Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.315
Filter
1.
J Med Virol ; 96(5): e29669, 2024 May.
Article in English | MEDLINE | ID: mdl-38773784

ABSTRACT

Chronic hepatitis B virus (HBV) infection remains a significant global health challenge due to its link to severe conditions like HBV-related cirrhosis and hepatocellular carcinoma (HCC). Although current treatments effectively reduce viral levels, they have limited impact on certain HBV elements, namely hepatitis B surface antigen (HBsAg) and covalently closed circular DNA (cccDNA). This highlights the urgent need for innovative pharmaceutical and biological interventions that can disrupt HBsAg production originating from cccDNA. In this study, we identified a natural furanocoumarin compound, Imperatorin, which markedly inhibited the expression of HBsAg from cccDNA, by screening a library of natural compounds derived from Chinese herbal medicines using ELISA assay and qRT-PCR. The pharmacodynamics study of Imperatorin was explored on HBV infected HepG2-NTCP/PHHs and HBV-infected humanized mouse model. Proteome analysis was performed on HBV infected HepG2-NTCP cells following Imperatorin treatment. Molecular docking and bio-layer interferometry (BLI) were used for finding the target of Imperatorin. Our findings demonstrated Imperatorin remarkably reduced the level of HBsAg, HBV RNAs, HBV DNA and transcriptional activity of cccDNA both in vitro and in vivo. Additionally, Imperatorin effectively restrained the actions of HBV promoters responsible for cccDNA transcription. Mechanistic study revealed that Imperatorin directly binds to ERK and subsequently interfering with the activation of CAMP response element-binding protein (CREB), a crucial transcriptional factor for HBV and has been demonstrated to bind to the PreS2/S and X promoter regions of HBV. Importantly, the absence of ERK could nullify the antiviral impact triggered by Imperatorin. Collectively, the natural compound Imperatorin may be an effective candidate agent for inhibiting HBsAg production and cccDNA transcription by impeding the activities of HBV promoters through ERK-CREB axis.


Subject(s)
DNA, Circular , Furocoumarins , Hepatitis B Surface Antigens , Hepatitis B virus , Transcription, Genetic , Furocoumarins/pharmacology , Humans , Animals , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B Surface Antigens/metabolism , Hepatitis B Surface Antigens/genetics , Hep G2 Cells , Mice , DNA, Circular/genetics , DNA, Circular/metabolism , Transcription, Genetic/drug effects , Antiviral Agents/pharmacology , DNA, Viral , Molecular Docking Simulation , Virus Replication/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Disease Models, Animal , Promoter Regions, Genetic
2.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38755006

ABSTRACT

Diabetes complications such as nephropathy, retinopathy, or cardiovascular disease arise from vascular dysfunction. In this context, it has been observed that past hyperglycemic events can induce long-lasting alterations, a phenomenon termed "metabolic memory." In this study, we evaluated the genome-wide gene expression and chromatin accessibility alterations caused by transient high-glucose exposure in human endothelial cells (ECs) in vitro. We found that cells exposed to high glucose exhibited substantial gene expression changes in pathways known to be impaired in diabetes, many of which persist after glucose normalization. Chromatin accessibility analysis also revealed that transient hyperglycemia induces persistent alterations, mainly in non-promoter regions identified as enhancers with neighboring genes showing lasting alterations. Notably, activation of the NRF2 pathway through NRF2 overexpression or supplementation with the plant-derived compound sulforaphane, effectively reverses the glucose-induced transcriptional and chromatin accessibility memories in ECs. These findings underscore the enduring impact of transient hyperglycemia on ECs' transcriptomic and chromatin accessibility profiles, emphasizing the potential utility of pharmacological NRF2 pathway activation in mitigating and reversing the high-glucose-induced transcriptional and epigenetic alterations.


Subject(s)
Epigenesis, Genetic , Glucose , NF-E2-Related Factor 2 , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Glucose/metabolism , Epigenesis, Genetic/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Hyperglycemia/metabolism , Hyperglycemia/genetics , Chromatin/metabolism , Chromatin/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Transcription, Genetic/drug effects , Gene Expression Regulation/drug effects , Isothiocyanates/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Sulfoxides/pharmacology
3.
J Agric Food Chem ; 72(20): 11733-11745, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38725145

ABSTRACT

Amino acids are essential for the activation of the mechanistic target of rapamycin (mTOR), but the corresponding molecular mechanism is not yet fully understood. We previously found that Met stimulated eukaryotic elongation factor α (eEF1Bα) nuclear localization in bovine mammary epithelial cells (MECs). Herein, we explored the role and molecular mechanism of eEF1Bα in methionine (Met)- and leucine (Leu)-stimulated mTOR gene transcription and milk synthesis in MECs. eEF1Bα knockdown decreased milk protein and fat synthesis, cell proliferation, and mTOR mRNA expression and phosphorylation, whereas eEF1Bα overexpression had the opposite effects. QE-MS analysis detected that eEF1Bα was phosphorylated at Ser106 in the nucleus and Met and Leu stimulated p-eEF1Bα nuclear localization. eEF1Bα knockdown abrogated the stimulation of Met and Leu by mTOR mRNA expression and phosphorylation, and this regulatory role was dependent on its phosphorylation. Akt knockdown blocked the stimulation of Met and Leu by eEF1Bα and p-eEF1Bα expression. ChIP-PCR detected that p-eEF1Bα bound only to the -548 to -793 nt site in the mTOR promoter, and ChIP-qPCR further detected that Met and Leu stimulated this binding. eEF1Bα mediated Met and Leu' stimulation on mTOR mRNA expression and phosphorylation through inducing AT-rich interaction domain 1A (ARID1A) ubiquitination degradation, and this process depended on eEF1Bα phosphorylation. p-eEF1Bα interacted with ARID1A and ubiquitin protein ligase E3 module N-recognition 5 (UBR5), and UBR5 knockdown rescued the decrease of the ARID1A protein level by eEF1Bα overexpression. Both eEF1Bα and p-eEF1Bα were highly expressed in mouse mammary gland tissues during the lactating period. In summary, we reveal that Met and Leu stimulate mTOR transcriptional activation and milk protein and fat synthesis in MECs through eEF1Bα-UBR5-ARID1A signaling.


Subject(s)
Epithelial Cells , Leucine , Mammary Glands, Animal , Methionine , Milk , Signal Transduction , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Cattle , Female , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Signal Transduction/drug effects , Methionine/metabolism , Methionine/pharmacology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Milk/chemistry , Milk/metabolism , Leucine/pharmacology , Leucine/metabolism , Mice , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism
4.
Biol Open ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38742438

ABSTRACT

Bone is increasingly recognized as a target for diabetic complications. In order to evaluate the direct effects of high glucose on bone, we investigated the global transcriptional changes induced by hyperglycemia in osteoblasts in vitro. Rat bone marrow-derived mesenchymal stromal cells were differentiated into osteoblasts for 10 days, and prior to analysis, they were exposed to hyperglycemia (25 mM) for the short-term (1 or 3 days) or long-term (10 days). Genes and pathways regulated by hyperglycemia were identified using mRNA sequencing and verified with qPCR. Genes upregulated by 1-day hyperglycemia were, for example, related to extracellular matrix organization, collagen synthesis and bone formation. This stimulatory effect was attenuated by 3 days. Long-term exposure impaired osteoblast viability, and downregulated, for example, extracellular matrix organization and lysosomal pathways, and increased intracellular oxidative stress. Interestingly, transcriptional changes by different exposure times were mostly unique and only 89 common genes responding to glucose were identified. In conclusion, short-term hyperglycemia had a stimulatory effect on osteoblasts and bone formation, whereas long-term hyperglycemia had a negative effect on intracellular redox balance, osteoblast viability and function.


Subject(s)
Gene Expression Regulation , Glucose , Osteoblasts , Osteoblasts/metabolism , Osteoblasts/drug effects , Animals , Glucose/metabolism , Rats , Gene Expression Regulation/drug effects , Gene Expression Profiling , Hyperglycemia/metabolism , Hyperglycemia/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Transcriptome , Osteogenesis/drug effects , Osteogenesis/genetics , Cell Survival/drug effects , Transcription, Genetic/drug effects , Cells, Cultured , Oxidative Stress/drug effects
5.
Biol Open ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38809145

ABSTRACT

Bone is increasingly recognized as a target for diabetic complications. In order to evaluate the direct effects of high glucose on bone, we investigated the global transcriptional changes induced by hyperglycemia in osteoblasts in vitro. Rat bone marrow-derived mesenchymal stromal cells were differentiated into osteoblasts for 10 days, and prior to analysis, they were exposed to hyperglycemia (25 mM) for the short-term (1 or 3 days) or long-term (10 days). Genes and pathways regulated by hyperglycemia were identified using mRNA sequencing and verified with qPCR. Genes upregulated by 1-day hyperglycemia were, for example, related to extracellular matrix organization, collagen synthesis and bone formation. This stimulatory effect was attenuated by 3 days. Long-term exposure impaired osteoblast viability, and downregulated, for example, extracellular matrix organization and lysosomal pathways, and increased intracellular oxidative stress. Interestingly, transcriptional changes by different exposure times were mostly unique and only 89 common genes responding to glucose were identified. In conclusion, short-term hyperglycemia had a stimulatory effect on osteoblasts and bone formation, whereas long-term hyperglycemia had a negative effect on intracellular redox balance, osteoblast viability and function.


Subject(s)
Gene Expression Regulation , Glucose , Osteoblasts , Osteoblasts/metabolism , Osteoblasts/drug effects , Animals , Glucose/metabolism , Rats , Gene Expression Regulation/drug effects , Gene Expression Profiling , Hyperglycemia/metabolism , Hyperglycemia/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Transcriptome , Osteogenesis/drug effects , Osteogenesis/genetics , Cell Survival/drug effects , Transcription, Genetic/drug effects , Cells, Cultured , Oxidative Stress/drug effects
6.
Cell Rep ; 43(4): 114053, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38578824

ABSTRACT

In the search for much-needed new antibacterial chemical matter, a myriad of compounds have been reported in academic and pharmaceutical screening endeavors. Only a small fraction of these, however, are characterized with respect to mechanism of action (MOA). Here, we describe a pipeline that categorizes transcriptional responses to antibiotics and provides hypotheses for MOA. 3D-printed imaging hardware PFIboxes) profiles responses of Escherichia coli promoter-GFP fusions to more than 100 antibiotics. Notably, metergoline, a semi-synthetic ergot alkaloid, mimics a DNA replication inhibitor. In vitro supercoiling assays confirm this prediction, and a potent analog thereof (MLEB-1934) inhibits growth at 0.25 µg/mL and is highly active against quinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Spontaneous suppressor mutants map to a seldom explored allosteric binding pocket, suggesting a mechanism distinct from DNA gyrase inhibitors used in the clinic. In all, the work highlights the potential of this platform to rapidly assess MOA of new antibacterial compounds.


Subject(s)
Anti-Bacterial Agents , DNA Gyrase , Escherichia coli , Topoisomerase II Inhibitors , Topoisomerase II Inhibitors/pharmacology , DNA Gyrase/metabolism , DNA Gyrase/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Transcription, Genetic/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests
7.
Biomolecules ; 14(4)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38672493

ABSTRACT

Myocardial hypertrophy is the most common condition that accompanies heart development in children. Transcriptional gene expression regulating pathways play a critical role both in cardiac embryogenesis and in the pathogenesis of congenital hypertrophic cardiomyopathy, neonatal posthypoxic myocardial hypertrophy, and congenital heart diseases. This paper describes the state of cardiac gene expression and potential pharmacological modulators at different transcriptional levels. An experimental model of perinatal cardiac hypoxia showed the downregulated expression of genes responsible for cardiac muscle integrity and overexpressed genes associated with energy metabolism and apoptosis, which may provide a basis for a therapeutic approach. Current evidence suggests that RNA drugs, theaflavin, neuraminidase, proton pumps, and histone deacetylase inhibitors are promising pharmacological agents in progressive cardiac hypertrophy. The different points of application of the above drugs make combined use possible, potentiating the effects of inhibition in specific signaling pathways. The special role of N-acetyl cysteine in both the inhibition of several signaling pathways and the reduction of oxidative stress was emphasized.


Subject(s)
Signal Transduction , Humans , Signal Transduction/drug effects , Child , Animals , Myocardium/metabolism , Myocardium/pathology , Transcription, Genetic/drug effects , Protein Biosynthesis/drug effects , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Cardiomegaly/genetics
8.
PLoS One ; 19(4): e0293680, 2024.
Article in English | MEDLINE | ID: mdl-38652715

ABSTRACT

Universal and early recognition of pathogens occurs through recognition of evolutionarily conserved pathogen associated molecular patterns (PAMPs) by innate immune receptors and the consequent secretion of cytokines and chemokines. The intrinsic complexity of innate immune signaling and associated signal transduction challenges our ability to obtain physiologically relevant, reproducible and accurate data from experimental systems. One of the reasons for the discrepancy in observed data is the choice of measurement strategy. Immune signaling is regulated by the interplay between pathogen-derived molecules with host cells resulting in cellular expression changes. However, these cellular processes are often studied by the independent assessment of either the transcriptome or the proteome. Correlation between transcription and protein analysis is lacking in a variety of studies. In order to methodically evaluate the correlation between transcription and protein expression profiles associated with innate immune signaling, we measured cytokine and chemokine levels following exposure of human cells to the PAMP lipopolysaccharide (LPS) from the Gram-negative pathogen Pseudomonas aeruginosa. Expression of 84 messenger RNA (mRNA) transcripts and 69 proteins, including 35 overlapping targets, were measured in human lung epithelial cells. We evaluated 50 biological replicates to determine reproducibility of outcomes. Following pairwise normalization, 16 mRNA transcripts and 6 proteins were significantly upregulated following LPS exposure, while only five (CCL2, CSF3, CXCL5, CXCL8/IL8, and IL6) were upregulated in both transcriptomic and proteomic analysis. This lack of correlation between transcription and protein expression data may contribute to the discrepancy in the immune profiles reported in various studies. The use of multiomic assessments to achieve a systems-level understanding of immune signaling processes can result in the identification of host biomarker profiles for a variety of infectious diseases and facilitate countermeasure design and development.


Subject(s)
Biomarkers , Epithelial Cells , Lipopolysaccharides , Pseudomonas aeruginosa , Humans , Lipopolysaccharides/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Pseudomonas aeruginosa/immunology , Biomarkers/metabolism , Lung/metabolism , Lung/immunology , Transcriptome , Cytokines/metabolism , Gene Expression Profiling , Immunity, Innate , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/drug effects , Chemokines/metabolism , Chemokines/genetics
9.
Virology ; 595: 110065, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38569227

ABSTRACT

Nucleot(s)ide analogues, the current antiviral treatments against chronic hepatitis B (CHB) infection, are non-curative due to their inability to eliminate covalently closed circular DNA (cccDNA) from the infected hepatocytes. Preclinical studies have shown that coumarin derivatives can effectively reduce the HBV DNA replication. We evaluated the antiviral efficacy of thirty new coumarin derivatives in cell culture models for studying HBV. Furanocoumarins Fc-20 and Fc-31 suppressed the levels of pre-genomic RNA as well as cccDNA, and reduced the secretion of virions, HBsAg and HBeAg. The antiviral efficacies of Fc-20 and Fc31 improved further when used in combination with the hepatitis B antiviral drug Entecavir. There was a marked reduction in the intracellular HBx level in the presence of these furanocoumarins due to proteasomal degradation resulting in the down-regulation of HBx-dependent viral genes. Importantly, both Fc-20 and Fc-31 were non-cytotoxic to cells even at high concentrations. Further, our molecular docking studies confirmed a moderate to high affinity interaction between furanocoumarins and viral HBx via residues Ala3, Arg26 and Lys140. These data suggest that furanocoumarins could be developed as a new therapeutic for CHB infection.


Subject(s)
Antiviral Agents , DNA, Circular , Furocoumarins , Hepatitis B virus , Proteasome Endopeptidase Complex , Trans-Activators , Viral Regulatory and Accessory Proteins , Virus Replication , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Hepatitis B virus/metabolism , Virus Replication/drug effects , Humans , Trans-Activators/metabolism , Trans-Activators/genetics , DNA, Circular/metabolism , DNA, Circular/genetics , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Furocoumarins/pharmacology , Antiviral Agents/pharmacology , Proteasome Endopeptidase Complex/metabolism , DNA, Viral/metabolism , DNA, Viral/genetics , Down-Regulation/drug effects , Transcription, Genetic/drug effects , Proteolysis/drug effects , Gene Expression Regulation, Viral/drug effects , Hep G2 Cells
10.
Antiviral Res ; 226: 105888, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641024

ABSTRACT

296 million people worldwide are predisposed to developing severe end-stage liver diseases due to chronic hepatitis B virus (HBV) infection. HBV forms covalently closed circular DNA (cccDNA) molecules that persist as episomal DNA in the nucleus of infected hepatocytes and drive viral replication. Occasionally, the HBV genome becomes integrated into host chromosomal DNA, a process that is believed to significantly contribute to circulating HBsAg levels and HCC development. Neither cccDNA accumulation nor expression from integrated HBV DNA are directly targeted by current antiviral treatments. In this study, we investigated the antiviral properties of a newly described allosteric modulator, FLS-359, that targets sirtuin 2 (SIRT2), an NAD+-dependent deacylase. Our results demonstrate that SIRT2 modulation by FLS-359 and by other tool compounds inhibits cccDNA synthesis following de novo infection of primary human hepatocytes and HepG2 (C3A)-NTCP cells, and FLS-359 substantially reduces cccDNA recycling in HepAD38 cells. While pre-existing cccDNA is not eradicated by short-term treatment with FLS-359, its transcriptional activity is substantially impaired, likely through inhibition of viral promoter activities. Consistent with the inhibition of viral transcription, HBsAg production by HepG2.2.15 cells, which contain integrated HBV genomes, is also suppressed by FLS-359. Our study provides further insights on SIRT2 regulation of HBV infection and supports the development of potent SIRT2 inhibitors as HBV antivirals.


Subject(s)
Antiviral Agents , DNA, Circular , DNA, Viral , Hepatitis B virus , Hepatocytes , Sirtuin 2 , Virus Replication , Humans , DNA, Circular/metabolism , Sirtuin 2/antagonists & inhibitors , Sirtuin 2/metabolism , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Hepatocytes/virology , Hepatocytes/drug effects , Antiviral Agents/pharmacology , Virus Replication/drug effects , Hep G2 Cells , Allosteric Regulation/drug effects , Transcription, Genetic/drug effects
11.
Biochem Pharmacol ; 224: 116206, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615921

ABSTRACT

Long-chain fatty acyl-Coa ligase 4 (ACSL4) is an important enzyme that converts fatty acids to fatty acyl-Coa esters, there is increasing evidence for its role in carcinogenesis. However, the precise role of ACLS4 in hepatocellular carcinoma (HCC) is not clearly understood. In the present study, we provide evidence that ACSL4 expression was specifically elevated in HCC and is associated with poor clinical outcomes. ACSL4 significantly promotes the growth and metastasis of HCC both in vitro and in vivo. RNA sequencing and functional experiments showed that the effect of ACSL4 on HCC development was heavily dependent on PAK2. ACSL4 expression is well correlated with PAK2 in HCC, and ACSL4 even transcriptionally increased PAK2 gene expression mediated by Sp1. In addition, emodin, a naturally occurring anthraquinone derivative, inhibited HCC cell growth and tumor progression by targeting ACSL4. In summary, ACSL4 plays a novel oncogene in HCC development by regulating PAK2 transcription. Targeting ACSL4 could be useful in drug development and therapy for HCC.


Subject(s)
Carcinoma, Hepatocellular , Coenzyme A Ligases , Disease Progression , Liver Neoplasms , Mice, Nude , p21-Activated Kinases , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Animals , Mice , Male , Cell Line, Tumor , Mice, Inbred BALB C , Transcription, Genetic/drug effects , Gene Expression Regulation, Neoplastic , Emodin/pharmacology , Female
12.
Phytomedicine ; 128: 155328, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522316

ABSTRACT

BACKGROUND: Glioblastoma (GBM) represents as the most formidable intracranial malignancy. The systematic exploration of natural compounds for their potential applications in GBM therapy has emerged as a pivotal and fruitful avenue of research. PURPOSE: In the present study, a panel of 96 diterpenoids was systematically evaluated as a repository of potential antitumour agents. The primary objective was to discern their potency in overcoming resistance to temozolomide (TMZ). Through an extensive screening process, honatisine, a heptacyclic diterpenoid alkaloid, emerged as the most robust candidate. Notably, honatisine exhibited remarkable efficacy in patient-derived primary and recurrent GBM strains. Subsequently, we subjected this compound to comprehensive scrutiny, encompassing GBM cultured spheres, GBM organoids (GBOs), TMZ-resistant GBM cell lines, and orthotopic xenograft mouse models of GBM cells. RESULTS: Our investigative efforts delved into the mechanistic underpinnings of honatisine's impact. It was discerned that honatisine prompted mitonuclear protein imbalance and elicited the mitochondrial unfolded protein response (UPRmt). This effect was mediated through the selective depletion of mitochondrial DNA (mtDNA)-encoded subunits, with a particular emphasis on the diminution of mitochondrial transcription factor A (TFAM). The ultimate outcome was the instigation of deleterious mitochondrial dysfunction, culminating in apoptosis. Molecular docking and surface plasmon resonance (SPR) experiments validated honatisine's binding affinity to TFAM within its HMG-box B domain. This binding may promote phosphorylation of TFAM and obstruct the interaction of TFAM bound to heavy strand promoter 1 (HSP1), thereby enhancing Lon-mediated TFAM degradation. Finally, in vivo experiments confirmed honatisine's antiglioma properties. Our comprehensive toxicological assessments underscored its mild toxicity profile, emphasizing the necessity for a thorough evaluation of honatisine as a novel antiglioma agent. CONCLUSION: In summary, our data provide new insights into the therapeutic mechanisms underlying honatisine's selective inducetion of apoptosis and its ability to overcome chemotherapy resistance in GBM. These actions are mediated through the disruption of mitochondrial proteostasis and function, achieved by the inhibition of TFAM-mediated mtDNA transcription. This study highlights honatisine's potential as a promising agent for glioblastoma therapy, underscoring the need for further exploration and investigation.


Subject(s)
DNA, Mitochondrial , Diterpenes , Drug Resistance, Neoplasm , Glioblastoma , Temozolomide , Transcription Factors , Glioblastoma/drug therapy , Humans , Animals , Drug Resistance, Neoplasm/drug effects , Temozolomide/pharmacology , Cell Line, Tumor , Diterpenes/pharmacology , Transcription Factors/metabolism , Mice , DNA, Mitochondrial/drug effects , DNA-Binding Proteins/metabolism , Mitochondrial Proteins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Xenograft Model Antitumor Assays , Brain Neoplasms/drug therapy , Transcription, Genetic/drug effects , Mice, Nude
13.
Nature ; 628(8007): 433-441, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509368

ABSTRACT

An important advance in cancer therapy has been the development of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of homologous recombination (HR)-deficient cancers1-6. PARP inhibitors trap PARPs on DNA. The trapped PARPs are thought to block replisome progression, leading to formation of DNA double-strand breaks that require HR for repair7. Here we show that PARP1 functions together with TIMELESS and TIPIN to protect the replisome in early S phase from transcription-replication conflicts. Furthermore, the synthetic lethality of PARP inhibitors with HR deficiency is due to an inability to repair DNA damage caused by transcription-replication conflicts, rather than by trapped PARPs. Along these lines, inhibiting transcription elongation in early S phase rendered HR-deficient cells resistant to PARP inhibitors and depleting PARP1 by small-interfering RNA was synthetic lethal with HR deficiency. Thus, inhibiting PARP1 enzymatic activity may suffice for treatment efficacy in HR-deficient settings.


Subject(s)
DNA Replication , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases , Transcription, Genetic , Humans , DNA Breaks, Double-Stranded , DNA Replication/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Recombinational DNA Repair , S Phase , Transcription, Genetic/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Poly (ADP-Ribose) Polymerase-1/metabolism
14.
Nucleic Acids Res ; 52(8): 4151-4166, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38340348

ABSTRACT

In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53. Herein, we report that these DNA intercalators impact chromatin biology by interfering with the chromatin stability of RNA polymerases I, II and III. These three compounds have the capacity to induce degradation of RNA polymerase II and they simultaneously enable the trapping of Topoisomerases TOP2A and TOP2B on the chromatin. In addition, BMH-21 also acts as a catalytic inhibitor of Topoisomerase II, resembling Aclarubicin. Moreover, BMH-21 induces chromatin trapping of the histone chaperone FACT and propels accumulation of Z-DNA and histone eviction, similarly to Aclarubicin and CBL0137. These DNA intercalators have a cumulative impact on general transcription machinery by inducing accumulation of topological defects and impacting nuclear chromatin. Therefore, their cytotoxic capabilities may be the result of compounding deleterious effects on chromatin homeostasis.


Subject(s)
Chromatin , DNA Topoisomerases, Type II , Intercalating Agents , RNA Polymerase II , Humans , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Carbazoles , Chromatin/metabolism , Diketopiperazines , DNA/metabolism , DNA/chemistry , DNA Damage , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , High Mobility Group Proteins/metabolism , High Mobility Group Proteins/genetics , Histones/metabolism , Intercalating Agents/pharmacology , Intercalating Agents/chemistry , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Polymerase I/metabolism , RNA Polymerase I/antagonists & inhibitors , RNA Polymerase II/metabolism , RNA Polymerase III/metabolism , Topoisomerase II Inhibitors/pharmacology , Transcription, Genetic/drug effects , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/genetics , Aclarubicin/pharmacology
15.
Nucleic Acids Res ; 52(7): 3572-3588, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38261978

ABSTRACT

The phytohormone salicylic acid (SA) triggers transcriptional reprogramming that leads to SA-induced immunity in plants. NPR1 is an SA receptor and master transcriptional regulator in SA-triggered transcriptional reprogramming. Despite the indispensable role of NPR1, genome-wide direct targets of NPR1 specific to SA signaling have not been identified. Here, we report INA (functional SA analog)-specific genome-wide targets of Arabidopsis NPR1 in plants expressing GFP-fused NPR1 under its native promoter. Analyses of NPR1-dependently expressed direct NPR1 targets revealed that NPR1 primarily activates genes encoding transcription factors upon INA treatment, triggering transcriptional cascades required for INA-induced transcriptional reprogramming and immunity. We identified genome-wide targets of a histone acetyltransferase, HAC1, including hundreds of co-targets shared with NPR1, and showed that NPR1 and HAC1 regulate INA-induced histone acetylation and expression of a subset of the co-targets. Genomic NPR1 targeting was principally mediated by TGACG-motif binding protein (TGA) transcription factors. Furthermore, a group of NPR1 targets mostly encoding transcriptional regulators was already bound to NPR1 in the basal state and showed more rapid and robust induction than other NPR1 targets upon SA signaling. Thus, our study unveils genome-wide NPR1 targeting, its role in transcriptional reprogramming, and the cooperativity between NPR1, HAC1, and TGAs in INA-induced immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arsenate Reductases , Gene Expression Regulation, Plant , Genome, Plant , Salicylic Acid , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Histones/metabolism , Histones/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Acetylation , Signal Transduction/genetics , Promoter Regions, Genetic
16.
J Biol Chem ; 300(1): 105567, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103641

ABSTRACT

The role of RNA G-quadruplexes (rG4s) in bacteria remains poorly understood. High G-quadruplex densities have been linked to organismal stress. Here we investigate rG4s in mycobacteria, which survive highly stressful conditions within the host. We show that rG4-enrichment is a unique feature exclusive to slow-growing pathogenic mycobacteria, and Mycobacterium tuberculosis (Mtb) transcripts contain an abundance of folded rG4s. Notably, the PE/PPE family of genes, unique to slow-growing pathogenic mycobacteria, contain over 50% of rG4s within Mtb transcripts. We found that RNA oligonucleotides of putative rG4s in PE/PPE genes form G-quadruplex structures in vitro, which are stabilized by the G-quadruplex ligand BRACO19. Furthermore, BRACO19 inhibits the transcription of PE/PPE genes and selectively suppresses the growth of Mtb but not Mycobacterium smegmatis or other rapidly growing bacteria. Importantly, the stabilization of rG4s inhibits the translation of Mtb PE/PPE genes (PPE56, PPE67, PPE68, PE_PGRS39, and PE_PGRS41) ectopically expressed in M. smegmatis or Escherichia coli. In addition, the rG4-mediated reduction in PE/PPE protein levels attenuates proinflammatory response upon infection of THP-1 cells. Our findings shed new light on the regulation of PE/PPE genes and highlight a pivotal role for rG4s in Mtb transcripts as regulators of post-transcriptional translational control. The rG4s in mycobacterial transcripts may represent potential drug targets for newer therapies.


Subject(s)
Bacterial Proteins , G-Quadruplexes , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis , Protein Biosynthesis , RNA, Bacterial , RNA, Messenger , Humans , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial/genetics , Inflammation/microbiology , Ligands , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Oligoribonucleotides/genetics , Oligoribonucleotides/metabolism , RNA Stability , RNA, Bacterial/genetics , RNA, Messenger/genetics , THP-1 Cells , Transcription, Genetic/drug effects
17.
Nature ; 620(7976): 1071-1079, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37587343

ABSTRACT

Identifying therapeutics to delay, and potentially reverse, age-related cognitive decline is critical in light of the increased incidence of dementia-related disorders forecasted in the growing older population1. Here we show that platelet factors transfer the benefits of young blood to the ageing brain. Systemic exposure of aged male mice to a fraction of blood plasma from young mice containing platelets decreased neuroinflammation in the hippocampus at the transcriptional and cellular level and ameliorated hippocampal-dependent cognitive impairments. Circulating levels of the platelet-derived chemokine platelet factor 4 (PF4) (also known as CXCL4) were elevated in blood plasma preparations of young mice and humans relative to older individuals. Systemic administration of exogenous PF4 attenuated age-related hippocampal neuroinflammation, elicited synaptic-plasticity-related molecular changes and improved cognition in aged mice. We implicate decreased levels of circulating pro-ageing immune factors and restoration of the ageing peripheral immune system in the beneficial effects of systemic PF4 on the aged brain. Mechanistically, we identified CXCR3 as a chemokine receptor that, in part, mediates the cellular, molecular and cognitive benefits of systemic PF4 on the aged brain. Together, our data identify platelet-derived factors as potential therapeutic targets to abate inflammation and rescue cognition in old age.


Subject(s)
Aging , Cognition , Cognitive Dysfunction , Neuroinflammatory Diseases , Nootropic Agents , Platelet Factor 4 , Animals , Male , Mice , Aging/blood , Aging/drug effects , Aging/physiology , Cognition/drug effects , Cognition/physiology , Neuroinflammatory Diseases/blood , Neuroinflammatory Diseases/complications , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/prevention & control , Platelet Factor 4/blood , Platelet Factor 4/metabolism , Platelet Factor 4/pharmacology , Platelet Factor 4/therapeutic use , Nootropic Agents/blood , Nootropic Agents/metabolism , Nootropic Agents/pharmacology , Nootropic Agents/therapeutic use , Plasma/chemistry , Hippocampus/drug effects , Hippocampus/physiology , Cognitive Dysfunction/blood , Cognitive Dysfunction/complications , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Transcription, Genetic/drug effects , Neuronal Plasticity/drug effects
18.
Nature ; 622(7981): 180-187, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37648864

ABSTRACT

Antibiotic binding sites are located in important domains of essential enzymes and have been extensively studied in the context of resistance mutations; however, their study is limited by positive selection. Using multiplex genome engineering1 to overcome this constraint, we generate and characterize a collection of 760 single-residue mutants encompassing the entire rifampicin binding site of Escherichia coli RNA polymerase (RNAP). By genetically mapping drug-enzyme interactions, we identify an alpha helix where mutations considerably enhance or disrupt rifampicin binding. We find mutations in this region that prolong antibiotic binding, converting rifampicin from a bacteriostatic to bactericidal drug by inducing lethal DNA breaks. The latter are replication dependent, indicating that rifampicin kills by causing detrimental transcription-replication conflicts at promoters. We also identify additional binding site mutations that greatly increase the speed of RNAP.Fast RNAP depletes the cell of nucleotides, alters cell sensitivity to different antibiotics and provides a cold growth advantage. Finally, by mapping natural rpoB sequence diversity, we discover that functional rifampicin binding site mutations that alter RNAP properties or confer drug resistance occur frequently in nature.


Subject(s)
Anti-Bacterial Agents , Binding Sites , DNA-Directed RNA Polymerases , Escherichia coli , Mutation , Rifampin , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Binding Sites/drug effects , Binding Sites/genetics , DNA Breaks/drug effects , DNA Replication/drug effects , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli/genetics , Nucleotides/deficiency , Nucleotides/metabolism , Promoter Regions, Genetic , Rifampin/chemistry , Rifampin/metabolism , Rifampin/pharmacology , Time Factors , Transcription, Genetic/drug effects
19.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446007

ABSTRACT

Some chemoattractants and leukocytes such as M1 and M2 macrophages are known to be involved in the development of glomerulosclerosis during diabetic nephropathy (DN). In the course of diabetes, an altered and defective cellular metabolism leads to the increase in adenosine levels, and thus to changes in the polarity (M1/M2) of macrophages. MRS1754, a selective antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerulosclerosis and decreased macrophage-myofibroblast transition in DN rats. Therefore, we aimed to investigate the effect of MRS1754 on the glomerular expression/secretion of chemoattractants, the intraglomerular infiltration of leukocytes, and macrophage polarity in DN rats. Kidneys/glomeruli of non-diabetic, DN, and MRS1754-treated DN rats were processed for transcriptomic analysis, immunohistopathology, ELISA, and in vitro macrophage migration assays. The transcriptomic analysis identified an upregulation of transcripts and pathways related to the immune system in the glomeruli of DN rats, which was attenuated using MRS1754. The antagonism of the A2BAR decreased glomerular expression/secretion of chemoattractants (CCL2, CCL3, CCL6, and CCL21), the infiltration of macrophages, and their polarization to M2 in DN rats. The in vitro macrophages migration induced by conditioned-medium of DN glomeruli was significantly decreased using neutralizing antibodies against CCL2, CCL3, and CCL21. We concluded that the pharmacological blockade of the A2BAR decreases the transcriptional expression of genes/pathways related to the immune response, protein expression/secretion of chemoattractants, as well as the infiltration of macrophages and their polarization toward the M2 phenotype in the glomeruli of DN rats, suggesting a new mechanism implicated in the antifibrotic effect of MRS1754.


Subject(s)
Acetamides , Adenosine A2 Receptor Antagonists , Cell Polarity , Chemotactic Factors , Diabetic Nephropathies , Kidney Glomerulus , Macrophages , Purines , Diabetic Nephropathies/genetics , Diabetic Nephropathies/immunology , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Chemotactic Factors/antagonists & inhibitors , Chemotactic Factors/genetics , Chemotactic Factors/metabolism , Cell Polarity/drug effects , Cell Polarity/immunology , Macrophages/drug effects , Macrophages/immunology , Adenosine A2 Receptor Antagonists/pharmacology , Receptor, Adenosine A2B , Acetamides/pharmacology , Purines/pharmacology , Animals , Rats , Cell Movement/drug effects , Male , Rats, Sprague-Dawley , Transcription, Genetic/drug effects , Protein Biosynthesis/drug effects , Immunity/drug effects , Immunity/genetics
20.
J Biol Chem ; 299(9): 105083, 2023 09.
Article in English | MEDLINE | ID: mdl-37495110

ABSTRACT

c-Myc is a critical regulator of cell proliferation and growth. Elevated levels of c-Myc cause transcriptional amplification, leading to various types of cancers. Small molecules that specifically inhibit c-Myc-dependent regulation are potentially invaluable for anticancer therapy. Because c-Myc does not have enzymatic activity or targetable pockets, researchers have attempted to obtain small molecules that inhibit c-Myc cofactors, activate c-Myc repressors, or target epigenetic modifications to regulate the chromatin of c-Myc-addicted cancer without any clinical success. In this study, we screened for c-Myc inhibitors using a cell-dependent assay system in which the expression of c-Myc and its transcriptional activity can be inferred from monomeric Keima and enhanced GFP fluorescence, respectively. We identified one mitochondrial inhibitor, antimycin A, as a hit compound. The compound enhanced the c-Myc phosphorylation of threonine-58, consequently increasing the proteasome-mediated c-Myc degradation. The mechanistic analysis of antimycin A revealed that it enhanced the degradation of c-Myc protein through the activation of glycogen synthetic kinase 3 by reactive oxygen species (ROS) from damaged mitochondria. Furthermore, we found that the inhibition of cell growth by antimycin A was caused by both ROS-dependent and ROS-independent pathways. Interestingly, ROS-dependent growth inhibition occurred only in the presence of c-Myc, which may reflect the representative features of cancer cells. Consistently, the antimycin A sensitivity of cells was correlated to the endogenous c-Myc levels in various cancer cells. Overall, our study provides an effective strategy for identifying c-Myc inhibitors and proposes a novel concept for utilizing ROS inducers for cancer therapy.


Subject(s)
Antimycin A , Proteolysis , Proto-Oncogene Proteins c-myc , Antimycin A/pharmacology , Cell Line, Tumor , High-Throughput Screening Assays , Phosphorylation , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/metabolism , Reactive Oxygen Species/metabolism , Threonine/metabolism , Proteolysis/drug effects , Transcription, Genetic/drug effects , Antineoplastic Agents/pharmacology , HCT116 Cells , HeLa Cells , Cell Survival/drug effects , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...