Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.057
Filter
1.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791158

ABSTRACT

Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the majority of patients experience limited improvements in clinical outcomes, highlighting the critical need for strategies to enhance the effectiveness of anthracycline/taxane-based chemotherapy in TNBC. In this study, we report on the potential of a DNA-PK inhibitor, peposertib, to improve the effectiveness of topoisomerase II (TOPO II) inhibitors, particularly anthracyclines, in TNBC. Our in vitro studies demonstrate the synergistic antiproliferative activity of peposertib in combination with doxorubicin, epirubicin and etoposide in multiple TNBC cell lines. Downstream analysis revealed the induction of ATM-dependent compensatory signaling and p53 pathway activation under combination treatment. These in vitro findings were substantiated by pronounced anti-tumor effects observed in mice bearing subcutaneously implanted tumors. We established a well-tolerated preclinical treatment regimen combining peposertib with pegylated liposomal doxorubicin (PLD) and demonstrated strong anti-tumor efficacy in cell-line-derived and patient-derived TNBC xenograft models in vivo. Taken together, our findings provide evidence that co-treatment with peposertib has the potential to enhance the efficacy of anthracycline/TOPO II-based chemotherapies, and it provides a promising strategy to improve treatment outcomes for TNBC patients.


Subject(s)
Doxorubicin , Drug Synergism , Topoisomerase II Inhibitors , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Humans , Animals , Female , Mice , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/analogs & derivatives , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Sulfones/pharmacology , Cell Proliferation/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Polyethylene Glycols/pharmacology , Etoposide/pharmacology , Etoposide/therapeutic use , DNA Topoisomerases, Type II/metabolism , Epirubicin/pharmacology
2.
Cell Rep ; 43(4): 114053, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38578824

ABSTRACT

In the search for much-needed new antibacterial chemical matter, a myriad of compounds have been reported in academic and pharmaceutical screening endeavors. Only a small fraction of these, however, are characterized with respect to mechanism of action (MOA). Here, we describe a pipeline that categorizes transcriptional responses to antibiotics and provides hypotheses for MOA. 3D-printed imaging hardware PFIboxes) profiles responses of Escherichia coli promoter-GFP fusions to more than 100 antibiotics. Notably, metergoline, a semi-synthetic ergot alkaloid, mimics a DNA replication inhibitor. In vitro supercoiling assays confirm this prediction, and a potent analog thereof (MLEB-1934) inhibits growth at 0.25 µg/mL and is highly active against quinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Spontaneous suppressor mutants map to a seldom explored allosteric binding pocket, suggesting a mechanism distinct from DNA gyrase inhibitors used in the clinic. In all, the work highlights the potential of this platform to rapidly assess MOA of new antibacterial compounds.


Subject(s)
Anti-Bacterial Agents , DNA Gyrase , Escherichia coli , Topoisomerase II Inhibitors , Topoisomerase II Inhibitors/pharmacology , DNA Gyrase/metabolism , DNA Gyrase/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Transcription, Genetic/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests
3.
Sci Rep ; 14(1): 9150, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644364

ABSTRACT

Oral malignancies continue to have severe morbidity with less than 50% long-term survival despite the advancement in the available therapies. There is a persisting demand for new approaches to establish more efficient strategies for their treatment. In this regard, the human topoisomerase II (topoII) enzyme is a validated chemotherapeutics target, as topoII regulates vital cellular processes such as DNA replication, transcription, recombination, and chromosome segregation in cells. TopoII inhibitors are currently used to treat some neoplasms such as breast and small cells lung carcinomas. Additionally, topoII inhibitors are under investigation for the treatment of other cancer types, including oral cancer. Here, we report the therapeutic effect of a tetrahydroquinazoline derivative (named ARN21934) that preferentially inhibits the alpha isoform of human topoII. The treatment efficacy of ARN21934 has been evaluated in 2D cell cultures, 3D in vitro systems, and in chick chorioallantoic membrane cancer models. Overall, this work paves the way for further preclinical developments of ARN21934 and possibly other topoII alpha inhibitors of this promising chemical class as a new chemotherapeutic approach for the treatment of oral neoplasms.


Subject(s)
DNA Topoisomerases, Type II , Squamous Cell Carcinoma of Head and Neck , Topoisomerase II Inhibitors , Humans , DNA Topoisomerases, Type II/metabolism , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Cell Line, Tumor , Animals , Quinazolines/pharmacology , Quinazolines/therapeutic use , Cell Proliferation/drug effects , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Chick Embryo
4.
Bioorg Chem ; 147: 107314, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581967

ABSTRACT

The identification of novel 4-hydroxy-2-quinolone-3-carboxamide antibacterials with improved properties is of great value for the control of antibiotic resistance. In this study, a series of N-heteroaryl-substituted 4-hydroxy-2-quinolone-3-carboxamides were developed using the bioisosteric replacement strategy. As a result of our research, we discovered the two most potent GyrB inhibitors (WBX7 and WBX18), with IC50 values of 0.816 µM and 0.137 µM, respectively. Additional antibacterial activity screening indicated that WBX18 possesses the best antibacterial activity against MRSA, VISA, and VRE strains, with MIC values rangingbetween0.5and 2 µg/mL, which was 2 to over 32 times more potent than that of vancomycin. In vitro safety and metabolic stability, as well as in vivo pharmacokinetics assessments revealed that WBX18 is non-toxic to HUVEC and HepG2, metabolically stable in plasma and liver microsomes (mouse), and displays favorable in vivo pharmacokinetic properties. Finally, docking studies combined with molecular dynamic simulation showed that WBX18 could stably fit in the active site cavity of GyrB.


Subject(s)
Anti-Bacterial Agents , DNA Gyrase , Microbial Sensitivity Tests , Topoisomerase II Inhibitors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Humans , DNA Gyrase/metabolism , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/chemical synthesis , Structure-Activity Relationship , Animals , Molecular Structure , Dose-Response Relationship, Drug , Mice , Hep G2 Cells , Molecular Docking Simulation , Microsomes, Liver/metabolism , Microsomes, Liver/chemistry
5.
ACS Infect Dis ; 10(4): 1097-1115, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38564341

ABSTRACT

Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.


Subject(s)
DNA Topoisomerase IV , Mycobacterium tuberculosis , DNA Topoisomerase IV/genetics , Fluoroquinolones/pharmacology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , DNA/metabolism , Mycobacterium tuberculosis/genetics
6.
J Clin Invest ; 134(10)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451729

ABSTRACT

Development of effective strategies to manage the inevitable acquired resistance to osimertinib, a third-generation EGFR inhibitor for the treatment of EGFR-mutant (EGFRm) non-small cell lung cancer (NSCLC), is urgently needed. This study reports that DNA topoisomerase II (Topo II) inhibitors, doxorubicin and etoposide, synergistically decreased cell survival, with enhanced induction of DNA damage and apoptosis in osimertinib-resistant cells; suppressed the growth of osimertinib-resistant tumors; and delayed the emergence of osimertinib-acquired resistance. Mechanistically, osimertinib decreased Topo IIα levels in EGFRm NSCLC cells by facilitating FBXW7-mediated proteasomal degradation, resulting in induction of DNA damage; these effects were lost in osimertinib-resistant cell lines that possess elevated levels of Topo IIα. Increased Topo IIα levels were also detected in the majority of tissue samples from patients with NSCLC after relapse from EGFR tyrosine kinase inhibitor treatment. Enforced expression of an ectopic TOP2A gene in sensitive EGFRm NSCLC cells conferred resistance to osimertinib, whereas knockdown of TOP2A in osimertinib-resistant cell lines restored their susceptibility to osimertinib-induced DNA damage and apoptosis. Together, these results reveal an essential role of Topo IIα inhibition in mediating the therapeutic efficacy of osimertinib against EGFRm NSCLC, providing scientific rationale for targeting Topo II to manage acquired resistance to osimertinib.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , DNA Topoisomerases, Type II , Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms , Topoisomerase II Inhibitors , Humans , Acrylamides/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/enzymology , Aniline Compounds/pharmacology , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/enzymology , Lung Neoplasms/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Cell Line, Tumor , Topoisomerase II Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Animals , Mice , Mutation , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Drug Synergism , DNA Damage , Piperazines/pharmacology , Etoposide/pharmacology , Xenograft Model Antitumor Assays
7.
J Enzyme Inhib Med Chem ; 39(1): 2311818, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38488131

ABSTRACT

In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2H)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage via direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles 5b and 5e in addition to 4-(4-chlorophenyl)imidazoles 5h and 5j would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds 5b and 5h against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than doxorubicin, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.


Subject(s)
Antineoplastic Agents , Topoisomerase II Inhibitors , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Structure-Activity Relationship , Intercalating Agents/pharmacology , Thiones/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Imidazoles/pharmacology , DNA , Apoptosis , Molecular Docking Simulation , DNA Topoisomerases, Type II/metabolism , Cell Proliferation
8.
Bioorg Chem ; 146: 107300, 2024 May.
Article in English | MEDLINE | ID: mdl-38522391

ABSTRACT

In the present study, an intermediate namely 2-(3-bromopropylamino)-3-chloronaphthalene-1,4-dione was initially synthesized via the nucleophilic addition-elimination reaction between 2,3-dichloro-1,4-naphthoquinone and 3-bromo-1-aminopropane. Then a coupling reaction between the intermediate and piperazine derivatives yielded a number of 1,4-naphthoquinone derivatives. Spectroscopic analysis successfully characterized the products that were obtained in good yields. In vitro antibacterial properties of the compounds were examined against different bacterial strains. In vitro antibacterial properties of the compounds were examined against the bacterial strains S. Aureus, E. Faecalis, E. Coli and P. Aeruginosa. While compound 9 was found to be effective against all bacterial strains used, compound 12 was active against three strains and compounds 10 and 11 were effective against the two. None of the compounds are effective against C. albicans strain. In silico molecular docking studies revealed that all compounds had docking scores comparable to the antibacterial drugs ciprofloxacin and gentamicin and might be considered as DNA gyrase B inhibitors. Molecular dynamics simulations were also conducted for a better understanding of the stability and the selected docked complexes. Additionally, the drug similarity of the synthesized compounds and ADMET characteristics were examined in conjunction with the antibiotic ciprofloxacin, and drug potentials were then evaluated. Compatible predictions were found with the drug similarity and ADMET parameters.


Subject(s)
Escherichia coli , Naphthoquinones , Staphylococcus aureus , Molecular Docking Simulation , Anti-Bacterial Agents/chemistry , Ciprofloxacin/pharmacology , Bacteria , Topoisomerase II Inhibitors/pharmacology , Microbial Sensitivity Tests
9.
Bioorg Chem ; 145: 107223, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387399

ABSTRACT

Herein, we envisioned the design and synthesis of novel pyrazolopyrimidines (confirmed by elemental analysis, 1H and 13C NMR, and mass spectra) as multitarget-directed drug candidates acting as EGFR/TOPO II inhibitors, DNA intercalators, and apoptosis inducers. The target diphenyl-tethered pyrazolopyrimidines were synthesized starting from the reaction of phenyl hydrazine and ethoxymethylenemalononitrile to give aminopyrazole-carbonitrile 2. The latter hydrolysis with NaOH and subsequent reaction with 4-chlorobenzaldhyde afforded the corresponding pyrazolo[3,4-d]pyrimidin-4-ol 4. Chlorination of 4 with POCl3 and sequential reaction with different amines afforded the target compounds in good yields (up to 73 %). The growth inhibition % of the new derivatives (6a-m) was investigated against different cancer and normal cells and the IC50 values of the most promising candidates were estimated for HNO97, MDA-MB-468, FaDu, and HeLa cancer cells. The frontier derivatives (6a, 6i, 6k, 6l, and 6m) were pursued for their EGFR inhibitory activity. Compound 6l decreased EGFR protein concentration by a 6.10-fold change, compared to imatinib as a reference standard. On the other side, compounds (6a, 6i, 6k, 6l, and 6m) underwent topoisomerase II (TOPO II) inhibitory assay. In particular, compounds 6a and 6l exhibited IC50s of 17.89 and 19.39 µM, respectively, surpassing etoposide with IC50 of 20.82 µM. Besides, the DNA fragmentation images described the great potential of both candidates 6a and 6l in inducing DNA degradation at lower concentrations compared to etoposide and doxorubicin. Moreover, compound 6l, with the most promising EGFR/TOPO II inhibition and DNA intercalation, was selected for further investigation for its apoptosis induction ability by measuring caspases 3, 7, 8, and 9, Bax, p53, MMP2, MMP9, and BCL-2 proteins. Additionally, molecular docking was used to explain the SAR results based on the differences in the molecular features of the investigated congeners and the target receptors' topology.


Subject(s)
Antineoplastic Agents , Biphenyl Compounds , Humans , Molecular Structure , Structure-Activity Relationship , Molecular Docking Simulation , Antineoplastic Agents/chemistry , Etoposide/pharmacology , DNA Topoisomerases, Type II/metabolism , Cell Proliferation , Topoisomerase II Inhibitors , Apoptosis , ErbB Receptors/metabolism , DNA , Drug Screening Assays, Antitumor
10.
PLoS Genet ; 20(2): e1011164, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38416769

ABSTRACT

TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines (AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone Mitoxantrone (MTX). It is unclear whether women would experience the same adverse effects from all drugs in this class, or if specific drugs would be preferable for certain individuals based on their cardiotoxicity risk profile. To investigate this, we studied the effects of treatment of DOX, DNR, EPI, MTX, and an unrelated monoclonal antibody Trastuzumab (TRZ) on iPSC-derived cardiomyocytes (iPSC-CMs) from six healthy females. All TOP2i induce cell death at concentrations observed in cancer patient serum, while TRZ does not. A sub-lethal dose of all TOP2i induces limited cellular stress but affects calcium handling, a function critical for cardiomyocyte contraction. TOP2i induce thousands of gene expression changes over time, giving rise to four distinct gene expression response signatures, denoted as TOP2i early-acute, early-sustained, and late response genes, and non-response genes. There is no drug- or AC-specific signature. TOP2i early response genes are enriched in chromatin regulators, which mediate AC sensitivity across breast cancer patients. However, there is increased transcriptional variability between individuals following AC treatments. To investigate potential genetic effects on response variability, we first identified a reported set of expression quantitative trait loci (eQTLs) uncovered following DOX treatment in iPSC-CMs. Indeed, DOX response eQTLs are enriched in genes that respond to all TOP2i. Next, we identified 38 genes in loci associated with AC toxicity by GWAS or TWAS. Two thirds of the genes that respond to at least one TOP2i, respond to all ACs with the same direction of effect. Our data demonstrate that TOP2i induce thousands of shared gene expression changes in cardiomyocytes, including genes near SNPs associated with inter-individual variation in response to DOX treatment and AC-induced cardiotoxicity.


Subject(s)
Anthracyclines , Cardiotoxicity , Humans , Female , Anthracyclines/adverse effects , Anthracyclines/metabolism , Cardiotoxicity/genetics , Cardiotoxicity/metabolism , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/metabolism , Topoisomerase II Inhibitors/metabolism , Topoisomerase II Inhibitors/pharmacology , Doxorubicin/adverse effects , Doxorubicin/metabolism , Mitoxantrone/adverse effects , Mitoxantrone/metabolism , Myocytes, Cardiac/metabolism , Daunorubicin/metabolism , Daunorubicin/pharmacology , Epirubicin/metabolism , Epirubicin/pharmacology , DNA Topoisomerases, Type II/genetics , Gene Expression
11.
Bioorg Chem ; 144: 107158, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301427

ABSTRACT

A new series of pyranopyrazole-based derivatives were designed and synthesized. The synthesized compounds were assessed for their cytotoxic efficacy against A549 human lung carcinoma and MCF-7 human breast carcinoma cell lines. Three compounds (1b, 4b, and 7b) exhibited 1.3- to 2.3-fold more antiproliferative activity than that of doxorubicin against the A549 cell line. In comparison to doxorubicin, compounds 1d and 3b were 4.1- and 1.04-fold, respectively more powerful against MCF-7 cancer cells. All the synthesized compounds were found to be more selective toward A549 cancer cells than the normal human fibroblast BJ cells. Of interest, compounds 1b and 7b exhibited promising cytotoxicity and SIs of 27.72 and 25.30, respectively, towards A549 cancer cells, higher than that of doxorubicin (SI 4.81). The most potent compounds 1b, 1d, 3b, 4b, and 7b were then subjected to in vitro Topo II inhibition assay. They showed IC50 values in the range of 2.07 to 8.86 µM. Of particular interest, compound 7b (IC50 = 2.07 µM), exhibited higher Topo II inhibitory activity than that of doxorubicin (IC50 = 2.56 µM). The significant Topo II inhibition of compound 7b was explained by molecular docking simulations into the Topo II active site. Compound 7b halted the cell cycle in the S phase in A549 cancer cells. It induced total apoptosis and necrosis of 20.73- and 4-fold, respectively, greater than the control. This evidence was supported by a 3.59-fold increase in the level of apoptotic caspase-9 and a remarkable elevation of the Bax/BCL-2 ratio. The physiochemical parameters of compound 7b were aligned with Lipinski's rule of five.


Subject(s)
Antineoplastic Agents , Topoisomerase II Inhibitors , Humans , Molecular Structure , Structure-Activity Relationship , Cell Line, Tumor , Molecular Docking Simulation , Antineoplastic Agents/chemistry , Doxorubicin/pharmacology , Apoptosis , Cell Proliferation , Drug Screening Assays, Antitumor
12.
Nucleic Acids Res ; 52(8): 4151-4166, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38340348

ABSTRACT

In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53. Herein, we report that these DNA intercalators impact chromatin biology by interfering with the chromatin stability of RNA polymerases I, II and III. These three compounds have the capacity to induce degradation of RNA polymerase II and they simultaneously enable the trapping of Topoisomerases TOP2A and TOP2B on the chromatin. In addition, BMH-21 also acts as a catalytic inhibitor of Topoisomerase II, resembling Aclarubicin. Moreover, BMH-21 induces chromatin trapping of the histone chaperone FACT and propels accumulation of Z-DNA and histone eviction, similarly to Aclarubicin and CBL0137. These DNA intercalators have a cumulative impact on general transcription machinery by inducing accumulation of topological defects and impacting nuclear chromatin. Therefore, their cytotoxic capabilities may be the result of compounding deleterious effects on chromatin homeostasis.


Subject(s)
Chromatin , DNA Topoisomerases, Type II , Intercalating Agents , Poly-ADP-Ribose Binding Proteins , RNA Polymerase II , Chromatin/metabolism , Intercalating Agents/pharmacology , Intercalating Agents/chemistry , DNA Topoisomerases, Type II/metabolism , RNA Polymerase II/metabolism , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , DNA-Binding Proteins/metabolism , High Mobility Group Proteins/metabolism , High Mobility Group Proteins/genetics , Histones/metabolism , Topoisomerase II Inhibitors/pharmacology , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , DNA Damage , DNA/metabolism , DNA/chemistry , RNA Polymerase I/metabolism , RNA Polymerase I/antagonists & inhibitors , RNA Polymerase III/metabolism , Transcription, Genetic/drug effects , Carbazoles , Diketopiperazines
13.
J Mol Model ; 30(1): 22, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170229

ABSTRACT

CONTEXT: It is well known that antibiotic resistance is a major health hazard. To eradicate antibiotic-resistant bacterial infections, it is essential to find a novel antibacterial agent. Hence, in this study, a quantitative structure-activity relationship (QSAR) model was developed using 43 DNA gyrase inhibitors, and 700 natural compounds were screened for their antibacterial properties. Based on molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, the top three leads viz., apigenin-4'-glucoside, 8-deoxygartanin, and cryptodorine were selected and structurally optimized using density functional theory (DFT) studies. The optimized structures were redocked, and molecular dynamic (MD) simulations were performed. Binding energies were calculated by molecular mechanics/Poisson-Boltzmann surface area solvation (MM-PBSA). Based on the above studies, apigenin-4'-glucoside was identified as a potent antibacterial lead. Further in vitro confirmation studies were performed using the plant Lawsonia inermis containing apigenin-4'-glucoside to confirm the antibacterial activity. METHODS: For QSAR modeling, 2D descriptors were calculated by PaDEL-Descriptors v2.21 software, and the model was developed using the DTClab QSAR tool. Docking was performed using PyRx v0.8 software. ORCA v5.0.1 computational package was used to optimize the structures. The job type used in optimization was equilibrium structure search using the DFT hybrid functional ORCA method B3LYP. The basis set was 6-311G (3df, 3pd) plus four polarization functions for all atoms. Accurate docking was performed for optimized leads using the iGEMDOCK v2.1 tool with a genetic algorithm by 10 solutions each of 80 generations. Molecular dynamic simulations were performed using GROMACS 2020.04 software with CHARMM36 all-atom force field.


Subject(s)
Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Molecular Docking Simulation , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Apigenin/pharmacology , Anti-Bacterial Agents/pharmacology , DNA Gyrase/chemistry
14.
Eur J Med Chem ; 265: 116107, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38171147

ABSTRACT

Unique benzopyridone cyanoacetates (BCs) as new type of promising broad-spectrum antibacterial candidates were discovered with large potential to combat the lethal multidrug-resistant bacterial infections. Many prepared BCs showed broad antibacterial spectrum with low MIC values against the tested strains. Some highly active BCs exhibited rapid sterilization capacity, low resistant trend and good predictive pharmacokinetic properties. Furthermore, the highly active sodium BCs (NaBCs) displayed low hemolysis and cytotoxicity, and especially octyl NaBC 5g also showed in vivo potent anti-infective potential and appreciable pharmacokinetic profiles. A series of preliminary mechanistic explorations indicated that these active BCs could effectively eliminate bacterial biofilm and destroy membrane integrity, thus resulting in the leakage of bacterial cytoplasm. Moreover, their unique structures might further bind to intracellular DNA, DNA gyrase and topoisomerase IV through various direct noncovalent interactions to hinder bacterial reproduction. Meanwhile, the active BCs also induced bacterial oxidative stress and metabolic disturbance, thereby accelerating bacterial apoptosis. These results provided a bright hope for benzopyridone cyanoacetates as potential novel multitargeting broad-spectrum antibacterial candidates to conquer drug resistance.


Subject(s)
Anti-Bacterial Agents , Topoisomerase II Inhibitors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , DNA Gyrase/metabolism , DNA Topoisomerase IV , Microbial Sensitivity Tests , Topoisomerase II Inhibitors/pharmacology , Pyridones/chemistry , Pyridones/pharmacology , Nitriles/chemistry , Nitriles/pharmacology
15.
J Enzyme Inhib Med Chem ; 39(1): 2302920, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38221785

ABSTRACT

Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research. This study assesses the efficacy of three symmetrically substituted carbazole derivatives: 2,7-Di(2-furyl)-9H-carbazole (27a), 3,6-Di(2-furyl)-9H-carbazole (36a), and 3,6-Di(2-thienyl)-9H-carbazole (36b) - as anticancer agents. Among investigated carbazole derivatives, compound 3,6-di(2-furyl)-9H-carbazole bearing two furan moieties emerged as a novel catalytic inhibitor of Topo II. Notably, 3,6-di(2-furyl)-9H-carbazole effectively selectively inhibited the relaxation and decatenation activities of Topo IIα, with minimal effects on the IIß isoform. These findings underscore the potential of compound 3,6-Di(2-furyl)-9H-carbazole as a promising lead candidate warranting further investigation in the realm of anticancer drug development.


Subject(s)
Antineoplastic Agents , Topoisomerase II Inhibitors , Humans , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Carbazoles/pharmacology , Carbazoles/chemistry , DNA Topoisomerases, Type II , Apoptosis
16.
Eur J Med Chem ; 265: 116103, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38176358

ABSTRACT

In our pursuit of developing novel analogs of anthracyclines with enhanced antitumor efficacy and safety, we have designed a synthesis scheme for 4,11-dihydroxy-5,10-dioxocyclopenta[b]anthracene-2-carboxamides. These newly synthesized compounds exhibit remarkable antiproliferative potency against various mammalian tumor cell lines, including those expressing activated mechanisms of multidrug resistance. The structure of the diamine moiety in the carboxamide side chain emerges as a critical determinant for anticancer activity and interaction with key targets such as DNA, topoisomerase 1, and ROS induction. Notably, the introduced modification to the doxorubicin structure results in significantly increased lipophilicity, cellular uptake, and preferential distribution in lysosomes. Consequently, while maintaining an impact on anthracyclines targets, these novel derivatives also demonstrate the potential to induce cytotoxicity through pathways associated with lysosomes. In summary, derivatives of cyclic diamines, particularly 3-aminopyrrolidine, can be considered a superior choice compared to aminosugars for incorporation into natural and semi-synthetic anthracyclines or new anthraquinone derivatives, aiming to circumvent efflux-mediated drug resistance.


Subject(s)
Antineoplastic Agents , Animals , Antineoplastic Agents/chemistry , Anthraquinones/chemistry , Cyclopentanes , Drug Screening Assays, Antitumor , Antibiotics, Antineoplastic/pharmacology , Anthracyclines , Topoisomerase II Inhibitors/pharmacology , Structure-Activity Relationship , Mammals/metabolism
17.
Future Med Chem ; 16(3): 205-220, 2024 02.
Article in English | MEDLINE | ID: mdl-38230640

ABSTRACT

Aim: This study was designed to synthesize a novel series of terpyridines with potential antibacterial properties, targeting multidrug resistance. Materials & methods: Terpyridines (4a-h and 6a-c) were synthesized via a one-pot multicomponent reaction using 2,6-diacetylpyridines, benzaldehyde derivatives and malononitrile or ethyl 2-cyanoacetate. The reactions, conducted under grinding conditions with glacial acetic acid, produced high-yield compounds, confirmed by spectroscopic data. Results: The synthesized terpyridines exhibited potent antibacterial activity. Notably, compounds 4d and 4h demonstrated significant inhibition zones against Staphylococcus aureus and Bacillus subtilis, outperforming ciprofloxacin. Conclusion: Molecular docking studies highlighted compounds 4d, 4h and 6c as having strong binding affinity to DNA gyrase B, correlating with their robust antibacterial activity, suggesting their potential as effective agents against multidrug-resistant bacterial strains.


Subject(s)
Anti-Bacterial Agents , Staphylococcus aureus , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , DNA Gyrase/metabolism , Microbial Sensitivity Tests , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Structure-Activity Relationship , Molecular Structure
18.
Chemistry ; 30(19): e202303796, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38217886

ABSTRACT

Cystobactamids are aromatic oligoamides that exert their natural antibacterial properties by inhibition of bacterial gyrases. Such aromatic oligoamides were proposed to inhibit α-helix-mediated protein-protein interactions and may serve for specific recognition of DNA. Based on this suggestion, we designed new derivatives that have duplicated cystobactamid triarene units as model systems to decipher the specific binding mode of cystobactamids to double stranded DNA. Solution NMR analyses revealed that natural cystobactamids as well as their elongated analogues show an overall bent shape at their central aliphatic unit, with an average CX-CY-CZ angle of ~110 degrees. Our finding is corroborated by the target-bound structure of close analogues, as established by cryo-EM very recently. Cystobactamid CN-861-2 binds directly to the bacterial gyrase with an affinity of 9 µM, and also exhibits DNA-binding properties with specificity for AT-rich DNA. Elongation/dimerization of the triarene subunit of native cystobactamids is demonstrated to lead to an increase in DNA binding affinity. This implies that cystobactamids' gyrase inhibitory activity necessitates not just interaction with the gyrase itself, but also with DNA via their triarene unit.


Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Amides/chemistry , DNA , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry
19.
Angew Chem Int Ed Engl ; 63(17): e202317187, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38231130

ABSTRACT

DNA topoisomerases are attractive targets for anticancer agents. Dual topoisomerase I/II inhibitors are particularly appealing due to their reduced rates of resistance. A number of therapeutically relevant topoisomerase inhibitors are bacterial natural products. Mining the untapped chemical diversity encoded by soil microbiomes presents an opportunity to identify additional natural topoisomerase inhibitors. Here we couple metagenome mining, bioinformatic structure prediction algorithms, and chemical synthesis to produce the dual topoisomerase inhibitor tapcin. Tapcin is a mixed p-aminobenzoic acid (PABA)-thiazole with a rare tri-thiazole substructure and picomolar antiproliferative activity. Tapcin reduced colorectal adenocarcinoma HT-29 cell proliferation and tumor volume in mouse hollow fiber and xenograft models, respectively. In both studies it showed similar activity to the clinically used topoisomerase I inhibitor irinotecan. The study suggests that the interrogation of soil microbiomes using synthetic bioinformatic natural product methods has the potential to be a rewarding strategy for identifying potent, biomedically relevant, antiproliferative agents.


Subject(s)
Antineoplastic Agents , Biological Products , Humans , Mice , Animals , Topoisomerase I Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , DNA Topoisomerases, Type I/metabolism , Biological Products/pharmacology , DNA Topoisomerases, Type II/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Computational Biology , Soil , Thiazoles , Cell Line, Tumor
20.
Toxicol Sci ; 198(2): 288-302, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38290791

ABSTRACT

Anthracyclines, such as doxorubicin (adriamycin), daunorubicin, or epirubicin, rank among the most effective agents in classical anticancer chemotherapy. However, cardiotoxicity remains the main limitation of their clinical use. Topoisomerase IIß has recently been identified as a plausible target of anthracyclines in cardiomyocytes. We examined the putative topoisomerase IIß selective agent XK469 as a potential cardioprotective and designed several new analogs. In our experiments, XK469 inhibited both topoisomerase isoforms (α and ß) and did not induce topoisomerase II covalent complexes in isolated cardiomyocytes and HL-60, but induced proteasomal degradation of topoisomerase II in these cell types. The cardioprotective potential of XK469 was studied on rat neonatal cardiomyocytes, where dexrazoxane (ICRF-187), the only clinically approved cardioprotective, was effective. Initially, XK469 prevented daunorubicin-induced toxicity and p53 phosphorylation in cardiomyocytes. However, it only partially prevented the phosphorylation of H2AX and did not affect DNA damage measured by Comet Assay. It also did not compromise the daunorubicin antiproliferative effect in HL-60 leukemic cells. When administered to rabbits to evaluate its cardioprotective potential in vivo, XK469 failed to prevent the daunorubicin-induced cardiac toxicity in either acute or chronic settings. In the following in vitro analysis, we found that prolonged and continuous exposure of rat neonatal cardiomyocytes to XK469 led to significant toxicity. In conclusion, this study provides important evidence on the effects of XK469 and its combination with daunorubicin in clinically relevant doses in cardiomyocytes. Despite its promising characteristics, long-term treatments and in vivo experiments have not confirmed its cardioprotective potential.


Subject(s)
Anthracyclines , Quinoxalines , Topoisomerase II Inhibitors , Rats , Animals , Rabbits , Topoisomerase II Inhibitors/toxicity , Topoisomerase II Inhibitors/therapeutic use , Anthracyclines/toxicity , Anthracyclines/therapeutic use , Cardiotoxicity , Daunorubicin/toxicity , Daunorubicin/therapeutic use , Doxorubicin/toxicity , Antibiotics, Antineoplastic/toxicity , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/therapeutic use , DNA Damage
SELECTION OF CITATIONS
SEARCH DETAIL
...