systemic , Mice, Knockout , Signal Transduction , Toll-Like Receptor 7 , Animals , Mice , Dendritic Cells/immunology , Integrin alphaVbeta3/immunology , Integrin alphaVbeta3/metabolism , Autoimmunity/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Lupus Erythematosus, Systemic/immunology , Signal Transduction/immunology , Mice, Inbred C57BL , Cytokines/metabolism , Cytokines/immunology , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism , B-Lymphocytes/immunology , Autoantibodies/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Lymphocyte Activation/immunology , Disease Models, Animal
12.
Ecotoxicol Environ Saf ; 276: 116317, 2024 May.
Article in English | MEDLINE | ID: mdl-38615641

ABSTRACT

We have previously shown that excessive activation of macrophage proinflammatory activity plays a key role in TCE-induced immune liver injury, but the mechanism of polarization is unclear. Recent studies have shown that TLR9 activation plays an important regulatory role in macrophage polarization. In the present study, we demonstrated that elevated levels of oxidative stress in hepatocytes mediate the release of mtDNA into the bloodstream, leading to the activation of TLR9 in macrophages to regulate macrophage polarization. In vivo experiments revealed that pretreatment with SS-31, a mitochondria-targeting antioxidant peptide, reduced the level of oxidative stress in hepatocytes, leading to a decrease in mtDNA release. Importantly, SS-31 pretreatment inhibited TLR9 activation in macrophages, suggesting that hepatocyte mtDNA may activate TLR9 in macrophages. Further studies revealed that pharmacological inhibition of TLR9 by ODN2088 partially blocked macrophage activation, suggesting that the level of macrophage activation is dependent on TLR9 activation. In vitro experiments involving the extraction of mtDNA from TCE-sensitized mice treated with RAW264.7 cells further confirmed that hepatocyte mtDNA can activate TLR9 in mouse peritoneal macrophages, leading to macrophage polarization. In summary, our study comprehensively confirmed that TLR9 activation in macrophages is dependent on mtDNA released by elevated levels of oxidative stress in hepatocytes and that TLR9 activation in macrophages plays a key role in regulating macrophage polarization. These findings reveal the mechanism of macrophage activation in TCE-induced immune liver injury and provide new perspectives and therapeutic targets for the treatment of OMDT-induced immune liver injury.


Subject(s)
DNA, Mitochondrial , Hepatocytes , Oxidative Stress , Toll-Like Receptor 9 , Trichloroethylene , Animals , Mice , Hepatocytes/drug effects , Trichloroethylene/toxicity , Toll-Like Receptor 9/metabolism , Oxidative Stress/drug effects , Macrophages/drug effects , Macrophages/immunology , RAW 264.7 Cells , Chemical and Drug Induced Liver Injury , Macrophage Activation/drug effects , Male , Mice, Inbred C57BL
13.
Sci Rep ; 14(1): 9618, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671084

ABSTRACT

Toll-like receptor 9 (TLR-9) is a protein that helps our immune system identify specific DNA types. Upon detection, CpG oligodeoxynucleotides signal the immune system to generate cytokines, essential proteins that contribute to the body's defence against infectious diseases. Native phosphodiester type B CpG ODNs induce only Interleukin-6 with no effect on interferon-α. We prepared silicon quantum dots containing different surface charges, such as positive, negative, and neutral, using amine, acrylate-modified Plouronic F-127, and Plouronic F-127. Then, class B CpG ODNs are loaded on the surface of the prepared SiQDs. The uptake of ODNs varies based on the surface charge; positively charged SiQDs demonstrate higher adsorption compared to SiQDs with negative and neutral surface charges. The level of cytokine production in peripheral blood mononuclear cells was found to be associated with the surface charge of SiQDs prior to the binding of the CpG ODNs. Significantly higher levels of IL-6 and IFN-α induction were observed compared to neutral and negatively charged SiQDs loaded with CpG ODNs. This observation strongly supports the notion that the surface charge of SiQDs effectively regulates cytokine induction.


Subject(s)
Cytokines , Quantum Dots , Silicon , Quantum Dots/chemistry , Silicon/chemistry , Humans , Cytokines/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Oligodeoxyribonucleotides/chemistry , Interleukin-6/metabolism , Surface Properties , Interferon-alpha/metabolism , Interferon-alpha/chemistry , Toll-Like Receptor 9/metabolism
14.
Viruses ; 16(4)2024 04 17.
Article in English | MEDLINE | ID: mdl-38675965

ABSTRACT

Epstein-Barr virus (EBV), a Herpesviridae family member, is associated with an increased risk of autoimmune disease development in the host. We previously demonstrated that EBV DNA elevates levels of the pro-inflammatory cytokine IL-17A and that inhibiting Toll-like receptor (TLR) 3, 7, or 9 reduces its levels. Moreover, this DNA exacerbated colitis in a mouse model of inflammatory bowel disease (IBD). In the study at hand, we examined whether inhibition of TLR3, 7, or 9 alleviates this exacerbation. Mice were fed 1.5% dextran sulfate sodium (DSS) water and administered EBV DNA. Then, they were treated with a TLR3, 7, or 9 inhibitor or left untreated. We also assessed the additive impact of combined inhibition of all three receptors. Mice that received DSS, EBV DNA, and each inhibitor alone, or a combination of inhibitors, showed significant improvement. They also had a decrease in the numbers of the pathogenic colonic IL-17A+IFN-γ+ foci. Inhibition of all three endosomal TLR receptors offered no additive benefit over administering a single inhibitor. Therefore, inhibition of endosomal TLRs reduces EBV DNA exacerbation of mouse colitis, offering a potential approach for managing IBD patients infected with EBV.


Subject(s)
DNA, Viral , Herpesvirus 4, Human , Inflammatory Bowel Diseases , Toll-Like Receptors , Animals , Female , Mice , Colitis/chemically induced , Colitis/drug therapy , Colitis/virology , Dextran Sulfate , Disease Models, Animal , DNA, Viral/adverse effects , DNA, Viral/pharmacology , Endosomes/drug effects , Endosomes/metabolism , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/drug therapy , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/virology , Interleukin-17/metabolism , Mice, Inbred C57BL , Toll-Like Receptor 3/antagonists & inhibitors , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/antagonists & inhibitors , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/antagonists & inhibitors , Toll-Like Receptor 9/metabolism , Toll-Like Receptors/antagonists & inhibitors , Toll-Like Receptors/metabolism
15.
Nature ; 628(8006): 145-153, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538785

ABSTRACT

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Subject(s)
CA1 Region, Hippocampal , DNA Breaks, Double-Stranded , DNA Repair , Inflammation , Memory , Toll-Like Receptor 9 , Animals , Female , Male , Mice , Aging/genetics , Aging/pathology , CA1 Region, Hippocampal/physiology , Centrosome/metabolism , Cognitive Dysfunction/genetics , Conditioning, Classical , Extracellular Matrix/metabolism , Fear , Genomic Instability/genetics , Histones/metabolism , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Memory/physiology , Mental Disorders/genetics , Neurodegenerative Diseases/genetics , Neuroinflammatory Diseases/genetics , Neurons/metabolism , Neurons/pathology , Nuclear Envelope/pathology , Toll-Like Receptor 9/deficiency , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism
16.
Proc Natl Acad Sci U S A ; 121(12): e2312404121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38478694

ABSTRACT

Plasmacytoid dendritic cells (pDCs) produce type I interferons (IFNs) after sensing viral/bacterial RNA or DNA by toll-like receptor (TLR) 7 or TLR9, respectively. However, aberrant pDCs activation can cause adverse effects on the host and contributes to the pathogenesis of type I IFN-related autoimmune diseases. Here, we show that heparin interacts with the human pDCs-specific blood dendritic cell antigen 2 (BDCA-2) but not with related lectins such as DCIR or dectin-2. Importantly, BDCA-2-heparin interaction depends on heparin sulfation and receptor glycosylation and results in inhibition of TLR9-driven type I IFN production in primary human pDCs and the pDC-like cell line CAL-1. This inhibition is mediated by unfractionated and low-molecular-weight heparin, as well as endogenous heparin from plasma, suggesting that the local blood environment controls the production of IFN-α in pDCs. Additionally, we identified an activation-dependent soluble form of BDCA-2 (solBDCA-2) in human plasma that functions as heparin antagonist and thereby increases TLR9-driven IFN-α production in pDCs. Of importance, solBDCA-2 levels in the serum were increased in patients with scrub typhus (an acute infectious disease caused by Orientia tsutsugamushi) compared to healthy control subjects and correlated with anti-dsDNA antibodies titers. In contrast, solBDCA-2 levels in plasma from patients with bullous pemphigoid or psoriasis were reduced. In summary, this work identifies a regulatory network consisting of heparin, membrane-bound and solBDCA-2 modulating TLR9-driven IFN-α production in pDCs. This insight into pDCs function and regulation may have implications for the treatment of pDCs-related autoimmune diseases.


Subject(s)
Autoimmune Diseases , Interferon Type I , Humans , Interferon Type I/metabolism , Heparin/metabolism , Toll-Like Receptor 9/metabolism , Dendritic Cells , Autoimmune Diseases/metabolism
17.
Front Biosci (Landmark Ed) ; 29(3): 102, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38538263

ABSTRACT

Herpes simplex virus 1 (HSV-1) or simplexvirus humanalpha 1 is a neurotropic virus that is responsible for orofacial infections in humans. More than 70% of the world's population may have seropositivity for HSV-1, and this virus is a leading cause of sporadic lethal encephalitis in humans. The role of toll-like receptors (TLRs) in defending against HSV-1 infection has been explored, including the consequences of lacking these receptors or other proteins in the TLR pathway. Cell and mouse models have been used to study the importance of these receptors in combating HSV-1, how they relate to the innate immune response, and how they participate in the orchestration of the adaptive immune response. Myeloid differentiation factor 88 (MyD88) is a protein involved in the downstream activation of TLRs and plays a crucial role in this signaling. Mice with functional MyD88 or TLR2 and TLR9 can survive HSV-1 infection. However, they can develop encephalitis and face a 100% mortality rate in a dose-dependent manner when MyD88 or TLR2 plus TLR9 proteins are non-functional. In TLR2/9 knockout mice, an increase in chemokines and decreases in nitric oxide (NO), interferon (IFN) gamma, and interleukin 1 (IL-1) levels in the trigeminal ganglia (TG) have been correlated with mortality.


Subject(s)
Encephalitis , Herpes Simplex , Herpesvirus 1, Human , Humans , Animals , Mice , Herpesvirus 1, Human/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Trigeminal Ganglion/metabolism , Toll-Like Receptors/metabolism , Mice, Knockout , Mice, Inbred C57BL
18.
Crit Rev Immunol ; 44(2): 15-24, 2024.
Article in English | MEDLINE | ID: mdl-38305333

ABSTRACT

Sepsis is a life-threatening organ dysfunction due to dysregulated host response to infection, accompanied by a high rate of mortality worldwide. During sepsis progression, toll-like receptors (TLRs) play essential roles in the aberrant inflammatory response that contributes to sepsis-related mortality. Here, we demonstrated a critical role of TLR9 in the progression of sepsis. A septic mouse model was established by cecal ligation and puncture (CLP), then administered with lentivirus encoding si-TLR9/LY294002. TLR9 protein expression and p65 nuclear translocation level/TLR9 protein positive expression/interaction between TLR9 and myeloid differentiation primary response protein 88 (MyD88) in the cecal tissues were examined by Western blot/immunohistochemistry/co-immunoprecipitation assays. Serum levels of pro-inflammatory factors [e.g., interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α)] as well as bacterial contents in the liver/spleen/mesenteric lymph nodes (MLN) were measured by ELISA and bacterial mobility assay. TLR9 expression was augmented in the cecal tissues, TLR9 and MyD88 interaction was enhanced, nuclear p65 protein level was increased, cytoplasmic p65 protein level was decreased, and the nuclear factor kappa B (NF-κB) pathway was activated in CLP-induced septic mice, while TLR9 knockout protected against CLP-induced sepsis via the MyD88/NF-κB pathway inactivation. Briefly, TLR9 inhibition-mediated protection against CLP-induced sepsis was associated with a reduction in pro-inflammatory cytokine release and a promotion of bacterial clearance via a mechanism involving the MyD88/NF-κB pathway inactivation.


Subject(s)
NF-kappa B , Sepsis , Toll-Like Receptor 9 , Animals , Mice , Cytokines/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Sepsis/genetics , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
J Biol Chem ; 300(3): 105744, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354781

ABSTRACT

Synaptic plasticity is believed to be the cellular basis for experience-dependent learning and memory. Although long-term depression (LTD), a form of synaptic plasticity, is caused by the activity-dependent reduction of cell surface α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPA receptors) at postsynaptic sites, its regulation by neuronal activity is not completely understood. In this study, we showed that the inhibition of toll-like receptor-9 (TLR9), an innate immune receptor, suppresses N-methyl-d-aspartate (NMDA)-induced reduction of cell surface AMPA receptors in cultured hippocampal neurons. We found that inhibition of TLR9 also blocked NMDA-induced activation of caspase-3, which plays an essential role in the induction of LTD. siRNA-based knockdown of TLR9 also suppressed the NMDA-induced reduction of cell surface AMPA receptors, although the scrambled RNA had no effect on the NMDA-induced trafficking of AMPA receptors. Overexpression of the siRNA-resistant form of TLR9 rescued the AMPA receptor trafficking abolished by siRNA. Furthermore, NMDA stimulation induced rapid mitochondrial morphological changes, mitophagy, and the binding of mitochondrial DNA (mtDNA) to TLR9. Treatment with dideoxycytidine and mitochondrial division inhibitor-1, which block mtDNA replication and mitophagy, respectively, inhibited NMDA-dependent AMPA receptor internalization. These results suggest that mitophagy induced by NMDA receptor activation releases mtDNA and activates TLR9, which plays an essential role in the trafficking of AMPA receptors during the induction of LTD.


Subject(s)
DNA, Mitochondrial , Hippocampus , Long-Term Synaptic Depression , Toll-Like Receptor 9 , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Hippocampus/metabolism , Immunity, Innate , N-Methylaspartate/pharmacology , N-Methylaspartate/metabolism , Neurons/metabolism , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , RNA, Small Interfering/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , HEK293 Cells
20.
Dev Comp Immunol ; 155: 105157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38423492

ABSTRACT

CpG oligodeoxynucleotides (ODNs), as a novel type of adjuvant with immunomodulatory effects, are recognized by Toll-like receptors (TLRs) in Litopenaeus vannamei. In the present study, eleven LvTLRs-pCMV recombinants (rLvTLRs) were constructed to investigate the relationships between various CpG ODNs and different LvTLRs in human embryonic kidney 293T (HEK293T) cells, which was further confirmed by bio-layer interferometry (BLI) technique. The results of dual luciferase reporter assay showed that every LvTLR could activate multiple downstream genes, mainly including NF-κB, CREB, ISRE, IL-6-promoter, TNF-α-promoter and Myc, thereby inducing main signaling pathways in shrimps. Most CpG ODNs possessed affinities to more than one LvTLR, while each LvTLR could recognize multiple CpG ODNs, and the widely recognized ligands within CpG ODNs are A-class and B-class. Moreover, BLI analysis showed that CpG 2216, Cpg 2006, CpG 2143 and CpG 21425 exhibited dose-dependent affinity to the expressed TLR protein, which were consistent with the results in HEK293T cells. It suggested that the interactions of CpG ODNs with LvTLRs were indispensable for the immune regulation triggered by CpG ODNs, and these findings would lay foundations for studying the activations of LvTLRs to immune signaling pathways and shedding lights on the immune functions and mechanisms of CpG ODNs.


Subject(s)
Adjuvants, Immunologic , Toll-Like Receptors , Humans , Animals , HEK293 Cells , Toll-Like Receptors/metabolism , Adjuvants, Immunologic/pharmacology , Immunologic Factors , Oligodeoxyribonucleotides , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...