Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
J Med Chem ; 67(9): 7006-7032, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38668707

ABSTRACT

G-quadruplexes are noncanonical four-stranded DNA secondary structures. MYC is a master oncogene and the G-quadruplex formed in the MYC promoter functions as a transcriptional silencer and can be stabilized by small molecules. We have previously revealed a novel mechanism of action for indenoisoquinoline anticancer drugs, dual-downregulation of MYC and inhibition of topoisomerase I. Herein, we report the design and synthesis of novel 7-aza-8,9-methylenedioxyindenoisoquinolines based on desirable substituents and π-π stacking interactions. These compounds stabilize the MYC promoter G-quadruplex, significantly lower MYC levels in cancer cells, and inhibit topoisomerase I. MYC targeting was demonstrated by differential activities in Raji vs CA-46 cells and cytotoxicity in MYC-dependent cell lines. Cytotoxicities in the NCI-60 panel of human cancer cell lines were investigated. Favorable pharmacokinetics were established, and in vivo anticancer activities were demonstrated in xenograft mouse models. Furthermore, favorable brain penetration, brain pharmacokinetics, and anticancer activity in an orthotopic glioblastoma mouse model were demonstrated.


Subject(s)
Antineoplastic Agents , Drug Design , G-Quadruplexes , Isoquinolines , Promoter Regions, Genetic , Proto-Oncogene Proteins c-myc , Topoisomerase I Inhibitors , G-Quadruplexes/drug effects , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Isoquinolines/chemical synthesis , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/pharmacokinetics , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/therapeutic use , Structure-Activity Relationship , DNA Topoisomerases, Type I/metabolism , Xenograft Model Antitumor Assays
2.
Pharm Res ; 41(4): 795-806, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38536615

ABSTRACT

PURPOSE: Quantifying unencapsulated drug concentrations in tissues is crucial for understanding the mechanisms underlying the efficacy and safety of liposomal drugs; however, the methodology for this has not been fully established. Herein, we aimed to investigate the enhanced therapeutic potential of a pegylated liposomal formulation of topotecan (FF-10850) by analyzing the concentrations of the unencapsulated drug in target tissues, to guide the improvement of its dosing regimen. METHODS: We developed a method for measuring unencapsulated topotecan concentrations in tumor and bone marrow interstitial fluid (BM-ISF) and applied this method to pharmacokinetic assessments. The ratios of the area under the concentration-time curves (AUCs) between tumor and BM-ISF were calculated for total and unencapsulated topotecan. DNA damage and antitumor effects of FF-10850 or non-liposomal topotecan (TPT) were evaluated in an ES-2 mice xenograft model. RESULTS: FF-10850 exhibited a much larger AUC ratio between tumor and BM-ISF for unencapsulated topotecan (2.96), but not for total topotecan (0.752), than TPT (0.833). FF-10850 promoted milder DNA damage in the bone marrow than TPT; however, FF-10850 and TPT elicited comparable DNA damage in the tumor. These findings highlight the greater tumor exposure to unencapsulated topotecan and lower bone marrow exposure to FF-10850 than TPT. The dosing regimen was successfully improved based on the kinetics of unencapsulated topotecan and DNA damage. CONCLUSIONS: Tissue pharmacokinetics of unencapsulated topotecan elucidated the favorable pharmacological properties of FF-10850. Evaluation of tissue exposure to an unencapsulated drug with appropriate pharmacodynamic markers can be valuable in optimizing liposomal drugs and dosing regimens.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Mice , Animals , Topotecan/pharmacokinetics , Topoisomerase I Inhibitors/pharmacokinetics , Liposomes , Neoplasms/drug therapy , Disease Models, Animal , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
3.
Cancer Chemother Pharmacol ; 90(2): 175-187, 2022 08.
Article in English | MEDLINE | ID: mdl-35904620

ABSTRACT

PURPOSE: Irinotecan is a commonly used chemotherapeutic in solid tumor malignancies. Oratecan is an investigational product comprised of encequidar methanesulfonate, a novel minimally absorbed P-glycoprotein pump inhibitor, and irinotecan. This study sought to determine the maximum tolerated dose (MTD) of oratecan in patients with advanced malignancies. METHODS: Using a "3 + 3″ dose-escalation design, patients were treated with oratecan on day 1 every 21 days. The irinotecan dose was escalated from 20 to 320 mg/m2. The encequidar methanesulfonate dose was fixed at 15 mg (12.9 mg free base). PK sampling for irinotecan, encequidar and its major metabolites was performed following a single dose of oratecan during cycle 1. Patients were treated until disease progression or unacceptable toxicity. RESULTS: Thirty-five patients were treated. The MTD was determined to be 280 mg/m2 every 21 days. Irinotecan and SN-38 plasma concentration-time profile showed that irinotecan exposure increased with dose and followed biexponential decay. Nine of 17 patients at oratecan dose levels 200 mg/m2 and above had SN-38 exposures comparable to those with intravenous irinotecan at standard dosing. None of the 35 patients achieved a radiologic response, ten patients had SD for > 8 weeks; the median progression-free survival for all treated patients was 9 weeks (95% CI 8.6-13.9). CONCLUSIONS: The MTD of oratecan was encequidar methanesulfonate 15 mg plus irinotecan 280 mg/m2. Exposure for irinotecan and SN-38 increased with increased dose. Potential antitumor activity was observed at the 280 and 320 mg/m2 dose levels. The safety profile of oratecan was comparable to that of intravenous irinotecan.


Subject(s)
Camptothecin , Neoplasms , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Humans , Irinotecan/adverse effects , Maximum Tolerated Dose , Mesylates/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Topoisomerase I Inhibitors/pharmacokinetics
4.
Eur J Clin Pharmacol ; 78(1): 53-64, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34480602

ABSTRACT

BACKGROUND: Body surface area (BSA)-based dosing of irinotecan (IR) does not account for its pharmacokinetic (PK) and pharmacodynamic (PD) variabilities. Functional hepatic nuclear imaging (HNI) and excretory/metabolic/PD pharmacogenomics have shown correlations with IR disposition and toxicity/efficacy. This study reports the development of a nonlinear mixed-effect population model to identify pharmacogenomic and HNI-related covariates that impact on IR disposition to support dosage optimization. METHODS: Patients had advanced colorectal cancer treated with IR combination therapy. Baseline blood was analysed by Affymetrix DMET™ Plus Array and, for PD, single nucleotide polymorphisms (SNPs) by Sanger sequencing. For HNI, patients underwent 99mTc-IDA hepatic imaging, and data was analysed for hepatic extraction/excretion parameters. Blood was taken for IR and metabolite (SN38, SN38G) analysis on day 1 cycle 1. Population modelling utilised NONMEM version 7.2.0, with structural PK models developed for each moiety. Covariates include patient demographics, HNI parameters and pharmacogenomic variants. RESULTS: Analysis included (i) PK data: 32 patients; (ii) pharmacogenomic data: 31 patients: 750 DMET and 22 PD variants; and (iii) HNI data: 32 patients. On initial analysis, overall five SNPs were identified as significant covariates for CLSN38. Only UGT1A3_c.31 T > C and ABCB1_c.3435C > T were included in the final model, whereby CLSN38 reduced from 76.8 to 55.1%. CONCLUSION: The identified UGT1A3_c.31 T > C and ABCB1_c.3435C > T variants, from wild type to homozygous, were included in the final model for SN38 clearance.


Subject(s)
Colorectal Neoplasms/drug therapy , Glucuronosyltransferase/genetics , Irinotecan/pharmacokinetics , Liver/metabolism , Topoisomerase I Inhibitors/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Australia , Colorectal Neoplasms/pathology , Genotype , Humans , Irinotecan/therapeutic use , Liver/diagnostic imaging , Models, Biological , Neoplasm Metastasis , Pharmacogenetics , Pharmacogenomic Variants , Polymorphism, Single Nucleotide , Prospective Studies , Topoisomerase I Inhibitors/therapeutic use
5.
Int J Mol Sci ; 22(24)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34948159

ABSTRACT

The big problem of antimicrobial resistance is that it requires great efforts in the design of improved drugs which can quickly reach their target of action. Studies of antibiotic uptake and interaction with their target it is a key factor in this important challenge. We investigated the accumulation of ozenoxacin (OZN), moxifloxacin (MOX), levofloxacin (LVX), and ciprofloxacin (CIP) into the bacterial cells of 5 species, including Staphylococcus aureus (SA4-149), Staphylococcus epidermidis (SEP7602), Streptococcus pyogenes (SPY165), Streptococcus agalactiae (SAG146), and Enterococcus faecium (EF897) previously characterized.The concentration of quinolone uptake was estimated by agar disc-diffusion bioassay. Furthermore, we determined the inhibitory concentrations 50 (IC50) of OZN, MOX, LVX, and CIP against type II topoisomerases from S. aureus.The accumulation of OZN inside the bacterial cell was superior in comparison to MOX, LVX, and CIP in all tested species. The accumulation of OZN inside the bacterial cell was superior in comparison to MOX, LVX, and CIP in all tested species. The rapid penetration of OZN into the cell was reflected during the first minute of exposure with antibiotic values between 190 and 447 ng/mg (dry weight) of bacteria in all strains. Moreover, OZN showed the greatest inhibitory activity among the quinolones tested for both DNA gyrase and topoisomerase IV isolated from S. aureus with IC50 values of 10 and 0.5 mg/L, respectively. OZN intracellular concentration was significantly higher than that of MOX, LVX and CIP. All of these features may explain the higher in vitro activity of OZN compared to the other tested quinolones.


Subject(s)
Aminopyridines , Bacterial Proteins/metabolism , Gram-Positive Bacteria/metabolism , Quinolones , Topoisomerase I Inhibitors , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Quinolones/pharmacokinetics , Quinolones/pharmacology , Topoisomerase I Inhibitors/pharmacokinetics , Topoisomerase I Inhibitors/pharmacology
6.
Drug Metab Dispos ; 49(8): 683-693, 2021 08.
Article in English | MEDLINE | ID: mdl-34074730

ABSTRACT

The anticancer drug irinotecan shows serious dose-limiting gastrointestinal toxicity regardless of intravenous dosing. Although enzymes and transporters involved in irinotecan disposition are known, quantitative contributions of these mechanisms in complex in vivo disposition of irinotecan are poorly understood. We explained intestinal disposition and toxicity of irinotecan by integrating 1) in vitro metabolism and transport data of irinotecan and its metabolites, 2) ex vivo gut microbial activation of the toxic metabolite SN-38, and 3) the tissue protein abundance data of enzymes and transporters relevant to irinotecan and its metabolites. Integration of in vitro kinetics data with the tissue enzyme and transporter abundance predicted that carboxylesterase (CES)-mediated hydrolysis of irinotecan is the rate-limiting process in the liver, where the toxic metabolite formed is rapidly deactivated by glucuronidation. In contrast, the poor SN-38 glucuronidation rate as compared with its efficient formation by CES2 in the enterocytes is the key mechanism of the intestinal accumulation of the toxic metabolite. The biliary efflux and organic anion transporting polypeptide-2B1-mediated enterocyte uptake can also synergize buildup of SN-38 in the enterocytes, whereas intestinal P-glycoprotein likely facilitates SN-38 detoxification in the enterocytes. The higher SN-38 concentration in the intestine can be further nourished by ß-d-glucuronidases. Understanding the quantitative significance of the key metabolism and transport processes of irinotecan and its metabolites can be leveraged to alleviate its intestinal side effects. Further, the proteomics-informed quantitative approach to determine intracellular disposition can be extended to determine susceptibility of cancer cells over normal cells for precision irinotecan therapy. SIGNIFICANCE STATEMENT: This work provides a deeper insight into the quantitative relevance of irinotecan hydrolysis (activation), conjugation (deactivation), and deconjugation (reactivation) by human or gut microbial enzymes or transporters. The results of this study explain the characteristic intestinal exposure and toxicity of irinotecan. The quantitative tissue-specific in vitro to in vivo extrapolation approach presented in this study can be extended to cancer cells.


Subject(s)
Gastrointestinal Microbiome/drug effects , Hepatobiliary Elimination , Inactivation, Metabolic/drug effects , Irinotecan , Organic Anion Transporters/metabolism , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/toxicity , Carboxylesterase/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Glucuronidase/metabolism , Hepatobiliary Elimination/drug effects , Hepatobiliary Elimination/physiology , Humans , Irinotecan/analogs & derivatives , Irinotecan/pharmacokinetics , Irinotecan/toxicity , Liver/enzymology , Topoisomerase I Inhibitors/pharmacokinetics , Topoisomerase I Inhibitors/toxicity
7.
Cancer Chemother Pharmacol ; 88(3): 543-553, 2021 09.
Article in English | MEDLINE | ID: mdl-34117512

ABSTRACT

PURPOSE: SN-38, a pharmacologically active metabolite of irinotecan, is taken up into hepatocytes by organic anion transporting polypeptide (OATP) 1B1. The effects of functional OATP1B1 521T>C on the pharmacokinetics of SN-38 remain controversial. Here, we prospectively examined the effects of OATP1B1 function on the area under the plasma total or unbound concentration-time curve (tAUC or uAUC) of SN-38 by assessing OATP1B1 521T>C and the plasma levels of endogenous OATP1B1 substrates, coproporphyrin (CP)-I and III, in cancer patients treated with irinotecan. METHODS: We enrolled cancer patients who were treated with an irinotecan-containing regimen and did not have severe renal failure. The total and unbound concentrations of SN-38 in the plasma were measured by high-performance liquid chromatography. AUC values were calculated and normalized to the actual irinotecan dose (AUC/dose). The OATP1B1 521T>C was analyzed by direct sequencing. Concentrations of the endogenous substrates in plasma before irinotecan treatment (baseline) were determined by liquid chromatography with tandem mass spectrometry. RESULTS: Twenty-two patients with a median estimated glomerular filtration rate of 74.8 mL/min (range 32.6-99.6) were examined. Both tAUC/dose and uAUC/dose were associated with the grade of neutropenia; however, they were not associated with OATP1B1 521T>C or baseline CP-I and III levels. It is worth noting that these baseline concentrations were significantly higher in patients with OATP1B1 521C, supporting functional changes in OATP1B1. CONCLUSION: The contribution of OATP1B1 activity to inter-patient variability in the systemic exposure to SN-38 is likely minimal in patients without severe renal failure.


Subject(s)
Irinotecan/administration & dosage , Liver-Specific Organic Anion Transporter 1/metabolism , Neoplasms/drug therapy , Renal Insufficiency/physiopathology , Aged , Area Under Curve , Chromatography, Liquid , Dose-Response Relationship, Drug , Female , Glomerular Filtration Rate , Humans , Irinotecan/adverse effects , Irinotecan/pharmacokinetics , Male , Middle Aged , Neoplasms/pathology , Prospective Studies , Severity of Illness Index , Tandem Mass Spectrometry , Topoisomerase I Inhibitors/administration & dosage , Topoisomerase I Inhibitors/adverse effects , Topoisomerase I Inhibitors/pharmacokinetics
8.
Cancer Chemother Pharmacol ; 88(3): 403-414, 2021 09.
Article in English | MEDLINE | ID: mdl-34031756

ABSTRACT

PURPOSE: This phase I trial was performed to determine the maximum-tolerated dose (MTD), dose-limiting toxicities (DLTs), preliminary efficacy, and pharmacokinetics (PK) of LY01610, a novel liposome-encapsulated irinotecan, in patients with advanced esophageal squamous cell carcinoma (ESCC). METHODS: This trial was conducted in two stages. In the dose-escalation stage, patients with advanced ESCC refractory or intolerant to previous chemotherapy received escalating doses of LY01610. A recommended dose based on patient tolerance was then expanded in the second stage. LY01610 was administered intravenously every 2 weeks, except that the first cycle in dose escalation was 3 weeks to allow observation of DLTs. RESULTS: Twenty-four patients were enrolled across 4 dose levels (30, 60, 90 and 120 mg/m2). The DLTs included vomiting and febrile neutropenia, and the MTD was 90 mg/m2. The most common grade 3/4 adverse events were leukopenia in six patients (25.0%), anemia in six patients (25.0%) and neutropenia in five patients (20.8%). One patient achieved complete response, and four had partial response, including one patient receiving LY01610 at the starting dose of 30 mg/m2. Compared with conventional irinotecan, the PK profile of LY01610 was characterized by increased and prolonged exposure of total irinotecan and the active metabolite SN-38 in plasma. CONCLUSION: LY01610 demonstrated manageable toxicity and promising anti-tumor activity in patients with advanced ESCC. Future clinical development of LY01610 as single agent or in combination with other anti-cancer agents in treating ESCC patients is warranted. TRIAL REGISTRATION: NCT04088604 at ClinicalTrials.gov.


Subject(s)
Esophageal Neoplasms/drug therapy , Esophageal Squamous Cell Carcinoma/drug therapy , Irinotecan/administration & dosage , Topoisomerase I Inhibitors/administration & dosage , Adult , Dose-Response Relationship, Drug , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Female , Humans , Irinotecan/adverse effects , Irinotecan/pharmacokinetics , Liposomes , Male , Maximum Tolerated Dose , Middle Aged , Neutropenia/chemically induced , Topoisomerase I Inhibitors/adverse effects , Topoisomerase I Inhibitors/pharmacokinetics
9.
Drug Deliv ; 28(1): 767-775, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33860729

ABSTRACT

Topotecan is potent anti-cancer drug approved for various malignancies but hematopoietic toxicities undermine its wider application and use of its most effective dose. This study aims to improve these limitations through inhalation-delivery. The pharmacokinetics, efficacy, and toxicity of 2-5 times lower inhalation doses of topotecan dry-powder were compared with the standard intravenous (IV) delivery once/twice-a-week. Human-derived EGFR-mutant (H1975), KRAS-mutant (A549), and EGFR/KRAS wild-type (H358) orthotopic and distant lung tumors were evaluated in murine models. Inhalation of 1 mg/kg topotecan significantly improved the half-life and drug exposure (area under the curve, AUC) compared to 5 mg/kg via IV-delivery. AUCs (h*ng/mL) for inhaled/IV topotecan in plasma, lung, liver, and brain were, 831/888, 60,000/1080, 8380/4000, and 297/15, respectively; while the half-life was also greatly increased in these tissues. The average lung tumor burden of H358-derived tumors was reduced from 15.0 g to 8.4 g (44%) in rats treated once-a-week with 2 mg/kg IV and 1.8 g (88%) with 1 mg/kg inhaled topotecan, corroborating previous findings using A549- and H1975-derived orthotopic lung tumors. Importantly, inhaled topotecan showed superior efficacy in suppressing lung tumors at distant sites. The growth of H1975- and H358-derived subcutaneous xenografts were completely arrested and A549-derived tumors were significantly reduced in mice treated twice-a-week with 1 mg/kg inhaled topotecan compared to a minor (H1975 and H358) or no reduction (A549) with twice-a-week 5 mg/kg IV topotecan.


Subject(s)
Lung Neoplasms/drug therapy , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology , Administration, Inhalation , Animals , Antineoplastic Combined Chemotherapy Protocols , Cell Line, Tumor , Chemistry, Pharmaceutical , Genes, erbB-1/genetics , Half-Life , Humans , Metabolic Clearance Rate , Proto-Oncogene Proteins p21(ras)/genetics , Rats , Rats, Sprague-Dawley , Topoisomerase I Inhibitors/administration & dosage , Topoisomerase I Inhibitors/pharmacokinetics , Topotecan/administration & dosage , Topotecan/pharmacokinetics , Tumor Burden , Xenograft Model Antitumor Assays
10.
J Pharm Pharmacol ; 73(2): 178-184, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33793796

ABSTRACT

OBJECTIVES: Irinotecan is a widely intravenously used drug for the treatment of certain types of solid tumours. The oral administration of irinotecan has recently been recognized as being a more effective method for the treatment than intravenous administration. However, the limited oral bioavailability of irinotecan poses a problem for its oral delivery. In this study, we report on an investigation of the mechanism responsible for the limited oral absorption of irinotecan using rats as models. METHODS: The intestinal absorption of irinotecan in the absence and presence of several compounds was examined using intestinal loop method. The pharmacokinetics of irinotecan was investigated when verapamil, an inhibitor of the P-glycoprotein (P-gp) and cytochrome P450 3A (CYP3A) was pre-administered. KEY FINDINGS: The intestinal absorption of irinotecan was enhanced in the presence of verapamil, indicating that efflux by intestinal P-gp contributes to its limited oral absorption. Indeed, the oral bioavailability of irinotecan was increased when verapamil was orally pre-administered. This increased oral bioavailability was accompanied by a slight but significant decrease in the formation of a metabolite produced by the action of CYP3A. CONCLUSION: The findings presented herein suggest that intestinal efflux by P-gp is mainly and intestinal metabolism by CYP3A is partially responsible for the limited oral absorption of irinotecan.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cytochrome P-450 CYP3A/metabolism , Irinotecan/pharmacokinetics , Topoisomerase I Inhibitors/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Intestinal Absorption , Irinotecan/administration & dosage , Male , Rats , Rats, Wistar , Topoisomerase I Inhibitors/administration & dosage , Verapamil/pharmacology
11.
Cancer Chemother Pharmacol ; 88(2): 247-258, 2021 08.
Article in English | MEDLINE | ID: mdl-33912999

ABSTRACT

PURPOSE: The aim of the present study was to characterize the pharmacokinetics of irinotecan and its four main metabolites (SN-38, SN-38G, APC and NPC) in metastatic colorectal cancer patients treated with FOLFIRI and FOLFIRINOX regimens and to quantify and explain the inter-individual pharmacokinetic variability in this context. METHODS: A multicenter study including 109 metastatic colorectal cancer patients treated with FOLFIRI or FOLFIRINOX regimen, associated or not with a monoclonal antibody, was conducted. Concentrations of irinotecan and its four main metabolites were measured in 506 blood samples during the first cycle of treatment. Collected data were analyzed using the population approach. First, fixed and random effects models were selected using statistical and graphical methods; second, the impact of covariates on pharmacokinetic parameters was evaluated to explain the inter-individual variability in pharmacokinetic parameters. RESULTS: A seven-compartment model best described the pharmacokinetics of irinotecan and its four main metabolites. First-order rates were assigned to distribution, elimination, and metabolism processes, except for the transformation of irinotecan to NPC which was nonlinear. Addition of a direct conversion of NPC into SN-38 significantly improved the model. Co-administration of oxaliplatin significantly modified the distribution of SN-38. CONCLUSION: To our knowledge, the present model is the first to allow a simultaneous description of irinotecan pharmacokinetics and of its four main metabolites. Moreover, a direct conversion of NPC into SN-38 had never been described before in a population pharmacokinetic model of irinotecan. The model will be useful to develop pharmacokinetic-pharmacodynamic models relating SN-38 concentrations to efficacy and digestive toxicities. CLINICAL TRIALS REGISTRATION NUMBER: ClinicalTrials.gov identifier: NCT00559676.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Camptothecin/analogs & derivatives , Irinotecan/pharmacokinetics , Topoisomerase I Inhibitors/pharmacokinetics , Camptothecin/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Female , Fluorouracil/therapeutic use , Humans , Irinotecan/therapeutic use , Leucovorin/therapeutic use , Male , Oxaliplatin/therapeutic use , Topoisomerase I Inhibitors/therapeutic use
12.
Eur J Med Chem ; 215: 113261, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33631697

ABSTRACT

In our attempt to develop potential anticancer agents targeting Topoisomerase I (TOP1), two novel series of 4-alkoxy-2-arylquinolines 14a-p and 19a-c were designed and synthesized based on structure activity relationships of the reported TOP1 inhibitors and structural features required for stabilization of TOP1-DNA cleavage complexes (TOP1ccs). The in vitro anticancer activity of these two series of compounds was evaluated at one dose level using NCI-60 cancer cell lines panel. Compounds 14e-h and 14m-p, with p-substituted phenyl at C2 and propyl linker at C4, were the most potent and were selected for assay at five doses level in which they exhibited potent anticancer activity at sub-micromolar level against diverse cancer cell lines. Compound 14m was the most potent with full panel GI50 MG-MID 1.26 µM and the most sensitive cancers were colon cancer, leukemia and melanoma with GI50 MG-MID 0.875, 0.904 and 0.926 µM, respectively. Melanoma (LOX IMVI) was the most sensitive cell line to all tested compounds displaying GI50 from 0.116 to 0.227 µM, TGI from 0.275 to 0.592 µM and LC50 at sub-micromolar concentration against almost of the tested compounds. Compounds 14e-h and 14m-p were assayed using TOP1-mediated DNA cleavage assay to evaluate their ability to stabilize TOP1ccs resulting in cancer cell death. The morpholino analogs 14h and 14p exhibited moderate TOP1 inhibitory activity compared to 1 µM camptothecin suggesting their use as lead compounds that can be optimized for the development of more potent anticancer agents with potential TOP1 inhibitory activity. Finally, Swiss ADME online web tool predicted that compounds 14h and 14p possessed good oral bioavailability and druglikeness characteristics.


Subject(s)
Antineoplastic Agents/pharmacology , Quinolines/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Proliferation/drug effects , DNA/drug effects , DNA Cleavage/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/pharmacokinetics
13.
J Med Chem ; 64(3): 1435-1453, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33492141

ABSTRACT

In this paper, we present a copper(I)-catalyzed nitrile-addition/N-arylation ring-closure cascade for the synthesis of 5,11-dihydro-6H-indolo[3,2-c]quinolin-6-ones from 2-(2-bromophenyl)-N-(2-cyanophenyl)acetamides. Using CuBr and t-BuONa in dimethylformamide (DMF) as the optimal reaction conditions, the cascade reaction gave the target products, in high yields, with a good substrate scope. Application of the cascade reaction was demonstrated on the concise total syntheses of alkaloid isocryptolepine. Further optimization of the products from the cascade reaction led to 3-chloro-5,12-bis[2-(dimethylamino)ethyl]-5,12-dihydro-6H-[1,3]dioxolo[4',5':5,6]indolo[3,2-c]quinolin-6-one (2k), which exhibited the characteristic DNA topoisomerase-I inhibitory mechanism of action with potent in vitro anticancer activity. Compound 2k actively inhibited ARC-111- and SN-38-resistant HCT-116 cells and showed in vivo activity in mice bearing human HCT-116 and SJCRH30 xenografts. The interaction of 2k with the Top-DNA cleavable complex was revealed by docking simulations to guide the future optimization of 5,11-dihydro-6H-indolo[3,2-c]quinolin-6-ones as topoisomerase-I inhibitors.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Copper/chemistry , Nitriles/chemistry , Quinolones/chemical synthesis , Quinolones/pharmacology , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/pharmacology , Animals , Catalysis , DNA Topoisomerases, Type I/chemistry , Drug Design , Drug Screening Assays, Antitumor , Female , Humans , Male , Mice , Mice, Nude , Models, Molecular , Molecular Docking Simulation , Quinolones/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Topoisomerase I Inhibitors/pharmacokinetics , Xenograft Model Antitumor Assays
14.
Drug Deliv ; 28(1): 240-251, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33501859

ABSTRACT

Colorectal cancer is one of the most common cancers in the United States and treatment options are limited for patients who develop liver metastases. Several chemotherapeutic regimens have been used for transvascular liver-directed therapy in the treatment of colorectal liver metastases without clear evidence of superiority of one therapy over another. We describe the development of a novel nanoemulsion through combining irinotecan (IRI), a first line systemic agent used for the treatment of colon cancer, with lipiodol, an oily contrast medium derived from poppy seed oil, and evaluated its pharmacokinetic and biodistribution profile as a function of portal venous chemoembolization (PVCE) versus transarterial chemoembolization (TACE) delivery. The Tessari technique was used to create a stable emulsion (20 mg IRI mixed with 2 mL lipiodol) with resultant particle size ranging from 28.9 nm to 56.4 nm. Pharmacokinetic profile established through venous sampling in Buffalo rats demonstrate that the area under the curve (AUC0-∞) of IRI was significantly less after PVCE with IRI-lipiodol as compared to IRI alone (131 vs. 316 µg*min/mL, p-value = .023), suggesting significantly higher amounts of IRI retention in the liver with the IRI-lipiodol nanoemulsion via first-pass extraction. Subseqent biodistribution studies in tumor-bearing WAG/Rjj rats revealed more IRI present in the tumor following TACE versus PVCE (29.19 ± 12.33 µg/g versus 3.42 ± 1.62; p-value = .0033) or IV (29.19 ± 12.33 µg/g versus 1.05 ± 0.47; p-value = .0035). The IRI-lipiodol nanoemulsion demonstrated an acceptable hepatotoxicity profile in all routes of administration. In conclusion, the IRI-lipiodol nanoemulsion via TACE showed promise and warrants further investigation as an option for the treatment of metastatic colorectal cancer.


Subject(s)
Colorectal Neoplasms/pathology , Ethiodized Oil/pharmacokinetics , Hepatic Artery , Irinotecan/pharmacokinetics , Liver Neoplasms/secondary , Liver/metabolism , Portal Vein , Topoisomerase I Inhibitors/pharmacokinetics , Animals , Cell Line, Tumor , Chemoembolization, Therapeutic/methods , Drug Carriers , Emulsions/pharmacokinetics , In Vitro Techniques , Irinotecan/administration & dosage , Liver Neoplasms/therapy , Nanostructures , Prodrugs/administration & dosage , Prodrugs/pharmacokinetics , Rats , Topoisomerase I Inhibitors/administration & dosage
15.
Cancer Chemother Pharmacol ; 86(4): 475-486, 2020 10.
Article in English | MEDLINE | ID: mdl-32897402

ABSTRACT

PURPOSE: NLG207 (formerly CRLX101) is a nanoparticle-drug conjugate (NDC) of the potent topoisomerase I inhibitor, camptothecin (CPT). The present study sought to characterize the complex pharmacokinetics (PK) of NLG207 and better describe CPT release from nanoparticles using a population PK (popPK) model. METHODS: From 27 patients enrolled on two phase II clinical trials (NCT02769962 and NCT03531827), dense sampling was performed up to 48 h post-administration of NLG207 during cycle one and six of treatment; samples were also collected at ~ 360 h post-dose. Conjugated and free CPT concentrations were quantified from each sample, resulting in 477 observations to build a popPK model using non-linear mixed-effects modeling. RESULTS: The PK of NLG207 was characterized by combining two linear two-compartment models with first-order kinetics each to describe nanoparticle-bound (conjugated) and free CPT. Allometric scaling based on body weight provided the best body-size descriptor for all PK parameters. The typical volumes of distribution of the conjugated CPT central and free CPT central compartments were 3.16 L (BSV CV%; 18.1%) and 21.1 L (CV%; 79.8%), respectively. CPT release from the nanoparticle formulation was characterized via an initial rapid clearance of 5.71 L/h (CV%; 62.6%), which decreased via first-order decay (estimated half-life of 0.307 h) to the steady-state value of 0.0988 L/h (CV%; 33.5%) by ~ 4 h after end of infusion. Renal clearance of free CPT was 0.874 L/h (CV%; 42.2%). CONCLUSION: The popPK model confirmed nanoparticle behavior of conjugated CPT and mechanistically characterized CPT release from NLG207. The current analysis provides a strong foundation for future study as a potential predictive tool in ongoing NLG207 clinical trials.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Camptothecin/pharmacokinetics , Cyclodextrins/pharmacokinetics , Models, Biological , Neoplasms/drug therapy , Topoisomerase I Inhibitors/pharmacokinetics , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Benzamides/administration & dosage , Benzamides/pharmacokinetics , Camptothecin/administration & dosage , Cyclodextrins/administration & dosage , Drug Liberation , Female , Half-Life , Humans , Male , Middle Aged , Neoplasm Staging , Neoplasms/blood , Neoplasms/diagnosis , Neoplasms/pathology , Nitriles/administration & dosage , Nitriles/pharmacokinetics , Phenylthiohydantoin/administration & dosage , Phenylthiohydantoin/pharmacokinetics , Phthalazines/administration & dosage , Phthalazines/pharmacokinetics , Piperazines/administration & dosage , Piperazines/pharmacokinetics , Topoisomerase I Inhibitors/administration & dosage
16.
Curr Drug Metab ; 21(11): 902-909, 2020.
Article in English | MEDLINE | ID: mdl-32851958

ABSTRACT

BACKGROUND: Among all cancers, lung cancer has high mortality among patients in most of the countries in the world. Targeted delivery of anticancer drugs can significantly reduce the side effects and dramatically improve the effects of the treatment. Folate, a suitable ligand, can be modified to the surface of tumor-selective drug delivery systems because it can selectively bind to the folate receptor, which is highly expressed on the surface of lung tumor cells. OBJECTIVE: This study aimed to construct a kind of folate-targeted topotecan liposomes for investigating their efficacy and mechanism of action in the treatment of lung cancer in preclinical models. METHODS: We conjugated topotecan liposomes with folate, and the liposomes were characterized by particle size, entrapment efficiency, cytotoxicity to A549 cells and in vitro release profile. Technical evaluations were performed on lung cancer A549 cells and xenografted A549 cancer cells in female nude mice, and the pharmacokinetics of the drug were evaluated in female SD rats. RESULTS: The folate-targeted topotecan liposomes were proven to show effectiveness in targeting lung tumors. The anti-tumor effects of these liposomes were demonstrated by the decreased tumor volume and improved therapeutic efficacy. The folate-targeted topotecan liposomes also lengthened the topotecan blood circulation time. CONCLUSION: The folate-targeted topotecan liposomes are effective drug delivery systems and can be easily modified with folate, enabling the targeted liposomes to deliver topotecan to lung cancer cells and kill them, which could be used as potential carriers for lung chemotherapy.


Subject(s)
Folic Acid/administration & dosage , Lung Neoplasms/drug therapy , Polyethylene Glycols/administration & dosage , Topoisomerase I Inhibitors/administration & dosage , Topotecan/administration & dosage , A549 Cells , Administration, Intravenous , Animals , Cell Survival/drug effects , Female , Folate Receptors, GPI-Anchored/metabolism , Folic Acid/pharmacokinetics , Humans , Liposomes , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Polyethylene Glycols/pharmacokinetics , Rats, Sprague-Dawley , Topoisomerase I Inhibitors/blood , Topoisomerase I Inhibitors/pharmacokinetics , Topotecan/blood , Topotecan/pharmacokinetics
17.
Nanotechnology ; 31(45): 455101, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-32688350

ABSTRACT

Combination therapy can boost the therapeutic effectiveness of monotherapies by achieving synergy between therapeutic agents. Herein, a reduction-responsive sulfur dioxide (SO2) polymer prodrug was synthesized as a nanocarrier to load irinotecan (IRN) to be used in combination osteosarcoma therapy. The SO2 prodrug (denoted as mPEG-PLG (DNs)) was synthesized by coupling a small-molecule SO2 donor, N-(3-azidopropyl)-2,4-dinitrobenzenesulfonamide (AP-DNs), to the side chains of methoxy poly (ethylene glycol)-block-poly (γ-propargyl-L-glutamate) block copolymer. The mPEG-PLG (DNs) had the ability to self-assemble into micelles while simultaneously encapsulating IRN in aqueous media. The formed micelles led to enhanced SO2 and IRN release in reductive conditions. Using nile red as a model drug, the loaded micelles were efficiently internalized by cancer cells, demonstrated by confocal laser scanning microscopy and flow cytometry. The release of SO2 within nanoparticles (NPs) in tumor cells led to enhanced intracellular reactive oxygen species amounts together with induced oxidative destruction to cancer cells. Furthermore, the IRN-loaded SO2 polymer prodrug NPs mediated synergistic therapeutic effects against osteosarcoma cells, leading to improved biodistribution and enhanced tumor growth inhibition over control groups in a murine osteosarcoma model. Taken together, this work highlights the potential of SO2 polymer prodrugs as reduction-responsive nanocarriers to load chemotherapeutics for effective combination osteosarcoma therapy.


Subject(s)
Bone Neoplasms/drug therapy , Irinotecan/administration & dosage , Osteosarcoma/drug therapy , Prodrugs/administration & dosage , Sulfur Dioxide/administration & dosage , Topoisomerase I Inhibitors/administration & dosage , Animals , Bone Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Irinotecan/pharmacokinetics , Irinotecan/pharmacology , Mice, Inbred BALB C , Micelles , Nanoparticles/administration & dosage , Osteosarcoma/pathology , Oxidation-Reduction , Polymers/administration & dosage , Polymers/pharmacokinetics , Polymers/pharmacology , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Sulfur Dioxide/pharmacokinetics , Sulfur Dioxide/pharmacology , Topoisomerase I Inhibitors/pharmacokinetics , Topoisomerase I Inhibitors/pharmacology
18.
Int J Mol Sci ; 21(14)2020 Jul 12.
Article in English | MEDLINE | ID: mdl-32664667

ABSTRACT

Irinotecan has been used in the treatment of various malignancies for many years. Still, the knowledge regarding this drug is expanding. The pharmacogenetics of the drug is the crucial component of response to irinotecan. Furthermore, new formulations of the drug are introduced in order to better deliver the drug and avoid potentially life-threatening side effects. Here, we give a comprehensive overview on irinotecan's molecular mode of action, metabolism, pharmacogenetics, and toxicity. Moreover, this article features clinically used combinations of the drug with other anticancer agents and introduces novel formulations of drugs (e.g., liposomal formulations, dendrimers, and nanoparticles). It also outlines crucial mechanisms of tumor cells' resistance to the active metabolite, ethyl-10-hydroxy-camptothecin (SN-38). We are sure that the article will constitute an important source of information for both new researchers in the field of irinotecan chemotherapy and professionals or clinicians who are interested in the topic.


Subject(s)
Irinotecan/therapeutic use , Neoplasms/drug therapy , Prodrugs/pharmacokinetics , Topoisomerase I Inhibitors/therapeutic use , Activation, Metabolic , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , DNA, Neoplasm/drug effects , Dosage Forms , Drug Compounding , Drug Resistance, Neoplasm , Drug Synergism , Female , Humans , Irinotecan/administration & dosage , Irinotecan/adverse effects , Irinotecan/pharmacokinetics , Male , Models, Molecular , Molecular Structure , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/enzymology , Nucleic Acid Conformation , Polymorphism, Single Nucleotide , Protein Conformation , Topoisomerase I Inhibitors/administration & dosage , Topoisomerase I Inhibitors/adverse effects , Topoisomerase I Inhibitors/pharmacokinetics
19.
Drug Deliv ; 27(1): 836-847, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32508162

ABSTRACT

In order to enhance the targeting efficiency and reduce anti-tumor drug's side effects, topotecan (TPT) and F7 were co-loaded in thermosensitive liposomes (F7-TPT-TSL), which show enhanced permeability and retention in tumors, as well as local controlled release by heating in vitro. TPT is a water-soluble inhibitor of topoisomerase I that is converted to an inactive carboxylate structure under physiological conditions (pH 7.4). F7 is a novel drug significantly resistant to cyclin-dependent kinase but its use was restricted by its high toxicity. F7-TPT-TSL had excellent particle distribution (about 103 nm), high entrapment efficiency (>95%), obvious thermosensitive property, and good stability. Confocal microscopy demonstrated specific higher accumulation of TSL in tumor cells. MTT proved F7-TPT-TSL/H had strongest cell lethality compared with other formulations. Then therapeutic efficacy revealed synergism of TPT and F7 co-loaded in TSL, together with hyperthermia. Therefore, the F7-TPT-TSL may serve as a promising system for temperature triggered cancer treatment.


Subject(s)
Drug Delivery Systems/methods , Liposomes , Topotecan , Animals , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Biological Availability , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Hyperthermia , Liposomes/chemistry , Liposomes/pharmacokinetics , Mice , Nanostructures , Tissue Distribution/drug effects , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/pharmacokinetics , Topotecan/chemistry , Topotecan/pharmacokinetics , Transition Temperature , Xenograft Model Antitumor Assays
20.
Int J Pharm ; 586: 119522, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32534159

ABSTRACT

Gelatin based nanocarriers have major limitation of shorter circulation half-life (t1/2). Present study addressed this issue by conjugating gelatin with folate followed by nanoprecipitation in presence of polysorbate 80 to form folate attached gelatin nanoparticles (GNP-F). The folic acid was conjugated with gelatin through the formation of amide linkage with a maximum conjugation yield of ~69%. Cryo-SEM analysis indicated that unconjugated gelatin nanoparticles (GNP) and GNP-F were spherical of nearly identical size of ~200 nm. The irinotecan (IRI)-loading efficiency estimated for IRI-GNP and IRI-GNP-F was 6.6 ± 0.42% and 11.2 ± 0.73% respectively and both formulations showed faster release of IRI at acidic pH (~5) than at physiological pH (~7). Further IRI-GNP-F demonstrated significantly higher cytotoxicity in folate receptor (FR)-positive HeLa cells than the unconjugated IRI-GNP nanoparticles confirming active targeting. Subsequently the antitumor activity of above formulations in FR-positive fibrosarcoma (syngeneic) tumor-bearing mice followed the order of IRI-GNP-F > IRI-GNP > free IRI. The pharmacokinetic evaluation of IRI-GNP and IRI-GNP-F revealed that encapsulation of IRI within GNP without folate improved its plasma maximum concentration (Cmax). However, folate conjugation of GNP remarkably improved the t1/2 of IRI. Taken together, folate as a targeting ligand modulates the pharmacokinetic property of IRI loaded GNP to favor active verses passive targeting.


Subject(s)
Folic Acid/chemistry , Irinotecan/administration & dosage , Nanoparticles , Topoisomerase I Inhibitors/administration & dosage , A549 Cells , Animals , Drug Carriers/chemistry , Female , Fibrosarcoma/drug therapy , Fibrosarcoma/pathology , Folate Receptors, GPI-Anchored/metabolism , Gelatin/chemistry , Half-Life , HeLa Cells , Humans , Hydrogen-Ion Concentration , Irinotecan/pharmacokinetics , Irinotecan/pharmacology , Mice , Particle Size , Polysorbates/chemistry , Topoisomerase I Inhibitors/pharmacokinetics , Topoisomerase I Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...