Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.008
Filter
1.
PLoS One ; 19(5): e0300749, 2024.
Article in English | MEDLINE | ID: mdl-38723036

ABSTRACT

This paper aims to re-examine the dietary practices of individuals buried at Sigatoka Sand Dunes site (Fiji) in Burial Ground 1 excavated by Simon Best in 1987 and 1988 using two approaches and a reassessment of their archaeological, bioarchaeological and chronological frame. First, stable carbon and nitrogen isotope analysis was applied to document dietary changes between childhood and adulthood using an intra-individual approach on paired bone-tooth. Second, the potential adaptation of the individuals to their environment was evaluated through regional and temporal comparisons using inter-individual bone analysis. Ten AMS radiocarbon dates were measured directly on human bone collagen samples, placing the series in a range of approximately 600 years covering the middle of the first millennium CE (1,888 to 1,272 cal BP). δ13C and δ15N ratios were measured on bone and tooth collagen samples from 38 adult individuals. The results show that δ15N values from tooth are higher than those s from bone while bone and tooth δ13C values are similar, except for females. Fifteen individuals were included in an intra-individual analysis based on paired bone and tooth samples, which revealed six dietary patterns distinguished by a differential dietary intake of marine resources and resources at different trophic levels. These highlight sex-specific differences not related to mortuary practices but to daily life activities, supporting the hypothesis of a sexual division of labour. Compared to other Southwest Pacific series, Sigatoka diets show a specific trend towards marine food consumption that supports the hypothesis of a relative food self-sufficiency requiring no interactions with other groups.


Subject(s)
Bone and Bones , Burial , Carbon Isotopes , Nitrogen Isotopes , Humans , Carbon Isotopes/analysis , Female , Nitrogen Isotopes/analysis , Male , Burial/history , Bone and Bones/chemistry , Adult , Fiji , Archaeology , Diet/history , Collagen , History, Ancient , Tooth/chemistry , Child , Radiometric Dating/methods
2.
ACS Nano ; 18(17): 11270-11283, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38629732

ABSTRACT

Teeth exemplify architectures comprising an interplay of inorganic and organic constituents, resulting in sophisticated natural composites. Rodents (Rodentia) showcase extraordinary adaptations, with their continuously growing incisors surpassing human teeth in functional and structural optimizations. In this study, employing state-of-the-art direct atomic-scale imaging and nanoscale spectroscopies, we present compelling evidence that the release of material from ameloblasts and the subsequent formation of iron-rich enamel and surface layers in the constantly growing incisors of rodents are complex orchestrated processes, intricately regulated and independent of environmental factors. The synergistic fusion of three-dimensional tomography and imaging techniques of etched rodent́s enamel unveils a direct correlation between the presence of pockets infused with ferrihydrite-like material and the acid resistant properties exhibited by the iron-rich enamel, fortifying it as an efficient protective shield. Moreover, observations using optical microscopy shed light on the role of iron-rich enamel as a microstructural element that acts as a path for color transmission, although the native color remains indistinguishable from that of regular enamel, challenging the prevailing paradigms. The redefinition of "pigmented enamel" to encompass ferrihydrite-like infusion in rodent incisors reshapes our perception of incisor microstructure and color generation. The functional significance of acid-resistant iron-rich enamel and the understanding of the underlying coloration mechanism in rodent incisors have far-reaching implications for human health, development of potentially groundbreaking dental materials, and restorative dentistry. These findings enable the creation of an entirely different class of dental biomaterials with enhanced properties, inspired by the ingenious designs found in nature.


Subject(s)
Dental Enamel , Animals , Dental Enamel/chemistry , Dental Enamel/metabolism , Dental Enamel/drug effects , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Rats , Color , Mice , Incisor/chemistry , Incisor/metabolism , Tooth/chemistry , Tooth/metabolism
3.
Acta Biomater ; 179: 1-12, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38561073

ABSTRACT

Vertebrate mineralized tissues, present in bones, teeth and scales, have complex 3D hierarchical structures. As more of these tissues are characterized in 3D using mainly FIB SEM at a resolution that reveals the mineralized collagen fibrils and their organization into collagen fibril bundles, highly complex and diverse structures are being revealed. In this perspective we propose an approach to analyzing these tissues based on the presence of modular structures: material textures, pore shapes and sizes, as well as extents of mineralization. This modular approach is complimentary to the widely used hierarchical approach for describing these mineralized tissues. We present a series of case studies that show how some of the same structural modules can be found in different mineralized tissues, including in bone, dentin and scales. The organizations in 3D of the various structural modules in different tissues may differ. This approach facilitates the framing of basic questions such as: are the spatial relations between modular structures the same or similar in different mineralized tissues? Do tissues with similar sets of modules carry out similar functions or can similar functions be carried out using a different set of modular structures? Do mineralized tissues with similar sets of modules have a common developmental or evolutionary pathway? STATEMENT OF SIGNIFICANCE: 3D organization studies of diverse vertebrate mineralized tissues are revealing detailed, but often confusing details about the material textures, the arrangements of pores and differences in the extent of mineralization within a tissue. The widely used hierarchical scheme for describing such organizations does not adequately provide a basis for comparing these tissues, or addressing issues such as structural components thought to be characteristic of bone, being present in dermal tissues and so on. The classification scheme we present is based on identifying structural components within a tissue that can then be systematically compared to other vertebrate mineralized tissues. We anticipate that this classification approach will provide insights into structure-function relations, as well as the evolution of these tissues.


Subject(s)
Calcification, Physiologic , Vertebrates , Animals , Bone and Bones , Tooth/chemistry , Humans , Dentin/chemistry , Animal Scales/chemistry
4.
Anal Chem ; 96(18): 7022-7029, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38669590

ABSTRACT

The utility of two novel laser-based methods, laser ablation electrospray ionization (LAESI) and laser desorption ionization (LDI) from silicon nanopost array (NAPA), is explored via local analysis and mass spectrometry imaging (MSI) of hard tissues (tooth and hair) for the detection and mapping of organic components. Complex mass spectra are recorded in local analysis mode from tooth dentin and scalp hair samples. Nicotine and its metabolites (cotinine, hydroxycotinine, norcotinine, and nicotine) are detected by LAESI-MS in the teeth of rats exposed to tobacco smoke. The intensities of the detected metabolite peaks are proportional to the degree of exposure. Incorporating ion mobility separation in the LAESI-MS analysis of scalp hair enables the detection of cotinine in smoker hair along with other common molecular species, including endogenous steroid hormones and some lipids. Single hair strands are imaged by MALDI-MSI and NAPA-LDI-MSI to explore longitudinal variations in the level of small molecules. Comparing spectra integrated from NAPA-LDI-MSI and MALDI-MSI images reveals that the two techniques provide complementary information. There were 105 and 82 sample-related peaks for MALDI and NAPA, respectively, with an overlap of only 16 peaks, indicating a high degree of complementarity. Enhanced molecular coverage and spatial resolution offered by LAESI-MS and NAPA-LDI-MSI can reveal the distributions of known and potential biomarkers in hard tissues, facilitating exposome research.


Subject(s)
Hair , Lasers , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Xenobiotics , Animals , Hair/chemistry , Rats , Xenobiotics/analysis , Xenobiotics/metabolism , Spectrometry, Mass, Electrospray Ionization , Tooth/chemistry , Tooth/metabolism , Nicotine/analysis , Nicotine/metabolism , Male
5.
Chem Soc Rev ; 53(9): 4490-4606, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38502087

ABSTRACT

Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.


Subject(s)
Biomimetic Materials , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Humans , Animals , Biomineralization , Bone and Bones/chemistry , Bone and Bones/metabolism , Biomimetics/methods , Tooth/chemistry
6.
Forensic Sci Int ; 358: 111987, 2024 May.
Article in English | MEDLINE | ID: mdl-38547582

ABSTRACT

Teeth are considered unique as fingerprints for identification purposes. Their structure and resilience mean they can remain for thousands and millions of years withstanding extreme conditions, including burning. During burning, bones undergo carbonization at approximately 400°C and calcination at approximately 700°C. This study aimed to investigate the effects of carbonization and calcination on dental tissue. It involved nondestructive analyses of 58 extracted human teeth before and after burning, using x-ray diffraction, micro-CT, and high-resolution confocal microscopy. The results revealed that during carbonization, dentin volume decreased in two thirds of the sample, accompanied by crack formation and significant reduction in hydroxyapatite crystal size (p<0.001). During calcination, dentin volume decreased in all teeth, along with a significant deepening of the cracks (p<0.001), while enamel crystal size increased slightly. Initial changes in teeth occurred at lower temperatures than had once been assumed, as indicated by the cracks during carbonization, and there was up to a 36% decrease in dentin volume during calcination, which should be considered when measuring burnt teeth. The results of this research provide new insight into understanding dental tissue response to burning. Thus, dental remains may contribute to the knowledge needed to reconstruct anthropological and forensic scenarios involving burning.


Subject(s)
Dental Enamel , Dentin , Fires , Microscopy, Confocal , X-Ray Diffraction , X-Ray Microtomography , Humans , Dentin/chemistry , Dental Enamel/chemistry , Durapatite/analysis , Forensic Dentistry/methods , Tooth/chemistry
7.
Electrophoresis ; 45(9-10): 805-813, 2024 May.
Article in English | MEDLINE | ID: mdl-38247192

ABSTRACT

The identification of human remains is of utmost importance in a variety of scenarios. One of the primary identification methods is DNA. DNA extraction from human remains could be difficult, particularly in situations where the remains have been exposed to environmental conditions and other insults. Several studies tried to improve extraction by applying different approaches. ForensicGEM Universal (MicroGem) is a single-tube approach to DNA extraction and a temperature-driven method that could have some advantages with respect to previous techniques, among them, reducing the risk of contamination, not requiring specialized equipment, or several steps to perform. The aim of this study was to assess, for the first time, the efficiency of DNA extraction and quality of STR profiles applying the MicroGem protocol and modifications of this protocol from tooth samples in comparison with automatic extraction (AE). Our results indicated that AE and MicroGem performed similar, though with variability depending on the MicroGem modifications, increasing the DNA yield and STR profile quality when DNA is concentrated with Microcon. These findings demonstrated the efficiency of this methodology for DNA extraction from human remains while also providing a simple and quick technique suitable to apply in a variety of forensic scenarios.


Subject(s)
DNA Fingerprinting , DNA , Microsatellite Repeats , Temperature , Humans , DNA/isolation & purification , DNA/analysis , DNA Fingerprinting/methods , Body Remains/chemistry , Tooth/chemistry , Forensic Genetics/methods , Polymerase Chain Reaction/methods
8.
PLoS One ; 19(1): e0294751, 2024.
Article in English | MEDLINE | ID: mdl-38170699

ABSTRACT

Personal identification in forensics is possible with gender determination using DNA (deoxyribonucleic acid) analysis. DNA isolation from teeth samples subjected to extreme temperatures has been shown to predict the gender of the deceased. However, the literature lacks studies on DNA extracted from tooth samples exposed to freezing temperatures. This study aimed to isolate the SRY gene from the extirpated pulp of teeth that were subjected to varying temperatures for gender identification. Thirty teeth with vital pulps, divided into 3 groups were included in the study. Each group consisted of 5 male and 5 female tooth samples. The groups were exposed to diverse environmental factors for three weeks. Group 1: room temperature (R group); Group 2: high temperature (H group) and Group 3: freezing temperature (F group). Later, DNA was isolated from the pulp tissue, and the SRY gene was amplified using PCR (Polymerase Chain Reaction). The Sensitivity and Specificity of the results were analyzed. SRY gene detected in the study samples identified accurate gender with a 46.70% Sensitivity and 93.30% Specificity. Significant difference was found in the correlation between gene expression and gender among the three groups (p = 1.000). The study validates that dental pulp tissue can be a reliable source for DNA extraction. And SRY gene amplification from teeth exposed to diverse environmental conditions. Further investigations are required to validate its application in forensics.


Subject(s)
Genes, sry , Tooth , Female , Humans , Male , Dental Pulp , DNA/genetics , Forensic Medicine , Genes, sry/genetics , Sex Determination Analysis/methods , Tooth/chemistry
9.
Int J Radiat Oncol Biol Phys ; 119(1): 292-301, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38072322

ABSTRACT

PURPOSE: Electron paramagnetic resonance (EPR) biodosimetry, used to triage large numbers of individuals incidentally exposed to unknown doses of ionizing radiation, is based on detecting a stable physical response in the body that is subject to quantifiable variation after exposure. In vivo measurement is essential to fully characterize the radiation response relevant to a living tooth measured in situ. The purpose of this study was to verify EPR spectroscopy in vivo by estimating the radiation dose received in participants' teeth. METHODS AND MATERIALS: A continuous wave L-band spectrometer was used for EPR measurements. Participants included healthy volunteers and patients undergoing head and neck and total body irradiation treatments. Healthy volunteers completed 1 measurement each, and patients underwent measurement before starting treatment and between subsequent fractions. Optically stimulated luminescent dosimeters and diodes were used to determine the dose delivered to the teeth to validate EPR measurements. RESULTS: Seventy measurements were acquired from 4 total body irradiation and 6 head and neck patients over 15 months. Patient data showed a linear increase of EPR signal with delivered dose across the dose range tested. A linear least-squares weighted fit of the data gave a statistically significant correlation between EPR signal and absorbed dose (P < .0001). The standard error of inverse prediction (SEIP), used to assess the usefulness of fits, was 1.92 Gy for the dose range most relevant for immediate triage (≤7 Gy). Correcting for natural background radiation based on patient age reduced the SEIP to 1.51 Gy. CONCLUSIONS: This study demonstrated the feasibility of using spectroscopic measurements from radiation therapy patients to validate in vivo EPR biodosimetry. The data illustrated a statistically significant correlation between the magnitude of EPR signals and absorbed dose. The SEIP of 1.51 Gy, obtained under clinical conditions, indicates the potential value of this technique in response to large radiation events.


Subject(s)
Tooth , Humans , Electron Spin Resonance Spectroscopy/methods , Tooth/chemistry , Tooth/radiation effects , Whole-Body Irradiation , Radiometry/methods , Radiation Dosage
10.
Am J Biol Anthropol ; 183(1): 141-156, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37925739

ABSTRACT

OBJECTIVES: There are few bioarcheological analyses of life experiences in colonial period Aotearoa New Zealand, despite this being a time of major adaptation and social change. In our study, early life histories are constructed from multi-isotope and enamel peptide analysis of permanent first molars associated with Victorian era dental practices operating between AD 1881 and 1905 in Invercargill. Chemical analyses of the teeth provide insight into the childhood feeding practices, diet, and mobility of the people who had their teeth extracted. MATERIALS AND METHODS: Four permanent left mandibular first molars were analyzed from a cache of teeth discovered at the Leviathan Gift Depot site during excavations in 2019. The methods used were: (1) enamel peptide analysis to assess chromosomal sex; (2) bulk (δ13 Ccarbonate ) and incremental (δ13 Ccollagen and δ15 N) isotope analysis of dentin to assess childhood diet; and (3) strontium (87 Sr/86 Sr) and oxygen (δ18 O) isotope analysis of enamel to assess childhood residency. Two modern permanent first molars from known individuals were analyzed as controls. RESULTS: The archaeological teeth were from three chromosomal males and one female. The protein and whole diets were predominately based on C3 -plants and domestic animal products (meat and milk). A breastfeeding signal was only identified in one historic male. All individuals likely had childhood residences in Aotearoa. DISCUSSION: Unlike most bioarcheological studies that rely on the remains of the dead, the teeth analysed in this study were extracted from living people. We suggest that the dental patients were likely second or third generation colonists to Aotearoa, with fairly similar childhood diets. They were potentially lower-class individuals either living in, or passing through, the growing colonial center of Invercargill.


Subject(s)
Isotopes , Tooth , Male , Female , Animals , Humans , Child , New Zealand , Isotopes/analysis , Tooth/chemistry , Molar/chemistry , Peptides
11.
Forensic Sci Int ; 353: 111856, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863006

ABSTRACT

This research evaluates the current DNA quantification (Quantifiler™ Trio, PowerQuant®, Investigator® Quantiplex® Pro and InnoQuant® HY Fast) and autosomal STRs amplification kits (GlobalFiler™, PowerPlex® Fusion 6 C, Investigator® 24Plex QS) using 62 degraded skeletal remains from armed conflicts (petrous bone, femur, tibia, and tooth) with several parameters (autosomal small, large, and male target, degradation index, probability of degradation, number of alleles above analytical threshold, number of alleles above stochastic threshold, RFU, peak height ratio, number of reportable loci). The best qPCR/autosomal STRs amplification tandem was determined by comparing quantification results by a DNA quantity estimation based on sample average RFU. InnoQuant® HY Fast was the most sensitive kit, and no significative differences were observed among amplification kits; however, Investigator® 24 Plex QS was found to be the most sensitive in our samples. That is why InnoQuant™ and Investigator® 24Plex QS were determined to be the best tandem.


Subject(s)
DNA Fingerprinting , Tooth , Male , Humans , DNA Fingerprinting/methods , Body Remains , Microsatellite Repeats , DNA/analysis , Tooth/chemistry
12.
Sci Rep ; 13(1): 16360, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37773428

ABSTRACT

As one of the key, long-term occupied sites in the Southern Levant, Jericho was one of the most important early Neolithic centres to witness social and economic changes associated with the domestication of plants and animals. This study applies strontium (87Sr/86Sr), oxygen (δ18O) and carbon (δ13C) isotope analyses to the enamel of 52 human teeth from Pre-Pottery Neolithic (PPN) layers of Jericho to directly study human diet and mobility and investigate the degree of consolidation and the flexibility of social organization of Jericho society in the PPN period. The results indicate only two non-local individuals out of the 44 sampled inhabitants identified by strontium isotope analysis and are consistent with the presence of a largely sedentary community at PPN Jericho with no evidence for large-scale migration. We also construct strontium spatial baselines (87Sr/86Sr map) with local 87Sr/86Sr signatures for the sites across the Southern Levant based on systematic compilation and analysis of available data. In addition, we apply proteomic analysis of sex-specific amelogenin peptides in tooth enamel for sex estimation of the sampled individuals (n = 44), the results of which showed a sex-biased ratio (more male than female detected in this sample pool) in Jericho society during the PPN period, which may be due to the limited sample size or selective ritual practices like particular burial zones used for specific groups. We also pretreated a batch of human bone samples recovered from PPNB Jericho for stable carbon and nitrogen isotope analyses for dietary investigations. However, the extracted collagen showed poor preservation and no valid δ13C or δ15N data were obtained.


Subject(s)
Proteomics , Tooth , Humans , Male , Animals , Female , Tooth/chemistry , Strontium Isotopes/analysis , Burial , Carbon
13.
Am J Biol Anthropol ; 182(2): 279-299, 2023 10.
Article in English | MEDLINE | ID: mdl-37539620

ABSTRACT

OBJECTIVES: The Kingdom of Kush in today's northern Sudan and southern Egypt (ancient Nubia) is often depicted as a secondary state relative to ancient Egypt. More recent investigations have set aside Egyptocentric and western, colonialist perspectives of state development focused on control of land and agricultural surplus, examining Kushites through the lens of African-based models of mobile pastoralism in which power and authority were achieved through control of herds and alliance-building. Here, analyses of radiogenic strontium isotopes in human dental enamel are used to investigate diachronic shifts in mobility patterns linked to pastoralism and state development during the Kerma period (ca. 2500-1100 BCE). MATERIALS AND METHODS: From five cemetery sites around al Qinifab, Sudan, upstream of the capital at Kerma, we analyzed the strontium isotope ratios of 50 teeth from 27 individuals dating from the Early through Late Kerma phases. RESULTS: Individuals from the Early and Middle Kerma phases demonstrated considerable 87 Sr/86 Sr ratio variability (mean = 0.70835 ± 0.00109), with 50% falling outside the locally bioavailable strontium range. Conversely, most Classic (0.70756 ± 0.00043) and Late Kerma (0.70755 ± 0.00036) individuals exhibited ratios consistent with the local region. DISCUSSION: These changes indicate a potential transformation in subsistence strategies and social organization as early communities engaged in a more mobile lifestyle than later groups, suggesting a greater degree of pastoralism followed by declining mobility with Kushite state coalescence and a shift to agropastoralism. Because 87 Sr/86 Sr ratios from enamel reflect childhood geographic residence, these findings indicate that mobility likely involved extended family groups, and not just transhumant adults.


Subject(s)
Cataract , Tooth , Adult , Humans , Child , Anthropology, Physical , Sudan , Tooth/chemistry , Strontium Isotopes/analysis
14.
Am J Biol Anthropol ; 180(1): 216-223, 2023 01.
Article in English | MEDLINE | ID: mdl-37406034

ABSTRACT

Objectives: Intra-tooth patterns of trace elements barium (Ba) and strontium (Sr) have been used to infer human and nonhuman primate nursing histories, including australopithecine and Neanderthal juveniles. Here we contrast the two elemental models in first molars (M1s) of four wild baboons and explore the assumptions that underlie each. Materials and Methods: Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was employed to create comprehensive calcium-normalized barium and strontium (Ba/Ca, Sr/Ca) maps of M1 enamel and dentine at 35 micron resolution. Results: Postnatal Ba/Ca values were typically high, peaking ~0.5 years of age and then decreasing throughout M1 crown formation; all four individuals showed minimal Ba/Ca values between ~1.2-1.8 years, consistent with field reports of the cessation of suckling. Enamel Sr/Ca did not support patterns of previous LA-ICP-MS spot sampling as the enamel rarely showed discrete Sr/Ca secretory zonation. Increases in Sr/Ca appeared in coronal dentine beginning ~0.3 years, with varied peak value ages (~0.7-2.7 years) and no evidence of a predicted postweaning decline. Discussion: Inferences of baboon weaning ages from initial Ba/Ca minima are more congruent with behavioral observations than Sr/Ca maxima; this is consistent with studies of captive macaques of known weaning ages. Elemental variation is more apparent in the coronal dentine than the enamel of these baboons, which may relate to its more rapid mineralization and protection from the oral environment. Inferences of nursing histories from enamel Sr/Ca patterns alone should be reconsidered, and elevated values of Ba/Ca and Sr/Ca in teeth formed after weaning require further study.


Subject(s)
Tooth , Animals , Humans , Weaning , Barium/analysis , Tooth/chemistry , Strontium/analysis , Papio
15.
Sud Med Ekspert ; 66(4): 58-61, 2023.
Article in Russian | MEDLINE | ID: mdl-37496484

ABSTRACT

The biochemical approach for age assessment is most appropriate in forensic medicine, as racemization of aspartic acid in bones and teeth is closely related to human biological age. The aim of the study is to assess the biochemical parameters of aspartic acid in human teeth, which can be implemented into forensic practice in Russia. Samples of dentin in amount of 20, taken from the teeth of subjects aged between 16 and 76, were examined. Chromatographic analysis of the samples was performed on a gas chromatograph using chiral column. Statistical data processing showed that the relative squared peak of D-aspartic acid has a strong correlation with human biological age. Data, obtained from the Russian population study, demonstrate the applicability of chromatography for forensic purposes. It should be noted that the approach to the racemization rate estimation in the hard tooth tissue was performed using standard laboratory equipment, which allows to easily implement this method in forensic medical practice.


Subject(s)
Age Determination by Teeth , Aspartic Acid , Forensic Dentistry , Tooth , Age Determination by Teeth/methods , Aspartic Acid/analysis , Tooth/chemistry , Stereoisomerism , Humans , Male , Female , Adolescent , Young Adult , Adult , Middle Aged , Aged , Chromatography, Gas , Forensic Dentistry/methods
16.
Int J Legal Med ; 137(5): 1353-1360, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37306739

ABSTRACT

Teeth are frequently used for human identification from burnt remains, as the structure of a tooth is resilient against heat exposure. The intricate composition of hydroxyapatite (HA) mineral and collagen in teeth favours DNA preservation compared to soft tissues. Regardless of the durability, the integrity of the DNA structure in teeth can still be disrupted when exposed to heat. Poor DNA quality can negatively affect the success of DNA analysis towards human identification. The process of isolating DNA from biological samples is arduous and costly. Thus, an informative pre-screening method that could aid in selecting samples that can potentially yield amplifiable DNA would be of excellent value. A multiple linear regression model to predict the DNA content in incinerated pig teeth was developed based on the colourimetry, HA crystallite size and quantified nuclear and mitochondrial DNA. The chromaticity a* was found to be a significant predictor of the regression model. This study outlines a method to predict the viability of extracting nuclear and mitochondrial DNA from pig teeth that were exposed to a wide range of temperatures (27 to 1000 °C) with high accuracy (99.5-99.7%).


Subject(s)
DNA, Mitochondrial , Tooth , Humans , Swine , Animals , DNA, Mitochondrial/analysis , Tooth/chemistry , Colorimetry , Cell Nucleus , Hot Temperature
17.
Proc Natl Acad Sci U S A ; 120(20): e2204501120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155903

ABSTRACT

Understanding mobility and landscape use is important in reconstructing subsistence behavior, range, and group size, and it may contribute to our understanding of phenomena such as the dynamics of biological and cultural interactions between distinct populations of Upper Pleistocene humans. However, studies using traditional strontium isotope analysis are generally limited to identifying locations of childhood residence or nonlocal individuals and lack the sampling resolution to detect movement over short timescales. Here, using an optimized methodology, we present highly spatially resolved 87Sr/86Sr measurements made by laser ablation multicollector inductively coupled plasma mass spectrometry along the growth axis of the enamel of two marine isotope stage 5b, Middle Paleolithic Neanderthal teeth (Gruta da Oliveira), a Tardiglacial, Late Magdalenian human tooth (Galeria da Cisterna), and associated contemporaneous fauna from the Almonda karst system, Torres Novas, Portugal. Strontium isotope mapping of the region shows extreme variation in 87Sr/86Sr, with values ranging from 0.7080 to 0.7160 over a distance of c. 50 km, allowing short-distance (and arguably short-duration) movement to be detected. We find that the early Middle Paleolithic individuals roamed across a subsistence territory of approximately 600 km2, while the Late Magdalenian individual parsimoniously fits a pattern of limited, probably seasonal movement along the right bank of the 20-km-long Almonda River valley, between mouth and spring, exploiting a smaller territory of approximately 300 km2. We argue that the differences in territory size are due to an increase in population density during the Late Upper Paleolithic.


Subject(s)
Hominidae , Laser Therapy , Neanderthals , Tooth , Animals , Humans , Portugal , Tooth/chemistry , Strontium Isotopes/analysis , Strontium/analysis
18.
Nature ; 617(7961): 533-539, 2023 May.
Article in English | MEDLINE | ID: mdl-37138076

ABSTRACT

Hormones in biological media reveal endocrine activity related to development, reproduction, disease and stress on different timescales1. Serum provides immediate circulating concentrations2, whereas various tissues record steroid hormones accumulated over time3,4. Hormones have been studied in keratin, bones and teeth in modern5-8 and ancient contexts9-12; however, the biological significance of such records is subject to ongoing debate10,13-16, and the utility of tooth-associated hormones has not previously been demonstrated. Here we use liquid chromatography with tandem mass spectrometry paired with fine-scale serial sampling to measure steroid hormone concentrations in modern and fossil tusk dentin. An adult male African elephant (Loxodonta africana) tusk shows periodic increases in testosterone that reveal episodes of musth17-19, an annually recurring period of behavioural and physiological changes that enhance mating success20-23. Parallel assessments of a male woolly mammoth (Mammuthus primigenius) tusk show that mammoths also experienced musth. These results set the stage for wide-ranging studies using steroids preserved in dentin to investigate development, reproduction and stress in modern and extinct mammals. Because dentin grows by apposition, resists degradation, and often contains growth lines, teeth have advantages over other tissues that are used as records of endocrine data. Given the low mass of dentin powder required for analytical precision, we anticipate dentin-hormone studies to extend to smaller animals. Thus, in addition to broad applications in zoology and palaeontology, tooth hormone records could support medical, forensic, veterinary and archaeological studies.


Subject(s)
Elephants , Fossils , Mammoths , Testosterone , Tooth , Animals , Male , Elephants/anatomy & histology , Elephants/metabolism , Mammoths/anatomy & histology , Mammoths/metabolism , Steroids/analysis , Steroids/metabolism , Testosterone/analysis , Testosterone/metabolism , Tooth/chemistry , Tooth/metabolism , Dentin/chemistry , Dentin/metabolism
19.
Nature ; 618(7964): 328-332, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37138083

ABSTRACT

Artefacts made from stones, bones and teeth are fundamental to our understanding of human subsistence strategies, behaviour and culture in the Pleistocene. Although these resources are plentiful, it is impossible to associate artefacts to specific human individuals1 who can be morphologically or genetically characterized, unless they are found within burials, which are rare in this time period. Thus, our ability to discern the societal roles of Pleistocene individuals based on their biological sex or genetic ancestry is limited2-5. Here we report the development of a non-destructive method for the gradual release of DNA trapped in ancient bone and tooth artefacts. Application of the method to an Upper Palaeolithic deer tooth pendant from Denisova Cave, Russia, resulted in the recovery of ancient human and deer mitochondrial genomes, which allowed us to estimate the age of the pendant at approximately 19,000-25,000 years. Nuclear DNA analysis identifies the presumed maker or wearer of the pendant as a female individual with strong genetic affinities to a group of Ancient North Eurasian individuals who lived around the same time but were previously found only further east in Siberia. Our work redefines how cultural and genetic records can be linked in prehistoric archaeology.


Subject(s)
Bone and Bones , DNA, Ancient , Tooth , Animals , Female , Humans , Archaeology/methods , Bone and Bones/chemistry , Deer/genetics , DNA, Ancient/analysis , DNA, Ancient/isolation & purification , DNA, Mitochondrial/analysis , DNA, Mitochondrial/isolation & purification , History, Ancient , Siberia , Tooth/chemistry , Caves , Russia
20.
Chemosphere ; 329: 138673, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37054846

ABSTRACT

The regular incremental secretion of enamel and dentine can be interrupted during periods of stress resulting in accentuated growth lines. These accentuated lines, visible under light microscopy, provide a chronology of an individual's stress exposure. Previously, we showed that small biochemical changes along accentuated growth lines detected by Raman spectroscopy, coincided with the timing of medical history events and disruptions of weight trajectory in teeth from captive macaques. Here, we translate those techniques to study biochemical changes related to illness and prolonged medical treatment during early infancy in humans. Chemometric analysis revealed biochemical changes related to known stress-induced changes in circulating phenylalanine as well as other biomolecules. Changes in phenylalanine are also known to affect biomineralization which is reflected in changes in the wavenumbers of hydroxyapatite phosphate bands associated with stress in the crystal lattice. Raman spectroscopy mapping of teeth is an objective, minimally-destructive technique that can aid in the reconstruction of an individual's stress response history and provide important information on the mixture of circulating biochemicals associated with medical conditions, as applied in epidemiological and clinical samples.


Subject(s)
Tooth , Humans , Tooth/chemistry , Microscopy , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...