Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.103
Filter
1.
EuroIntervention ; 20(9): 579-590, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726714

ABSTRACT

BACKGROUND: Data on the performance of the latest-generation SAPIEN 3 Ultra RESILIA (S3UR) valve in patients who undergo transcatheter aortic valve replacement (TAVR) are scarce. AIMS: We aimed to assess the clinical outcomes, including valve performance, of the S3UR. METHODS: Registry data of 618 consecutive patients with S3UR and of a historical pooled cohort of 8,750 patients who had a SAPIEN 3 (S3) valve and underwent TAVR were collected. The clinical outcomes and haemodynamics, including patient-prosthesis mismatch (PPM), were compared between the 2 groups and in a propensity-matched cohort. RESULTS: The incidence of in-hospital death, vascular complications, and new pacemaker implantation was similar between the S3UR and the S3 groups (allp>0.05). However, both groups showed significant differences in the degrees of paravalvular leakage (PVL) (none-trivial: 87.0% vs 78.5%, mild: 12.5% vs 20.5%, ≥moderate: 0.5% vs 1.1%; p<0.001) and the incidence of PPM (none: 94.3% vs 85.1%, moderate: 5.2% vs 12.8%, severe: 0.5% vs 2.0%; p<0.001). The prevalence of a mean pressure gradient ≥20 mmHg was significantly lower in the S3UR group (1.6% vs 6.2%; p<0.001). Better haemodynamics were observed with the smaller 20 mm and 23 mm S3UR valves. The results were consistent in a matched cohort of patients with S3UR and with S3 (n=618 patients/group). CONCLUSIONS: The S3UR has equivalent procedural complications to the S3 but with lower rates of PVL and significantly better valve performance. The better valve performance of the S3UR, particularly in smaller valve sizes, overcomes the remaining issue of balloon-expandable valves after TAVR.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Heart Valve Prosthesis , Registries , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Transcatheter Aortic Valve Replacement/methods , Female , Male , Aged, 80 and over , Aged , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/physiopathology , Treatment Outcome , Aortic Valve/surgery , Aortic Valve/physiopathology , Aortic Valve/diagnostic imaging , Prosthesis Design , Hemodynamics , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Hospital Mortality
2.
Port J Card Thorac Vasc Surg ; 31(1): 12-16, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38743522

ABSTRACT

There has been a worldwide rapid adoption of transcatheter aortic valve replacement (TAVR) as an alternative to surgical aortic valve replacement (SAVR) for patients with severe aortic stenosis. Currently, more TAVR explants with SAVRs are performed than TAVR-in TAV. TAVR explantation is a technically hazardous procedure mainly due to significant aortic neo-endothelialization which incorporates the TAVR valve. Surgical techniques for TAVR explantation are not well established and surgeon experience at present is limited. In this manuscript, we describe our technique for surgical explantation of transcatheter aortic bioprosthesis. Familiarity with the procedure and its clinical implications is essential for all cardiac surgeons.


Subject(s)
Aortic Valve Stenosis , Bioprosthesis , Device Removal , Heart Valve Prosthesis , Transcatheter Aortic Valve Replacement , Humans , Aortic Valve/surgery , Aortic Valve/pathology , Aortic Valve Stenosis/surgery , Bioprosthesis/adverse effects , Device Removal/methods , Heart Valve Prosthesis/adverse effects , Transcatheter Aortic Valve Replacement/methods , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation
6.
JACC Cardiovasc Interv ; 17(8): 1020-1028, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38658116

ABSTRACT

BACKGROUND: Transcatheter aortic valve replacement (TAVR) is an effective and safe therapy for severe aortic stenosis. Rapid or fast pacing is required for implantation, which can be performed via a pre-existing cardiac implantable electric device (CIED). However, safety data on CIEDs for pacing in TAVR are missing. OBJECTIVES: The aim of this study was to elucidate procedural safety and feasibility of internal pacing with a CIED in TAVR. METHODS: Patients undergoing TAVR with a CIED were included in this analysis. Baseline characteristics, procedural details, and complications according to Valve Academic Research Consortium 3 (VARC-3) criteria after TAVR were compared between both groups. RESULTS: A total of 486 patients were included. Pacing was performed using a CIED in 150 patients and a transient pacemaker in 336 patients. No differences in technical success according to VARC-3 criteria or procedure duration occurred between the groups. The usage of transient pacers for pacing was associated with a significantly higher bleeding rate (bleeding type ≥2 according to VARC-3-criteria; 2.0% vs 13.1%; P < 0.01). Furthermore, impairment of the CIED appeared in 2.3% of patients after TAVR only in the group in which pacing was performed by a transient pacer, leading to surgical revision of the CIED in 1.3% of all patients when transient pacemakers were used. CONCLUSIONS: Internal pacing using a CIED is safe and feasible without differences of procedural time and technical success and might reduce bleeding rates. Furthermore, pacing using a CIED circumvents the risk of lead dislocation. Our data provide an urgent call for the use of a CIED for pacing during a TAVR procedure in general.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Cardiac Pacing, Artificial , Feasibility Studies , Hospitals, High-Volume , Pacemaker, Artificial , Transcatheter Aortic Valve Replacement , Humans , Female , Male , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Aged, 80 and over , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/physiopathology , Aortic Valve Stenosis/diagnostic imaging , Treatment Outcome , Time Factors , Aged , Risk Factors , Aortic Valve/surgery , Aortic Valve/physiopathology , Aortic Valve/diagnostic imaging , Retrospective Studies , Severity of Illness Index , Risk Assessment
9.
Catheter Cardiovasc Interv ; 103(6): 1074-1077, 2024 May.
Article in English | MEDLINE | ID: mdl-38577923

ABSTRACT

Transcatheter aortic valve implantation (TAVI) has traditionally been indicated for the treatment of aortic stenosis. However, in this case report, we describe a successful TAVI procedure in a 46-year-old male patient who had previously undergone David aortic valve-sparing aortic root replacement for type 1 aortic dissection. The patient presented with aortic valve insufficiency 4 years after the initial surgery and was subsequently treated with a 34 mm Medtronic CoreValve Evolut R prosthesis via TAVI. This case highlights the feasibility of TAVI as a viable treatment option for postoperative aortic valve insufficiency in patients with prior ascending aortic or aortic arch surgery.


Subject(s)
Aortic Dissection , Aortic Valve Insufficiency , Aortic Valve , Blood Vessel Prosthesis Implantation , Heart Valve Prosthesis , Transcatheter Aortic Valve Replacement , Humans , Male , Aortic Dissection/surgery , Aortic Dissection/diagnostic imaging , Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve Insufficiency/etiology , Aortic Valve Insufficiency/surgery , Aortic Valve Insufficiency/physiopathology , Middle Aged , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Treatment Outcome , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis Implantation/adverse effects , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Prosthesis Design , Blood Vessel Prosthesis , Aortic Aneurysm, Thoracic/surgery , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm/surgery , Aortic Aneurysm/diagnostic imaging , Aortography
10.
Catheter Cardiovasc Interv ; 103(6): 1004-1014, 2024 May.
Article in English | MEDLINE | ID: mdl-38577939

ABSTRACT

INTRODUCTION: Bicuspid aortic valve (BAV) stenosis is a complex anatomical scenario for transcatheter aortic valve implantation (TAVI). Favorable short-term clinical outcomes have been reported with TAVI in this setting, but long-term data are scarce. METHODS: We retrospectively included, in a single-center registry, patients with BAV stenosis who underwent TAVI before 2020. We compared patients treated with self-expanding valves (SEV) versus balloon-expandable valves (BEV). The primary endpoint was a composite of all-cause mortality, stroke and need for aortic valve (AV) reintervention at 3 years. Secondary endpoints included each component of the primary endpoint, cardiovascular mortality, permanent pacemaker implantation (PPI) rate, mean gradient and ≥moderate paravalvular leak (PVL) rate. RESULTS: A total of 150 consecutive patients (SEV = 83, BEV = 67) were included. No significant differences were reported between SEV and BEV groups for the primary composite endpoint (SEV 35.9% vs. BEV 32%, p = 0.66), neither for clinical secondary endpoints (all-cause mortality SEV 28.1% vs. BEV 28%, p = 0.988; cardiovascular mortality SEV 14.1% vs. BEV 20%, p = 0.399; stroke SEV 12.5% vs. BEV 6%, p = 0.342; need for AV reintervention SEV 0% vs. BEV 0%; PPI SEV 28.1% vs. BEV 24%, p = 0.620). A lower mean gradient persisted up to 3 years in the SEV group (SEV 8.8 ± 3.8 mmHg vs. BEV 10.7 ± 3.2 mmHg, p = 0.063), while no significant difference was found in the rate of ≥ moderate PVL (SEV 3/30 vs. BEV 0/25, p = 0.242). CONCLUSIONS: In this single center registry, we observed favorable 3-year clinical outcomes in nonselected BAV patients treated with different generation devices, without significant differences between patients receiving SEV or BEV.


Subject(s)
Aortic Valve Stenosis , Balloon Valvuloplasty , Bicuspid Aortic Valve Disease , Heart Valve Prosthesis , Prosthesis Design , Registries , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Transcatheter Aortic Valve Replacement/mortality , Male , Female , Retrospective Studies , Treatment Outcome , Bicuspid Aortic Valve Disease/physiopathology , Bicuspid Aortic Valve Disease/diagnostic imaging , Bicuspid Aortic Valve Disease/mortality , Bicuspid Aortic Valve Disease/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/physiopathology , Aortic Valve Stenosis/mortality , Time Factors , Aged , Balloon Valvuloplasty/adverse effects , Balloon Valvuloplasty/mortality , Aged, 80 and over , Risk Factors , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Aortic Valve/physiopathology , Aortic Valve/abnormalities , Recovery of Function , Hemodynamics , Risk Assessment
11.
Catheter Cardiovasc Interv ; 103(6): 1069-1073, 2024 May.
Article in English | MEDLINE | ID: mdl-38584521
12.
JACC Cardiovasc Interv ; 17(8): 979-988, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38658126

ABSTRACT

BACKGROUND: Symptomatic patients with severe aortic stenosis (AS) at high risk for surgical aortic valve replacement (SAVR) sustain comparable improvements in health status over 5 years after transcatheter aortic valve replacement (TAVR) or SAVR. Whether a similar long-term benefit is observed among intermediate-risk AS patients is unknown. OBJECTIVES: The purpose of this study was to assess health status outcomes through 5 years in intermediate risk patients treated with a self-expanding TAVR prosthesis or SAVR using data from the SURTAVI (Surgical Replacement and Transcatheter Aortic Valve Implantation) trial. METHODS: Intermediate-risk patients randomized to transfemoral TAVR or SAVR in the SURTAVI trial had disease-specific health status assessed at baseline, 30 days, and annually to 5 years using the Kansas City Cardiomyopathy Questionnaire (KCCQ). Health status was compared between groups using fixed effects repeated measures modelling. RESULTS: Of the 1,584 patients (TAVR, n = 805; SAVR, n = 779) included in the analysis, health status improved more rapidly after TAVR compared with SAVR. However, by 1 year, both groups experienced large health status benefits (mean change in KCCQ-Overall Summary Score (KCCQ-OS) from baseline: TAVR: 20.5 ± 22.4; SAVR: 20.5 ± 22.2). This benefit was sustained, albeit modestly attenuated, at 5 years (mean change in KCCQ-OS from baseline: TAVR: 15.4 ± 25.1; SAVR: 14.3 ± 24.2). There were no significant differences in health status between the cohorts at 1 year or beyond. Similar findings were observed in the KCCQ subscales, although a substantial attenuation of benefit was noted in the physical limitation subscale over time in both groups. CONCLUSIONS: In intermediate-risk AS patients, both transfemoral TAVR and SAVR resulted in comparable and durable health status benefits to 5 years. Further research is necessary to elucidate the mechanisms for the small decline in health status noted at 5 years compared with 1 year in both groups. (Safety and Efficacy Study of the Medtronic CoreValve® System in the Treatment of Severe, Symptomatic Aortic Stenosis in Intermediate Risk Subjects Who Need Aortic Valve Replacement [SURTAVI]; NCT01586910).


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Femoral Artery , Health Status , Heart Valve Prosthesis , Quality of Life , Recovery of Function , Severity of Illness Index , Transcatheter Aortic Valve Replacement , Humans , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/physiopathology , Female , Male , Time Factors , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Treatment Outcome , Aged , Aged, 80 and over , Risk Factors , Aortic Valve/surgery , Aortic Valve/physiopathology , Aortic Valve/diagnostic imaging , Risk Assessment , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis Implantation/adverse effects , Catheterization, Peripheral/adverse effects , Punctures , Prosthesis Design
13.
N Engl J Med ; 390(17): 1572-1583, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38588025

ABSTRACT

BACKGROUND: Among low-risk patients with severe, symptomatic aortic stenosis who are eligible for both transcatheter aortic-valve implantation (TAVI) and surgical aortic-valve replacement (SAVR), data are lacking on the appropriate treatment strategy in routine clinical practice. METHODS: In this randomized noninferiority trial conducted at 38 sites in Germany, we assigned patients with severe aortic stenosis who were at low or intermediate surgical risk to undergo either TAVI or SAVR. Percutaneous- and surgical-valve prostheses were selected according to operator discretion. The primary outcome was a composite of death from any cause or fatal or nonfatal stroke at 1 year. RESULTS: A total of 1414 patients underwent randomization (701 to the TAVI group and 713 to the SAVR group). The mean (±SD) age of the patients was 74±4 years; 57% were men, and the median Society of Thoracic Surgeons risk score was 1.8% (low surgical risk). The Kaplan-Meier estimate of the primary outcome at 1 year was 5.4% in the TAVI group and 10.0% in the SAVR group (hazard ratio for death or stroke, 0.53; 95% confidence interval [CI], 0.35 to 0.79; P<0.001 for noninferiority). The incidence of death from any cause was 2.6% in the TAVI group and 6.2% in the SAVR group (hazard ratio, 0.43; 95% CI, 0.24 to 0.73); the incidence of stroke was 2.9% and 4.7%, respectively (hazard ratio, 0.61; 95% CI, 0.35 to 1.06). Procedural complications occurred in 1.5% and 1.0% of patients in the TAVI and SAVR groups, respectively. CONCLUSIONS: Among patients with severe aortic stenosis at low or intermediate surgical risk, TAVI was noninferior to SAVR with respect to death from any cause or stroke at 1 year. (Funded by the German Center for Cardiovascular Research and the German Heart Foundation; DEDICATE-DZHK6 ClinicalTrials.gov number, NCT03112980.).


Subject(s)
Aortic Valve Stenosis , Transcatheter Aortic Valve Replacement , Aged , Female , Humans , Male , Aortic Valve/surgery , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/mortality , Heart Valve Prosthesis , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/methods , Heart Valve Prosthesis Implantation/mortality , Kaplan-Meier Estimate , Stroke/epidemiology , Stroke/etiology , Stroke/mortality , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Transcatheter Aortic Valve Replacement/methods , Transcatheter Aortic Valve Replacement/mortality , Risk Factors , Germany
15.
JACC Cardiovasc Interv ; 17(8): 1007-1016, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38573257

ABSTRACT

BACKGROUND: Data on valve reintervention after transcatheter aortic valve replacement (TAVR) or surgical aortic valve replacement (SAVR) are limited. OBJECTIVES: The authors compared the 5-year incidence of valve reintervention after self-expanding CoreValve/Evolut TAVR vs SAVR. METHODS: Pooled data from CoreValve and Evolut R/PRO (Medtronic) randomized trials and single-arm studies encompassed 5,925 TAVR (4,478 CoreValve and 1,447 Evolut R/PRO) and 1,832 SAVR patients. Reinterventions were categorized by indication, timing, and treatment. The cumulative incidence of reintervention was compared between TAVR vs SAVR, Evolut vs CoreValve, and Evolut vs SAVR. RESULTS: There were 99 reinterventions (80 TAVR and 19 SAVR). The cumulative incidence of reintervention through 5 years was higher with TAVR vs SAVR (2.2% vs 1.5%; P = 0.017), with differences observed early (≤1 year; adjusted subdistribution HR: 3.50; 95% CI: 1.53-8.02) but not from >1 to 5 years (adjusted subdistribution HR: 1.05; 95% CI: 0.48-2.28). The most common reason for reintervention was paravalvular regurgitation after TAVR and endocarditis after SAVR. Evolut had a significantly lower incidence of reintervention than CoreValve (0.9% vs 1.6%; P = 0.006) at 5 years with differences observed early (adjusted subdistribution HR: 0.30; 95% CI: 0.12-0.73) but not from >1 to 5 years (adjusted subdistribution HR: 0.61; 95% CI: 0.21-1.74). The 5-year incidence of reintervention was similar for Evolut vs SAVR (0.9% vs 1.5%; P = 0.41). CONCLUSIONS: A low incidence of reintervention was observed for CoreValve/Evolut R/PRO and SAVR through 5 years. Reintervention occurred most often at ≤1 year for TAVR and >1 year for SAVR. Most early reinterventions were with the first-generation CoreValve and managed percutaneously. Reinterventions were more common following CoreValve TAVR compared with Evolut TAVR or SAVR.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis Implantation , Postoperative Complications , Transcatheter Aortic Valve Replacement , Aged , Aged, 80 and over , Female , Humans , Male , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/physiopathology , Heart Valve Prosthesis , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/instrumentation , Postoperative Complications/surgery , Prosthesis Design , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors , Severity of Illness Index , Time Factors , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Treatment Outcome , Incidence , Retreatment
16.
Catheter Cardiovasc Interv ; 103(6): 1015-1022, 2024 May.
Article in English | MEDLINE | ID: mdl-38577931

ABSTRACT

BACKGROUND: Previous studies have documented a high rate of implantation success with the ACURATE neo2 valve, as well as a reduction in paravalvular leak (PVL) compared to its predecessor, the ACURATE neo. However, there are no studies that have reviewed and compared the long-term clinical and hemodynamic outcomes of these patients. AIMS: This study aimed to evaluate the results of the ACURATE neo transcatheter aortic valve in a real-world context, and to compare the results of the outcomes of both generations of this device (ACURATE neo and ACURATE neo2), with a specific focus on procedural success, safety, and long-term effectiveness. METHODS: A prospective study including all consecutive patients treated with the ACURATE neo device in seven hospitals was conducted (Clinical Trials Identification Number: NCT03846557). The primary endpoint consisted of a composite of adverse events, including mortality, aortic insufficiency, and other procedural complications. As the second-generation device (ACURATE neo2) replaced the ACURATE neo during the study period, hemodynamic and clinical results before admission, at 30 days, and at 1 year of follow-up were compared between the two generations. RESULTS: A total of 296 patients underwent transcatheter aortic valve implantation with the ACURATE device, with 178 patients receiving the ACURATE neo and 118 patients receiving the ACURATE neo2. In the overall population, the absence of device success occurred in 14.5%. The primary reason for the absence of device success was the presence of para-valvular regurgitation ≥ 2. There were no instances of coronary occlusions, valve embolization, annulus rupture, or procedural deaths. ACURATE neo2 was associated with a significantly higher device success rate (91.7% vs. 82%, p = 0.04), primarily due to a significantly lower rate of para-valvular regurgitation, which remained significant at 1 year. CONCLUSION: The use of ACURATE neo and neo2 transcatheter aortic valves is associated with satisfactory clinical results and an extremely low rate of complications. The ACURATE neo2 enables a significantly higher device success rate, primarily attributed to a significant reduction in the rate of PVL.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Heart Valve Prosthesis , Hemodynamics , Prosthesis Design , Registries , Transcatheter Aortic Valve Replacement , Aged , Aged, 80 and over , Female , Humans , Male , Aortic Valve/surgery , Aortic Valve/physiopathology , Aortic Valve/diagnostic imaging , Aortic Valve Insufficiency/physiopathology , Aortic Valve Insufficiency/etiology , Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/physiopathology , Aortic Valve Stenosis/diagnostic imaging , Postoperative Complications , Prospective Studies , Recovery of Function , Risk Factors , Spain , Time Factors , Transcatheter Aortic Valve Replacement/instrumentation , Transcatheter Aortic Valve Replacement/adverse effects , Treatment Outcome
17.
Circ Cardiovasc Interv ; 17(5): e013608, 2024 May.
Article in English | MEDLINE | ID: mdl-38529637

ABSTRACT

BACKGROUND: Comparative data on transcatheter self-expanding ACURATE neo2 (NEO2) and balloon-expandable SAPIEN 3 Ultra prostheses in technically challenging anatomy of severe aortic valve calcified aortic annuli are scarce. METHODS: A total of 1987 patients with severe native aortic stenosis treated with the self-expanding NEO2 (n=1457) or balloon-expandable SAPIEN 3 Ultra (n=530) from January 2017 to April 2023 were evaluated. The primary end point was procedural outcome according to the Valve Academic Research Consortium 3 definitions. Propensity matching defined 219 pairs with severe calcification (calcium density cutoff, 758 AU/cm2) of the native aortic valve. RESULTS: Technical success (90.4% versus 91.8%; risk difference, 1.4% [95% CI, -4.4 to -7.2]; P=0.737) and device success at 30 days (80.8% versus 75.8%; risk difference, -5.0% [95% CI, -13.2 to 3.1]; P=0.246) were comparable between NEO2 and SAPIEN 3 Ultra. The rate of severe prosthesis-patient mismatch (1.1% versus 10.1%; risk difference, 10.0% [95% CI, 4.0-13.9]; P<0.001) and mean transvalvular gradient ≥20 mm Hg (2.8% versus 14.3%; risk difference, 11.5% [95% CI, 5.8-17.1]; P<0.001) was lower with NEO2. The rate of more-than-mild paravalvular leakage or valve-in-valve due to paravalvular leakage was significantly higher (6.2% versus 0.0%; risk difference, 6.2% [95% CI, -10.1 to -2.7]; P=0.002), and there was a tendency for a higher rate of device embolization or migration (1.8% versus 0.0%; risk difference, -1.8% [95% CI, -4.1 to 0.4]; P=0.123) with NEO2. Multivarate regression revealed no independent impact of transcatheter heart valve selection on device success (odds ratio, 0.93 [95% CI, 0.48-1.77]; P=0.817). CONCLUSIONS: In patients with severely calcified annuli, supraannular implantation of NEO2 showed hemodynamic advantages. Nevertheless, NEO2 was associated with a higher incidence of relevant paravalvular leakage and a numerically higher rate of device embolization than SAPIEN 3 Ultra in this particular patient group.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Calcinosis , Heart Valve Prosthesis , Prosthesis Design , Severity of Illness Index , Transcatheter Aortic Valve Replacement , Humans , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/physiopathology , Male , Female , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Aortic Valve/pathology , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Aged , Aged, 80 and over , Calcinosis/diagnostic imaging , Calcinosis/surgery , Treatment Outcome , Risk Factors , Time Factors , Risk Assessment , Retrospective Studies , Propensity Score , Recovery of Function , Balloon Valvuloplasty/adverse effects , Hemodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...