Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.001
Filter
1.
Lasers Med Sci ; 39(1): 133, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771549

ABSTRACT

BACKGROUND: Tooth discoloration is a common concern in antimicrobial photodynamic therapy (aPDT) using various photosensitizers (PS). Toluidine Blue (TB), Methylene Blue (MB), Phthalocyanine (Pc), and 2-mercaptopyridine-substituted zinc phthalocyanine (TM-ZnPc) are among those studied, but their relative impacts on tooth discoloration remain unclear. AIM: This study aimed to compare the effects of TB, MB, Pc, and TM-ZnPc in aPDT on tooth discoloration, utilizing a controlled experimental setup. MATERIALS AND METHODS: The study comprised seventy-five single-rooted incisors with root canals. Following meticulous preparation, a standardized area on the crown surface was designated for examination, and precise measurements of the initial tooth colors were recorded. Samples were randomly divided into five groups: Negative control, MB, TM, Pc, and TM-ZnPc. Photoactivation was performed using LED light, and color measurements were taken at multiple time points up to 90 days. Data were converted to Lab* color values of the CIE Lab* color system (International Commission on Illumination, Vienna, Austria), and ΔE values were calculated. Statistical analysis was performed using Two-way ANOVA and Post-Hoc Tukey tests (p < 0.05). RESULTS: At day 7 and 30, TM-ZnPc and Pc caused less discoloration compared to MB and TB. TM-ZnPc caused more tooth discoloration compared to Pc (p < 0.05). Compared to baseline, MB and TM-ZnPc caused more tooth discoloration at 30 days and TB caused more tooth discoloration at 90 days (p < 0.05). No significant difference was observed in terms of tooth discoloration at all periods evaluated after Pc application (p > 0.05). All photosensitizers tested in the study caused tooth coloration. CONCLUSION: All PS induced clinically detectable tooth discoloration, with TB and MB causing more significant discoloration compared to Pc and TM-ZnPc at certain time points. TM-ZnPc and Pc demonstrated more stable coloration levels over time, suggesting their potential reliability in aPDT applications. This study highlights the importance of selecting appropriate PS to minimize tooth discoloration in aPDT, with Pc showing promise in this regard.


Subject(s)
Isoindoles , Methylene Blue , Photochemotherapy , Photosensitizing Agents , Spectrophotometry , Tolonium Chloride , Tooth Discoloration , Photochemotherapy/methods , Photochemotherapy/adverse effects , Photosensitizing Agents/administration & dosage , Humans , Tooth Discoloration/chemically induced , Methylene Blue/administration & dosage , Zinc Compounds , Indoles/adverse effects , Indoles/administration & dosage , Organometallic Compounds/administration & dosage , Organometallic Compounds/adverse effects
2.
PeerJ ; 12: e17268, 2024.
Article in English | MEDLINE | ID: mdl-38708351

ABSTRACT

Objective: To study the efficacy of PADTM Plus-based photoactivated disinfection (PAD) for treating denture stomatitis (DS) in diabetic rats by establishing a diabetic rat DS model. Methods: The diabetic rat DS model was developed by randomly selecting 2-month-old male Sprague-Dawley rats and dividing them into four groups. The palate and denture surfaces of rats in the PAD groups were incubated with 1 mg/mL toluidine blue O for 1 min each, followed by a 1-min exposure to 750-mW light-emitting diode light. The PAD-1 group received one radiation treatment, and the PAD-2 group received three radiation treatments over 5 days with a 1-day interval. The nystatin (NYS) group received treatment for 5 days with a suspension of NYS of 100,000 IU. The infection group did not receive any treatment. In each group, assessments included an inflammation score of the palate, tests for fungal load, histological evaluation, and immunohistochemical detection of interleukin-17 (IL-17) and tumor necrosis factor (TNF-α) conducted 1 and 7 days following the conclusion of treatment. Results: One day after treatment, the fungal load on the palate and dentures, as well as the mean optical density values of IL-17 and TNF-α, were found to be greater in the infection group than in the other three treatment groups (P < 0.05). On the 7th day after treatment, these values were significantly higher in the infection group than in the PAD-2 and NYS groups (P < 0.05). Importantly, there were no differences between the infection and PAD-1 groups nor between the PAD-2 and NYS groups (P > 0.05). Conclusions: PAD effectively reduced the fungal load and the expressions of IL-17 and TNF-α in the palate and denture of diabetic DS rats. The efficacy of multiple-light treatments was superior to that of single-light treatments and similar to that of NYS.


Subject(s)
Diabetes Mellitus, Experimental , Disinfection , Rats, Sprague-Dawley , Stomatitis, Denture , Animals , Male , Rats , Stomatitis, Denture/microbiology , Stomatitis, Denture/radiotherapy , Stomatitis, Denture/drug therapy , Disinfection/methods , Tolonium Chloride/pharmacology , Tolonium Chloride/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Interleukin-17/metabolism , Disease Models, Animal
3.
Talanta ; 273: 125876, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38458082

ABSTRACT

The high level of alpha-fetoprotein (AFP) expression is closely related to hepatocellular carcinoma (HCC). Herein, a dual signal ratiometric electrochemical immunosensor based on chitosan-ferrocenecarboxaldehyde-spindle gold (Chit-Fc-SAu) and Co/Fe metal-organic framework-toluidine blue/polydopamine (Co/Fe MOF-TB/PDA) was proposed for quantitative analysis of AFP. Specifically, Chit-Fc-SAu worked as a substrate to trap more primary antibodies (Ab1) generating the first electrochemical signal from Fc. Thanks to the large specific surface area, the synergistic and electronic effects of Co/Fe MOF nanosheets, and the rich functional groups of PDA, Co/Fe MOF-TB/PDA could load more secondary antibodies (Ab2) and signal molecules (TB) providing another amplified electrochemical signal. In the presence of AFP, Ab1-AFP-Ab2 formed a sandwich structure, and as the AFP concentration increased, the peak current ratio of TB to Fc (ITB/IFc) also increased. The dual signal ratiometric strategy can avoid environmental signal interference and achieve signal self-calibration, thereby improving the accuracy and reproducibility of detection. After a series of exploration, this self-calibrated ratiometric immunosensor exhibited a wide linear range (0.001-200 ng mL-1), a low detection limit (0.34 pg mL-1), and good repeatability. When applied to the assay of clinical serum samples, the detection results of ratiometric sensor were consistent with that of commercial electrochemiluminescence (ECL) immunoassay, significantly superior to that of non-ratiometric sensor. The self-calibrated strategy based on ratiometric sensor helps to improve the accuracy of AFP in clinical diagnosis.


Subject(s)
Biosensing Techniques , Carcinoma, Hepatocellular , Liver Neoplasms , Metal Nanoparticles , Humans , alpha-Fetoproteins/analysis , Tolonium Chloride/chemistry , Biosensing Techniques/methods , Reproducibility of Results , Schiff Bases , Immunoassay/methods , Antibodies/chemistry , Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Limit of Detection , Gold/chemistry
4.
Methods Mol Biol ; 2791: 35-43, 2024.
Article in English | MEDLINE | ID: mdl-38532090

ABSTRACT

The study of the localization of secondary metabolites in both plants and the cell cultures on the intravital sections is hampered by the difficulty of obtaining thin, correctly oriented sections. Techniques for fixing tissues in resins allow these difficulties to be overcome. Properly selected tissue fixation techniques allow using different dyes to identify the compound of interest. In addition, some components of tissue fixation can act as fixatives and as a dye for identifying secondary metabolites. For example, osmium tetroxide, which fixes lipids in tissues, stains phenolic compounds black. This paper describes methods for the detection of phenolic compounds in morphogenic callus culture of buckwheat using osmium tetroxide, Toluidine Blue O dye, and ferric chloride as dyes in epoxy resin-embedded cell culture with double fixation of the material and when material fixed in Karnovsky's fixative.


Subject(s)
Coloring Agents , Fagopyrum , Ferric Compounds , Osmium Tetroxide , Chlorides , Tolonium Chloride , Fixatives , Tissue Fixation , Cell Culture Techniques , Iron , Osmium
5.
Mikrochim Acta ; 191(4): 179, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38443677

ABSTRACT

A novel electrochemical immunosensor for detecting potential depression biomarker Apolipoprotein A4 (Apo-A4) was developed using a multi-signal amplification approach. Firstly, the sensor utilized a modified electrode material, NG-PEI-COF, combining bipyridine-functionalized covalent organic framework (COF) and polyethyleneimine-functionalized nitrogen-doped graphene (NG-PEI), providing high surface area and excellent electron transfer capability for the first-stage amplification in electrical signal conduction. Subsequently, gold nanoparticles (AuNPs) were further electrodeposited onto the electrode, providing good biocompatibility and abundant binding sites for immobilizing the target antigen, thus achieving the second-stage amplification in target recognition and binding. To address the lack of redox properties of the antigen, a tracer probe was formed by loading AuNPs, anti-Apo-A4, and toluidine blue (TB) successively onto COF, leading to the third-stage amplification in signal conversion. The constructed electrochemical immunosensor TB/Ab/AuNPs/COF-Apo-A4/AuNPs/NG-PEI-COF/GCE exhibited excellent detection performance against Apo-A4 with a linear range of 0.01 to 300 ng mL-1 and had a low detection limit of 2.16 pg mL-1 (S/N = 3). In addition, the biosensor had good reproducibility (RSD = 2.31%), stability, and significant anti-interference performance toward other depression biomarkers. The sensor has been successfully used for the quantitative detection of Apo-A4 in serum, providing potential applications for detecting Apo-A4 in the clinic and serving as a reference for constructing sensing methods based on COF.


Subject(s)
Apolipoproteins A , Biosensing Techniques , Metal Nanoparticles , Metal-Organic Frameworks , Gold , Depression , Reproducibility of Results , Immunoassay , Tolonium Chloride
6.
J Equine Vet Sci ; 135: 105035, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423373

ABSTRACT

Bronchoalveolar lavage fluid (BALF) cytology is used for the diagnosis of non-infectious lower airway inflammation in equids. Discrepancies have been reported in the differential cell count when different staining methods were used both in humans and horses. The objective of this study was to compare the results of BALF cytology in donkeys using four different staining methods: modified May-Grunwald Giemsa (mMGG), Diff-Quick (DQ), Toluidine blue (TB) and Perls Prussian blue (PPB). Nine healthy Amiata female donkeys were enrolled. The BAL procedure was performed as previously described and pairs of cytocentrifuged BALF slides were stained with each method. No differences between mMGG and DQ were found for macrophages, neutrophils, and eosinophils, while differences were found in mast cell count between DQ vs.TB, but not between mMGG vs. DQ or mMGG vs. TB. Finally, no differences were obtained in the differential count for hemosiderophages comparing mMGG, DQ and PPB. The mMGG appears to be an excellent stain for the identification of all possible cell types, including mast cells in the BALF of donkeys. DQ, if used alone, may lead to inappropriate identification of mast cells. These results are consistent with the literature on BALF staining methods in horses.


Subject(s)
Coloring Agents , Equidae , Humans , Horses , Female , Animals , Bronchoalveolar Lavage Fluid , Pilot Projects , Staining and Labeling/veterinary , Tolonium Chloride
7.
Photodiagnosis Photodyn Ther ; 45: 104012, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38346465

ABSTRACT

BACKGROUND: The aim of this study was to investigate the effects of antimicrobial photodynamic therapy (PDT) using 635 nm diode laser irradiation with an energy density of 6 to 30 J/cm2 and toluidine blue O (TBO) as a photosensitizer on the viability of Aggregatibacter actinomycetemcomitans attached to the surface of titanium implants. MATERIALS AND METHODS: Titanium implants contaminated with A. actinomycetemcomitans were treated with TBO alone or in combination with different exposure parameters (light doses of 6 - 30 J/cm2 at 635 nm) and 0.2 % chlorhexidine (CHX). After treatment, colony forming units (CFUs)/ml were determined to assess PDT efficacy. The structure of the biofilm of A. actinomycetemcomitans was analyzed by field emission scanning electron microscopy (FESEM). RESULTS: Under optimal conditions, the colony count was reduced by ∼90 %. Treatment with CHX was somewhat more effective (colony formation was reduced by ∼95 %), but this agent has adverse effects that can be avoided with PDT. CONCLUSION: This study confirms the efficacy of PDT against A. actinomycetemcomitans depending on the light dose. Treatment with TBO + 635 nm diode laser has an effect that may be equivalent to that of CHX, but perhaps with fewer adverse effects.


Subject(s)
Aggregatibacter actinomycetemcomitans , Photochemotherapy , Titanium , Tolonium Chloride/pharmacology , Lasers, Semiconductor , Photosensitizing Agents/pharmacology , Photochemotherapy/methods , Biofilms , Chlorhexidine
8.
J Food Sci ; 89(2): 1225-1242, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38204401

ABSTRACT

This study used data from consumer testing, descriptive analysis (DA), and preference mapping to determine the sensory characteristics of pear cultivars from two harvest seasons in the Pacific Northwest (PNW). A trained sensory panel (n = 10) used generic DA to evaluate multiple sensory modalities of 22 pear cultivars. Six pears from summer and six from winter season were evaluated by consumers (n = 219) to assess their liking of different attributes. Results of the DA showed the trained panel significantly discriminated the summer and winter pears on most of the sensory modalities. To identify the attributes driving consumer acceptability, external preference mapping was applied. Attributes such as pear aroma, pear flavor, sweet, sour, and juicy were the most contributory attributes to the liking of the summer pears. Conversely, fermented aroma, stemmy-woody aroma, fermented flavor, stemmy-woody flavor, and grainy-gritty attributes were associated with a reduction in consumer liking. Summer cultivars, "Bartlett," coded pear 573, and "Seckel" had the broadest preference, satisfying 60% to 80% of the consumers. Seventy-five percent of the consumers identified winter cultivars "Comice" and "Paragon" as the most appealing. Overall, cluster analysis showed that different pears appeal to different types of consumers; however, summer cultivars like "Bartlett" and "Seckel" and winter cultivars like "Comice" and "Paragon" would appeal to the greatest number of consumers in the PNW market. PRACTICAL APPLICATION: Sensory attributes like pear flavor, sweet, and juicy, were important drivers of liking for pear consumers in the Pacific Northwest. These results should prove useful to pear growers and marketers to increase pear consumption in the United States.


Subject(s)
Benzopyrans , Pyrus , Tolonium Chloride , United States , Food Preferences , Consumer Behavior , Taste , Northwestern United States , Fruit
9.
Braz Oral Res ; 38: e005, 2024.
Article in English | MEDLINE | ID: mdl-38198305

ABSTRACT

The aim of this study was to analyze the expression of mast cell markers toluidine blue, c-kit, and tryptase and presence of mononuclear inflammatory cells in oral lichen planus (OLP) and oral lichenoid lesions related to dental amalgam. Nineteen specimens of OLP, OLLC, and healthy oral mucosa were selected. Mononuclear inflammatory cells were analyzed. Histochemical and immunohistochemical analyses were performed using toluidine blue, anti-c-kit and anti-tryptase reagents, and the results were quantified in areas A and B of connective tissue. Mast cells of all OLP and OLLC samples were positive for toluidine blue, c-kit, and tryptase. The density of toluidine blue+, c-kit+ and tryptase+ mast cells was higher in tissue with OLP and OLLC compared with healthy controls (p < 0.05). No difference was noted in mast cells density between OLP and OLLC (p > 0.05). The density of tryptase+ mast cells was higher in the subepithelial region (area A) than the region below it (Area B) in OLLC (p = 0.047). The mononuclear inflammatory cell density was higher in OLLC compared to OLP, but without statistical significance (p > 0.05). A positive statistical correlation was found between mononuclear immune cells and density of c-kit+ and tryptase+ mast cells in OLP (r = 0.943 and r = 0.886, respectively). Our data demonstrate that the etiopathogenesis process of OLP and OLLC modulates the expansion and degranulation of mast cells; mast cells density, however, was similar between OLP and OLLC. The distribution of mast cells appears to vary along the lamina propria.


Subject(s)
Lichen Planus, Oral , Mast Cells , Humans , Dental Amalgam/adverse effects , Tolonium Chloride/adverse effects , Tryptases
10.
Food Chem ; 439: 138147, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38070230

ABSTRACT

A label-free electrochemical immunosensor using a toluidine blue (TB)/porous organic polymer (POP)/two-dimensional molybdenum diselenide (2D MoSe2) nanocomposite is developed for highly sensitive detection of aflatoxin B1 (AFB1) in selected crops. A POP/2D MoSe2 composite material is employed to modify the surface of a screen-printed carbon electrode (SPCE). Subsequently, TB is adsorbed on the modified SPCE surface, and the resulting TB/POP/2D MoSe2 composite is then used to construct a biosensor. The new POP/2D MoSe2 nanocomposite offers a high surface-to-volume area and is a good electroactive and biocompatible adsorbent for loading TB probe and capture antibodies. Adsorbed TB onto the POP/2D MoSe2 nanocomposite is utilized as a redox probe for the signal amplification unit. This TB/POP/2D MoSe2 nanocomposite provides good electron transfer properties of TB redox probe, good electrical conductivity, good biocompatibility, and likable adsorption ability, thus obtaining a sufficient immobilization quantity of antibodies for the sensor construction. After immobilization of the anti-AFB1 antibody and blocking with BSA on the composite surface, the immunosensor is obtained for the detection of AFB1. Under optimum conditions, the sensor shows a linear logarithmic range of 2.5-40 ng mL-1 with a limit of detection (LOD) of 0.40 ng mL-1. The developed sensor provides several advantages in terms of simplicity, low cost, short analysis time, high selectivity, stability, and reproducibility. Additionally, the proposed immunosensor is successfully validated by the detection of AFB1 in rice, corn, and peanut samples. Utilizing the TB/POP/2D MoSe2 nanocomposite, this label-free electrochemical immunosensor demonstrates outstanding sensitivity and selectivity in detecting AFB1, making it a valuable tool for ensuring the safety of agricultural products and enhancing food security.


Subject(s)
Biosensing Techniques , Nanocomposites , Aflatoxin B1/analysis , Tolonium Chloride , Polymers , Biosensing Techniques/methods , Porosity , Reproducibility of Results , Immunoassay/methods , Carbon/chemistry , Antibodies , Crops, Agricultural , Nanocomposites/chemistry , Electrochemical Techniques/methods , Limit of Detection , Gold/chemistry
11.
Small ; 20(4): e2304968, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37715278

ABSTRACT

The contrast agents and tumor treatments currently used in clinical practice are far from satisfactory, due to the specificity of the tumor microenvironment (TME). Identification of diagnostic and therapeutic reagents with strong contrast and therapeutic effect remains a great challenge. Herein, a novel carbon dot nanozyme (Mn-CD) is synthesized for the first time using toluidine blue (TB) and manganese as raw materials. As expected, the enhanced magnetic resonance (MR) imaging capability of Mn-CDs is realized in response to the TME (acidity and glutathione), and r1 and r2 relaxation rates are enhanced by 224% and 249%, respectively. In addition, the photostability of Mn-CDs is also improved, and show an efficient singlet oxygen (1 O2 ) yield of 1.68. Moreover, Mn-CDs can also perform high-efficiency peroxidase (POD)-like activity and catalyze hydrogen peroxide to hydroxyl radicals, which is greatly improved under the light condition. The results both in vitro and in vivo demonstrate that the Mn-CDs are able to achieve real-time MR imaging of TME responsiveness through aggregation of the enhanced permeability and retention effect at tumor sites and facilitate light-enhanced chemodynamic and photodynamic combination therapies. This work opens a new perspective in terms of the role of carbon nanomaterials in integrated diagnosis and treatment of diseases.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Tolonium Chloride , Manganese , Reactive Oxygen Species , Carbon , Hydrogen Peroxide , Magnetic Resonance Imaging , Tumor Microenvironment , Cell Line, Tumor
12.
Reprod Sci ; 31(2): 430-440, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37814201

ABSTRACT

Endometriosis is an immune chronic inflammatory disease, and there are currently no more effective drugs for treating endometriosis due to its unknown etiology. Salbutamol is a ß2-adrenergic receptor (ß2AR) agonist commonly used to treat asthma by selectively activating ß2 receptors on airway smooth muscle and leukocytes, exerting bronchial dilation and synergistic anti-inflammatory effects. In recent years, ß2AR agonists have been used in endometriosis studies, and we speculate that salbutamol may have a therapeutic effect on endometriosis. The purpose of this research was to explore the therapeutic effect of salbutamol on endometriosis mice. The mouse endometriosis model was established and treated with different doses of salbutamol. Endometrial lesions were harvested for pathological diagnosis, immunohistochemistry (IHC), Masson staining, and toluidine blue analysis. We found that the number and size of endometriotic lesions were all significantly decreased after 3 weeks of treatment with different doses of salbutamol on endometriosis model mice (P < 0.05). After Salbutamol treatment, the amount of mast cells (toluidine blue) and macrophages (F4/80) in the lesions as well as the expressions of interleukin (IL)-1ß, tumor necrosis factor (TNF)-ɑ, platelet-derived growth factor subunit B (PDGFB), CD31, transforming growth factor (TGF)-ß, Masson staining, BCL2, TUBB3, substance P (SP), and nerve growth factor (NGF) were significantly reduced (P < 0.05). These results suggested that salbutamol could effectively treat endometriosis in mice by reducing immune inflammatory cells and factors, angiogenesis, and fibrosis, increasing apoptosis of endometriotic lesions, and decreasing neurogenesis.


Subject(s)
Endometriosis , Humans , Female , Mice , Animals , Endometriosis/metabolism , Albuterol/pharmacology , Albuterol/therapeutic use , Tolonium Chloride , Substance P
13.
J Dermatol Sci ; 113(1): 10-17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38158274

ABSTRACT

BACKGROUND: The epidermis contains many structurally diverse ceramides, which form the skin permeability barrier (skin barrier). Mutations in genes involved in the synthesis of ω-O-acylceramides (acylceramides) and protein-bound ceramides cause ichthyosis. OBJECTIVE: We aimed to elucidate the relationship between the degree of skin barrier impairment and changes in epidermal ceramide profiles caused by mutations in acylceramide synthesis genes. METHODS: Knockout (KO) mice of three genes-fatty acid (FA) ω-hydroxylase Cyp4f39 (human CYP4F22 ortholog), FA elongase Elovl1, and acyl-CoA synthetase Fatp4-were subjected to transepidermal water loss measurement, toluidine blue staining, and epidermal ceramide profiling via liquid chromatography coupled with tandem mass spectrometry. RESULTS: Transepidermal water loss was highest in Cyp4f39 KO mice, followed by Elovl1 KO and Fatp4 KO mice, and Cyp4f39 KO mice also showed the strongest degree of toluidine blue staining. In Cyp4f39 KO, Elovl1 KO, and Fatp4 KO mice, acylceramide levels were 0.6%, 1.6%, and 12%, respectively, of those in wild-type mice. Protein-bound ceramide levels were 0.2%, 30%, and 33%, respectively, of those in wild-type mice. We also observed a near-complete absence of ω-hydroxy ceramides in Cyp4f39 KO mice, reduced total ceramide levels and shortened FA moieties in Elovl1 KO mice, and increased hydroxylated ceramide levels and slightly shortened FA moieties in Fatp4 KO mice. CONCLUSIONS: The degree of reduction in protein-bound ceramide levels is probably related to the severity of skin barrier defects in these three strains. However, reduced acylceramide levels and other changes in ceramide composition unique to each KO strain are also involved.


Subject(s)
Ceramides , Skin , Animals , Humans , Mice , Epidermis , Mice, Knockout , Tolonium Chloride , Water
14.
Environ Sci Pollut Res Int ; 31(4): 5132-5143, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38112876

ABSTRACT

The extensive use and discharge of toluidine blue have caused serious problems to the water environment. As a green biocatalyst, laccase has the ability to decolorize the dyes, but it is limited by poor reusability and low stability. Metal-organic frameworks (MOFs) are a good platform for enzyme immobilization. However, due to the weak dispersion of MOFs, the enzyme activity is inevitably inhibited. Herein, we proposed to use graphene oxide (GO) as the dispersion medium of mesoporous ZIF-8 to construct MZIF-8/GO bi-carrier for laccase (FL) immobilization. On account of the narrower bandgap energy of FL@MZIF-8/GO (4.07 eV) than that of FL@MZIF-8 (4.69 eV), electron transport was enhanced which later increased the catalytic activity of the immobilized enzyme. Meanwhile, the improved hydrophilicity characterized by contact angle and full infiltration time further promoted the efficiency of the enzymatic reaction. Benefiting from such regulatory effects of GO, the composite showed excellent storage stability and reusability, as well as multifaceted enhancements including pH, thermal, and solvent adaptation. On the basis of the characterized synergistic effect of adsorption and degradation, FL@MZIF-8/GO was successfully applied to the degradation of toluidine blue (TB) with a removal rate of 94.8%. Even in actual treated wastewater, the highest removal rate still reached more than 80%. Based on the inner mechanism analysis and the universality study, this material is expected to be widely used in the degradation of pollutants in real water under complex environmental conditions.


Subject(s)
Graphite , Laccase , Tolonium Chloride , Laccase/metabolism , Enzymes, Immobilized/chemistry , Water
15.
Bull Exp Biol Med ; 175(4): 513-518, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37776399

ABSTRACT

Structural and functional parameters of mast cells (MC) in rat mammary glands during experimentally provoked breast cancer were studied by the cytogram, index of cell saturation with secretory products, and degranulation index. The cytogram was calculated in histological sections stained with toluidine blue. The functional conditions of MC were determined by electron microscopy. The study revealed expansion of MC population and activation of their functional state evidenced by significant prevalence of cells with high degranulation degree and reduced saturation index. At the ultrastructural level, MC were characterized by deformation, polymorphism, paleness of secretory granules, and elevation of the number of lacunae in the cytoplasm. The study showed that MC are active players in tumor microenvironment. Remembering heteromorphism of MC, further study of their role in pathogenesis of various tumor diseases seems promising.


Subject(s)
Mast Cells , Neoplasms , Rats , Animals , Mast Cells/pathology , Microscopy, Electron , Tolonium Chloride , Secretory Vesicles , Neoplasms/pathology , Cell Degranulation , Tumor Microenvironment
16.
Environ Res ; 238(Pt 1): 117159, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37722581

ABSTRACT

This study evaluated the photobiocidal performance of four widely distributed visible-light-activated (VLA) dyes against two bacteria (Staphylococcus epidermidis and Escherichia coli) and two bacteriophages (phages MS2 and phi 6): rose bengal (RB), crystal violet, methylene blue, and toluidine blue O (TBO). The photobiocidal performance of each dye depended on the relationship between the type of dye and microorganism. Gram-negative E. coli and the non-enveloped structure of phage MS2 showed more resistance to the photobiocidal reaction than Gram-positive S. epidermidis and the enveloped structure of phage phi 6. RB had the highest potential to yield reactive oxygen species. However, the photobiocidal performance of RB was dependent on the magnitude of the surface charge of the microorganisms; for example, anionic RB induced a negative surface charge and thus electrical repulsion. On the other hand, the photobiocidal performance of TBO was observed to be less affected by the microorganism type. The comparative results presented in our study have significant implications for selecting photodynamic antimicrobial chemotherapy (PACT) dyes suitable for specific situations and purposes. Furthermore, they contribute to the advancement of PACT-related technologies by enhancing their applicability and scalability.


Subject(s)
Anti-Infective Agents , Tolonium Chloride , Tolonium Chloride/chemistry , Tolonium Chloride/pharmacology , Methylene Blue/chemistry , Rose Bengal/chemistry , Gentian Violet , Photosensitizing Agents/chemistry , Escherichia coli , Coloring Agents
17.
Mikrochim Acta ; 190(10): 394, 2023 09 16.
Article in English | MEDLINE | ID: mdl-37715009

ABSTRACT

T4 polynucleotide kinase (T4 PNK) helps with DNA recombination and repair. In this work, a phosphate pillar[5]arene@palladium nanoparticles@reduced graphene oxide nanocomposite (PP5@PdNPs@rGO)-based electrochemical biosensor was created to identify T4 PNK activities. The PP5 used to complex toluidine blue (TB) guest molecules is water-soluble. With T4 PNK and ATP, the substrate DNA, which included a 5'-hydroxyl group, initially self-assembled over the gold electrode surface by chemical adsorption of the thiol units. Strong phosphate-Zr4+-phosphate chemistry allowed Zr4+ to act as a bridge between phosphorylated DNA and PP5@PdNPs@rGO. Through a supramolecular host-guest recognition connection, TB molecules were able to penetrate the PP5 cavity, where they produced a stronger electrochemical response. With a 5 × 10-7 U mL-1 detection limit, the electrochemical signal is linear in the 10-6 to 1 U mL-1 T4 PNK concentration range. It was also effective in measuring HeLa cell lysate-related PNK activities and screening PNK inhibitors. Nucleotide kinase-target drug development, clinical diagnostics, and screening for inhibitors all stand to benefit greatly from the suggested technology, which offers a unique sensing mechanism for kinase activity measurement.


Subject(s)
Metal Nanoparticles , Nanocomposites , Humans , Palladium , Phosphates , HeLa Cells , Polynucleotide 5'-Hydroxyl-Kinase , Tolonium Chloride
18.
J Pharm Biomed Anal ; 235: 115616, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37540996

ABSTRACT

Sulfated polysaccharides (SPS) have attracted a lot of interest because of their diverse pharmacological functions. Numerous scientific studies have shown that SPS exhibit better biological activity than those that are not sulfated, such as immunomodulatory, anti-viral, and antioxidant activities. A crucial step to a better understanding of the mechanism of action and health effects is the production of high purity SPS. This calls for the development of selective assay techniques that can identify SPS preferentially without being influenced by other substances or the co-extracted polysaccharides. A universal modified toluidine blue (TB) assay was developed in this study to detect SPS. The assay procedures were conducted using different SPS standards including fucoidans from different biogenic sources, in addition to heparin and dextran sulfate. Spectroscopic response factor was calculated for each SPS which showed very good correlation (R2 = 0.998) with the corresponding sulfation degree. The proposed method was applied for determination of SPS content of crude fucoidan product using five different SPS standards. The method was cross validated by conducting ANOVA test to the obtained % recovery revealing that there is no significant difference between the results obtained by identical reference standard and four nonidentical natural SPS standards. This is the first report of a selective universal assay of SPS that enables the selective determination of SPS using a nonidentical reference standard.


Subject(s)
Sulfates , Tolonium Chloride , Sulfates/chemistry , Polysaccharides/chemistry , Complex Mixtures
19.
Toxins (Basel) ; 15(8)2023 08 04.
Article in English | MEDLINE | ID: mdl-37624253

ABSTRACT

T-2 toxin and selenium deficiency are considered important etiologies of Kashin-Beck disease (KBD), although the exact mechanism is still unclear. To identify differentially expressed microRNAs (DE-miRNAs) in the articular cartilage of rats exposed to T-2 toxin and selenomethionine (SeMet) supplementation, thirty-six 4-week-old Sprague Dawley rats were divided into a control group (gavaged with 4% anhydrous ethanol), a T-2 group (gavaged with 100 ng/g·bw/day T-2 toxin), and a T-2 + SeMet group (gavaged with 100 ng/g·bw/day T-2 toxin and 0.5 mg/kg·bw/day SeMet), respectively. Toluidine blue staining was performed to detect the pathological changes of articular cartilage. Three rats per group were randomly selected for high-throughput sequencing of articular cartilage. Target genes of DE-miRNAs were predicted using miRanda and RNAhybrid databases, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway were enriched. The network map of miRNA-target genes was constructed using Cytoscape software. The expression profiles of miRNAs associated with KBD were obtained from the Gene Expression Omnibus database. Additionally, the DE-miRNAs were selected for real-time quantitative PCR (RT-qPCR) verification. Toluidine blue staining demonstrated that T-2 toxin damaged articular cartilage and SeMet effectively alleviated articular cartilage lesions. A total of 50 DE-miRNAs (28 upregulated and 22 downregulated) in the T-2 group vs. the control group, 18 DE-miRNAs (6 upregulated and 12 downregulated) in the T-2 + SeMet group vs. the control group, and 25 DE-miRNAs (5 upregulated and 20 downregulated) in the T-2 + SeMet group vs. the T-2 group were identified. Enrichment analysis showed the target genes of DE-miRNAs were associated with apoptosis, and in the MAPK and TGF-ß signaling pathways in the T-2 group vs. the control group. However, the pathway of apoptosis was not significant in the T-2 + SeMet group vs. the control group. These results indicated that T-2 toxin induced apoptosis, whereas SeMet supplementation antagonized apoptosis. Apoptosis and autophagy occurred simultaneously in the T-2 + SeMet group vs. T-2 group, and autophagy may inhibit apoptosis to protect cartilage. Compared with the GSE186593 dataset, the evidence of miR-133a-3p involved in apoptosis was more abundant. The results of RT-qPCR validation were consistent with RNA sequencing results. Our findings suggested that apoptosis was involved in articular cartilage lesions induced by T-2 toxin, whereas SeMet supplementation antagonized apoptosis, and that miR-133a-3p most probably played a central role in the apoptosis process.


Subject(s)
Cartilage, Articular , Kashin-Beck Disease , MicroRNAs , T-2 Toxin , Rats , Animals , T-2 Toxin/toxicity , Selenomethionine/pharmacology , Tolonium Chloride , Rats, Sprague-Dawley , Kashin-Beck Disease/genetics , MicroRNAs/genetics
20.
Photodiagnosis Photodyn Ther ; 43: 103722, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37487810

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) is an antimicrobial approach that can be used as an adjunctive safe technique for root canal disinfection. In this study, we aimed to evaluate the antibacterial efficacy of PDT with indocyanine green and toluidine blue in combination with sodium hypochlorite (NaOCl) in compared with NaOCl alone against Enterococcus faecalis in infected root canals. METHODS: Sixty five root canals of sound human premolars were collected. First, the teeth were sterilized, then 60 root canals were inoculated with the E. faecalis, and 5 samples served as negative control remained uncontaminated. The contaminated root canals were randomly assigned into 4 experimental groups (n=15): (1) NaOCl, (2) NaOCl+ PDT-1 (toluidine blue + 630nm LED), (3) NaOCl+ PDT-2 (indocyanine green + 808nm diode laser), and (4): positive control (no treatment). Then, the colony-forming units (CFU/mL) of E. faecalis were calculated in all the groups. Moreover, 5 samples from each group were examined under a scanning electron microscope. The data were analyzed by independent T-test and the Mann-Whitney U test at the significance level of 0.05. RESULTS: The CFU count was significantly lower in the indocyanine green-PDT group in comparison with other groups (p˂0.05). The mean of CFU in the positive control group was significantly higher than the other groups (p˂0.05). No significant difference was detected between NaOCl and toluidine blue -PDT group (p=1.00). CONCLUSION: Indocyanine green- PDT improved the antibacterial effects of NaOCl against E. faecalis, while toluidine blue - mediated PDT had no significant additional effect on NaOCl.


Subject(s)
Photochemotherapy , Sodium Hypochlorite , Humans , Sodium Hypochlorite/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Enterococcus faecalis , Dental Pulp Cavity , Tolonium Chloride/pharmacology , Indocyanine Green/pharmacology , Anti-Bacterial Agents/pharmacology , Root Canal Irrigants/pharmacology , Root Canal Irrigants/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...