Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Genet Genomics ; 298(2): 455-472, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36604348

ABSTRACT

The PumAB type-II toxin-antitoxin (TA) system is encoded by pumAB genes that are organized into an operon. This system is encoded by the pUM505 plasmid, isolated from a Pseudomonas aeruginosa clinical strain. The pumA gene encodes a putative RelE toxin protein (toxic component), whereas the pumB gene encodes a putative HTH antitoxin protein. The expression of the PumAB system in Escherichia coli confers plasmid stability. In addition, PumA toxin overexpression in P. aeruginosa possesses the capability to increase bacterial virulence, an effect that is neutralized by the PumB antitoxin. The aim of this study was to establish the mechanism of regulation of the PumAB toxin-antitoxin system from pUM505. By an in silico analysis of the putative regulatory elements, we identified two putative internal promoters, PpumB and PpumB-AlgU (in addition to the already reported PpumAB), located upstream of pumB. By RT-qPCR assays, we determined that the pumAB genes are transcribed differentially, in that the mRNA of pumB is more abundant than the pumA transcript. We also observed that pumB could be expressed individually and that its mRNA levels decreased under oxidative stress, during individual expression as well as co-expression of pumAB. However, under stressful conditions, the pumA mRNA levels were not affected. This suggests the negative regulation of pumB by stressful conditions. The PumB purified protein was found to bind to a DNA region located between the PpumAB and the pumA coding region, and PumA participates in PumB binding, suggesting that a PumA-PumB complex co-regulates the transcription of the pumAB operon. Interestingly, the pumA mRNA levels decreased after incubation in vitro with PumB protein. This effect was repressed by ribonuclease inhibitors, suggesting that PumB could function as an RNAse toward the mRNA of the toxin. Taken together, we conclude that the PumAB TA system possesses multiple mechanisms to regulate its expression, as well as that the PumB antitoxin generates a decrease in the mRNA toxin levels, suggesting an RNase function. Our analysis provides new insights into the understanding of the control of TA systems from mobile plasmid-encoded genes from a human pathogen.


Subject(s)
Antitoxins , Bacterial Toxins , Toxin-Antitoxin Systems , Humans , Antitoxins/genetics , Antitoxins/metabolism , Bacterial Toxins/genetics , Toxin-Antitoxin Systems/genetics , Apoptosis Regulatory Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , RNA, Messenger , Ribonucleases/genetics , Ribonucleases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
2.
FEMS Microbiol Lett ; 366(1)2019 01 01.
Article in English | MEDLINE | ID: mdl-30476068

ABSTRACT

The toxin-antitoxin (TA) systems are operons involved in the formation of persistent cells and in stress situations in microorganism. TA systems are widely distributed in Mycobacterium tuberculosis (MTB). The objective of this study was to determine the distribution and variability of protein sequences of TA systems in seven MTB lineages. Protein prediction on 73 genomes of different lineage was made using Prodigal, and profile hidden Markov models (PHMMs) of 225 reference TA proteins were constructed with HMMER. An homology search was made comparing the predicted proteins to PHMMs. Consecutive proteins that matched PHMMs (forming an operon) were selected. Thereafter, clustering of orthologous genes was made for further mutation scanning through multiple alignments. All proteins found belong to TA types II and IV, and 45 proteins were found completely conserved. Six uncharacterized antitoxins homologous to VapB11, VapB5, VapB45, VapB13, ParD1 and RelB were found. Multiple alignments revealed differences among lineages with specific mutations suitable for genotyping. Significant changes in amino acid sequences caused by frameshift mutations were found in 46 TA proteins.


Subject(s)
Genetic Variation , Mycobacterium tuberculosis/genetics , Toxin-Antitoxin Systems/genetics , Genome, Bacterial/genetics , Genotype , Markov Chains , Mutation , Mycobacterium tuberculosis/metabolism , Sequence Analysis, DNA , Species Specificity
3.
Microb Pathog ; 112: 259-268, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28970172

ABSTRACT

Pseudomonas aeruginosa plasmid pUM505 possesses a pathogenicity island that contains the pumAB genes that encode products with sequence similarity to Toxin-Antitoxin (TA) modules. RT-PCR assays on the overlapping regions of the pumAB genes generated a bicistronic messenger RNA, suggesting that they form an operon. When the pumAB genes were cloned into the pJET vector, recombinant plasmid pJET-pumAB was maintained under nonselective conditions in Escherichia coli cells after six daily subcultures, whereas pJET without pumAB genes was lost. These data indicate that pumAB genes confer post-segregational plasmid stability. In addition, overexpression of the PumA protein in the E. coli BL21 strain resulted in a significant growth inhibition, while BL21 co-expressing the PumA and PumB proteins did not show growth inhibition. These results indicate that pumAB genes encode a TA system where the PumB protein counters the toxic effects of the PumA toxin. Furthermore, P. aeruginosa PAO1 transformants with the pumA gene increased Caenorhabditis elegans and mouse mortality rate and improved mouse organ invasion, effects neutralized by the PumB protein. Moreover, purified recombinant His-PumA protein decreased the viability of C. elegans, indicating that the PumA protein could acts as a toxin. These results indicate that PumA has the potential to promoter the PAO1 virulence against C. elegans and mice when is expressed in absence of PumB. This is the first description, to our knowledge, of a plasmid-encoded TA system that confers plasmid stability and encoded a toxin with the possible ability to increase the P. aeruginosa virulence.


Subject(s)
Bacterial Toxins/genetics , Bacterial Toxins/toxicity , Genes, Bacterial/genetics , Plasmids/genetics , Pseudomonas aeruginosa/genetics , Toxin-Antitoxin Systems/genetics , Virulence Factors/genetics , Animals , Antitoxins/genetics , Bacterial Proteins/genetics , Base Sequence , Caenorhabditis elegans/drug effects , Disease Models, Animal , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/growth & development , Gene Expression Regulation, Bacterial , Genetic Vectors , Male , Mice , Mice, Inbred BALB C , Operon/genetics , Pseudomonas Infections/microbiology , Pseudomonas Infections/mortality , Pseudomonas aeruginosa/pathogenicity , RNA, Bacterial/analysis , Recombinant Proteins/genetics , Sequence Analysis , Virulence/genetics
4.
J Glob Antimicrob Resist ; 9: 68-73, 2017 06.
Article in English | MEDLINE | ID: mdl-28419869

ABSTRACT

OBJECTIVES: This study aimed to describe the characteristics of clinical isolates of extended-spectrum ß-lactamase (ESBL)-producing enterobacteria (EPE) in Uruguay's paediatric hospital. METHODS: ESBLs, qnr alleles and aac(6')-Ib-cr were sought and characterised in EPE isolated between March 2010 and March 2012. Transfer of resistance determinants was assessed by conjugation. Incompatibility (Inc) groups, plasmid toxin-antitoxin systems (TAS) and plasmid size were determined in transconjugants. Clonality was analysed by pulsed-field gel electrophoresis. Multilocus sequence typing was done for ESBL-producing Klebsiella pneumoniae. RESULTS: A total of 77 EPE isolates were characterised, comprising 43% K. pneumoniae, 19.5% Serratia marcescens, 19.5% Escherichia coli, 17% Enterobacter cloacae and 1% Klebsiella oxytoca. ESBLs belonged mainly to the blaCTX-M family (69.6%) [blaCTX-M-15 (45%) and blaCTX-M-2 (31%)]. The aac(6')-Ib-cr/qnrB duplex was the most frequently detected plasmid-mediated quinolone resistance mechanism; this association was detected in K. pneumoniae harbouring blaCTX-M-15. Transconjugants were obtained for 71% of the EPE. Amongst transconjugants, certain combinations were found between ESBLs and Inc group, e.g. IncA/C-blaCTX-M-2, IncHI1/HI2-blaCTX-M-9 and IncHI1/HI2-blaSHV-12. In addition, the combination ccdAB-blaCTX-M-15 was also found. K. pneumoniae isolates harbouring blaCTX-M-15/aac(6')-Ib-cr/qnrB showed allodemic behaviour, with a predominance of ST14, ST45 and ST48. CONCLUSIONS: In this study, epidemiological changes in ESBL distribution could be explained by the spread of K. pneumoniae harbouring blaCTX-M-15/aac(6')-Ib-cr/qnrB, encoded mainly on conjugative plasmids featuring ccdAB TAS. Since reports of TAS in K. pneumoniae plasmids are scarce, new strategies are needed to combat intrinsic selection pressure exerted by the association, in conjugative plasmids, of resistance mechanisms with TAS.


Subject(s)
Acetyltransferases/genetics , Bacterial Proteins/genetics , Gene Transfer, Horizontal , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Plasmids/classification , beta-Lactamases/genetics , Conjugation, Genetic , Hospitals, Pediatric , Humans , Klebsiella Infections/microbiology , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/isolation & purification , Multilocus Sequence Typing , Toxin-Antitoxin Systems/genetics , Uruguay/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL