ABSTRACT
BACKGROUND: Growing evidence has suggested that Type I Interferon (I-IFN) plays a potential role in the pathogenesis of Down Syndrome (DS). This work investigates the underlying function of MX1, an effector gene of I-IFN, in DS-associated transcriptional regulation and phenotypic modulation. METHODS: We performed assay for transposase-accessible chromatin with high-throughout sequencing (ATAC-seq) to explore the difference of chromatin accessibility between DS derived amniocytes (DSACs) and controls. We then combined the annotated differentially expressed genes (DEGs) and enriched transcriptional factors (TFs) targeting the promoter region from ATAC-seq results with the DEGs in RNA-seq, to identify key genes and pathways involved in alterations of biological processes and pathways in DS. RESULTS: Binding motif analysis showed a significant increase in chromatin accessibility of genes related to neural cell function, among others, in DSACs, which is primarily regulated by members of the activator protein-1 (AP-1) transcriptional factor family. Further studies indicated that MX Dynamin Like GTPase 1 (MX1), defined as one of the key effector genes of I-IFN, is a critical upstream regulator. Its overexpression induced expression of AP-1 TFs and mediated inflammatory response, thus leading to decreased cellular viability of DS cells. Moreover, treatment with specific AP-1 inhibitor T-5224 improved DS-associated phenotypes in DSACs. CONCLUSIONS: This study demonstrates that MX1-mediated AP-1 activation is partially responsible for cellular dysfunction of DS. T-5224 effectively ameliorated DS-associated phenotypes in DSACs, suggesting it as a potential treatment option for DS patients.
Subject(s)
Down Syndrome , Transcription Factor AP-1 , Humans , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Chromatin Immunoprecipitation Sequencing , RNA-Seq , Down Syndrome/drug therapy , Down Syndrome/genetics , Chromatin , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolismABSTRACT
This study describes, to some extent, the VCC contribution as an early stimulation of the macrophage lineage. Regarding the onset of the innate immune response caused by infection, the ß form of IL-1 is the most important interleukin involved in the onset of the inflammatory innate response. Activated macrophages treated in vitro with VCC induced the activation of the MAPK signaling pathway in a one-hour period, with the activation of transcriptional regulators for a surviving and pro-inflammatory response, suggesting an explanation inspired and supported by the inflammasome physiology. The mechanism of IL-1ß production induced by VCC has been gracefully outlined in murine models, using bacterial knockdown mutants and purified molecules; nevertheless, the knowledge of this mechanism in the human immune system is still under study. This work shows the soluble form of 65 kDa of the Vibrio cholerae cytotoxin (also known as hemolysin), as it is secreted by the bacteria, inducing the production of IL-1ß in the human macrophage cell line THP-1. The mechanism involves triggering the early activation of the signaling pathway MAPKs pERK and p38, with the subsequent activation of (p50) NF-κB and AP-1 (cJun and cFos), determined by real-time quantitation. The evidence shown here supports that the monomeric soluble form of the VCC in the macrophage acts as a modulator of the innate immune response, which is consistent with the assembly of the NLRP3 inflammasome actively releasing IL-1ß.
Subject(s)
NF-kappa B , Vibrio cholerae , Humans , Animals , Mice , NF-kappa B/metabolism , Transcription Factor AP-1/metabolism , Inflammasomes/metabolism , Vibrio cholerae/metabolism , Transcriptional Activation , Cytotoxins/pharmacology , Signal Transduction , Macrophages/metabolism , THP-1 Cells , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolismABSTRACT
When tumoral cell expansion exceeds the vascular supply, regions of hypoxia or low oxygen concentration are generated promoting the formation of new vessels through cell proliferation and migration. Viral G protein-coupled receptor (vGPCR) is associated to Kaposi's sarcoma pathology and induces a paracrine transformation when is stably expressed in murine endothelial cells activating hypoxia-induced transcription factors. Previously, we reported the antiproliferative actions of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in endothelial cells transformed by the vGPCR (SVEC-vGPCR). Herein, we further investigated if pro-angiogenic factors as AP-1, HIF-1α and VEGF are modulated by 1α,25(OH)2D3. We found by qRT-PCR analysis that the mRNA level of JunB, a negative regulator of cell proliferation, was similarly increased at all-time points tested after 1α,25(OH)2D3 treatment in SVEC-vGPCR cells. Also, mRNA levels of the pro-angiogenic factor c-Fos, which induces tumor invasion, were only decreased during one short period treatment. In addition, Hif-1α mRNA and protein levels were significantly reduced after 1α,25(OH)2D3 treatment in a VDR dependent fashion. However, mRNA levels of the angiogenic activator Vegf, promoted in turn by Hif-1α expression, were surprisingly high depending on VDR expression as well. Moreover, Egr-1, which has been reported to induce VEGF expression independently of HIF-1α, diminished its expression with 1α,25(OH)2D3 treatment, fact that was related to the decline of p-ERK1/2. Altogether, these results suggest a negative modulation of some pro-angiogenic factors like AP-1 and HIF-1α, as part of the antiproliferative mechanism of 1α,25(OH)2D3 in SVEC-vGPCR endothelial cells.
Subject(s)
Endothelial Cells , Herpesvirus 8, Human , Mice , Animals , Endothelial Cells/metabolism , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/metabolism , Angiogenesis Inducing Agents/metabolism , Vascular Endothelial Growth Factor A/genetics , Transcription Factor AP-1/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Hypoxia/metabolismABSTRACT
Persistent infections with some types of human papillomavirus (HPV) constitute the major etiological factor for cervical cancer development. Nanog, a stem cell transcription factor has been shown to increase during cancer progression. We wanted to determine whether Nanog could modulate transcription of E6 and E7 oncogenes. We used luciferase reporters under the regulation of the long control region (LCR) of HPV types 16 and 18 (HPV16/18) and performed RT-qPCR. We found that Nanog increases activity of both viral regulatory regions and elevates endogenous E6/E7 mRNA levels in cervical cancer-derived cells. We demonstrated by in vitro mutagenesis that changes at Nanog-binding sites found in the HPV18 LCR significantly inhibit transcriptional activation. Chromatin immunoprecipitation (ChIP) assays showed that Nanog binds in vivo to the HPV18 LCR, and its overexpression increases its binding as well as that of c-Jun. Surprisingly, we observed that mutation of AP1-binding sites also affect Nanog's ability to activate transcription, suggesting cooperation between the two factors. We searched for putative Nanog-binding sites in the LCR of several HPVs and surprisingly found them only in those types associated with cancer development. Our study shows, for the first time, a role for Nanog in the regulation of E6/E7 transcription of HPV16/18.
Subject(s)
DNA-Binding Proteins/genetics , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Nanog Homeobox Protein/metabolism , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/metabolism , Repressor Proteins/genetics , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Female , Gene Expression Regulation, Viral , Host-Pathogen Interactions , Human papillomavirus 16/metabolism , Human papillomavirus 18/metabolism , Humans , Nanog Homeobox Protein/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Promoter Regions, Genetic , Repressor Proteins/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcriptional Activation , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/virologyABSTRACT
Pharmacodynamic interactions between plant isolated compounds are important to understand the mode of action of an herbal extract to formulate or create better standardized extracts, phytomedicines, or phytopharmaceuticals. In this work, we propose binary mixtures using a leader compound to found pharmacodynamic interactions in inhibition of the NF-κB/AP-1 pathway using RAW-Blue™ cells. Eight compounds were isolated from Castilleja tenuiflora, four were new furofuran-type lignans for the species magnolin, eudesmin, sesamin, and kobusin. Magnolin (60.97%) was the most effective lignan inhibiting the NF-κB/AP-1 pathway, followed by eudesmin (56.82%), tenuifloroside (52.91%), sesamin (52.63%), and kobusin (45.45%). Verbascoside, a major compound contained in wild C. tenuiflora showed an inhibitory effect on NF-κB/AP-1. This polyphenol was chosen as a leader compound for binary mixtures. Verbacoside-aucubin and verbascoside-kobusin produced synergism, while verbascoside-tenuifloroside had subadditivity in all concentrations. Verbascoside-kobusin is a promising mixture to use on NF-κB/AP-1 related diseases and anti-inflammatory C. tenuiflora-based phytomedicines.
Subject(s)
Anti-Inflammatory Agents , Glucosides , Iridoids , Lignans , NF-kappa B/antagonists & inhibitors , Orobanchaceae/chemistry , Phenols , Transcription Factor AP-1/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cell Line , Glucosides/chemistry , Glucosides/pharmacology , Iridoids/chemistry , Iridoids/pharmacology , Lignans/chemistry , Lignans/pharmacology , Mice , NF-kappa B/metabolism , Phenols/chemistry , Phenols/pharmacology , Transcription Factor AP-1/metabolismABSTRACT
Glioblastoma multiforme is the most aggressive type of tumor of the CNS with an overall survival rate of approximately one year. Since this rate has not changed significantly over the last 20 years, the development of new therapeutic strategies for the treatment of these tumors is peremptory. The over-expression of the proto-oncogene c-Fos has been observed in several CNS tumors including glioblastoma multiforme and is usually associated with a poor prognosis. Besides its genomic activity as an AP-1 transcription factor, this protein can also activate phospholipid synthesis by a direct interaction with key enzymes of their metabolic pathways. Given that the amino-terminal portion of c-Fos (c-Fos-NA: amino acids 1-138) associates to but does not activate phospholipid synthesizing enzymes, we evaluated if c-Fos-NA or some shorter derivatives are capable of acting as dominant-negative peptides of the activating capacity of c-Fos. The over-expression or the exogenous administration of c-Fos-NA to cultured T98G cells hampers the interaction between c-Fos and PI4K2A, an enzyme activated by c-Fos. Moreover, it was observed a decrease in tumor cell proliferation rates in vitro and a reduction in tumor growth in vivo when a U87-MG-generated xenograft on nude mice is intratumorally treated with recombinant c-Fos-NA. Importantly, a smaller peptide of 92 amino acids derived from c-Fos-NA retains the capacity to interfere with tumor proliferation in vitro and in vivo. Taken together, these results support the use of the N-terminal portion of c-Fos, or shorter derivatives as a novel therapeutic strategy for the treatment of glioblastoma multiforme.
Subject(s)
Cell Proliferation , Glioblastoma/metabolism , Minor Histocompatibility Antigens/metabolism , Phospholipids/biosynthesis , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Cell Line, Tumor , Enzyme Activation , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Minor Histocompatibility Antigens/genetics , Phospholipids/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Proto-Oncogene Mas , Proto-Oncogene Proteins c-fos/genetics , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolismABSTRACT
Receptor internalization and degradation (RID), is a transmembrane protein coded within the E3 region expression cassette of adenoviruses. RID downregulates the cell surface expression of epidermal growth factor receptor (EGFR), tumor necrosis factor receptor (TNFR), and apoptosis antigen 1 (FAS), causing a reduction of the effects of their respective ligands. In addition, RID inhibits apoptosis by decreasing the secretion of TNF-related apoptosis-inducing ligand (TRAIL) by normal tissue cells. In this article, we report that RID inhibited chemokine expression in human breast cancer cell line MDA-MB-231 but showed no effect in cell line MCF7. These dissimilar results may be due to the different molecular and functional properties of both cell lines. Therefore, it is necessary to replicate this study in other breast cancer cell models.
Subject(s)
Adenovirus E3 Proteins/physiology , Breast Neoplasms/metabolism , Membrane Proteins/physiology , NF-kappa B/metabolism , Transcription Factor AP-1/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Adenoviridae/genetics , Adenovirus E3 Proteins/genetics , Cell Line, Tumor , ErbB Receptors/metabolism , Humans , MCF-7 Cells , Membrane Proteins/genetics , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction/drug effects , fas Receptor/metabolismABSTRACT
Prolonged skin exposure to ultraviolet radiation (UVR) induces premature aging in both the epidermis and the dermis. Chronic exposure to UVR induces the activation of mitogen-activated protein kinase (MAPK) signaling pathway, activating c-Jun, c-Fos expression, and transcription factor of AP-1 activating protein. AP-1 activation results in the positive induction of matrix metalloproteinase (MMP) synthesis, which degrade skin collagen fibers. Polysaccharides from the fruit of Lycium barbarum (LBP fraction) have a range of activities and have been demonstrate to repair the photodamage. In different approaches, laser application aims to recover the aged skin without destroying the epidermis, promoting a modulation, called photobiomodulation (PBM), which leads to protein synthesis and cell proliferation, favoring tissue repair. Here we developed a topical hydrogel formulation from a polysaccharide-rich fraction of Lycium barbarum fruits (LBP). This formulation was associated with PBM (red laser) to evaluate whether the isolated and combined treatments would reduce the UVR-mediated photodamage in mice skin. Hairless mice were photoaged for 6 weeks and then treated singly or in combination with LBP and PBM. Histological, immunohistochemistry, and immunofluorescence analyses were used to investigate the levels of c-Fos, c-Jun, MMP-1, -2, and -9, collagen I, III, and FGF2. The combined regimen inhibited UVR-induced skin thickening, decreased the expression of c-Fos and c-Jun, as well as MMP-1, -2, and -9 and concomitantly increased the levels of collagen I, III, and FGF2. The PBM in combination with LBP treatment is a promising strategy for the repair of photodamaged skin, presenting potential clinical application in skin rejuvenation.
Subject(s)
Drugs, Chinese Herbal/pharmacology , Hydrogels/pharmacology , Low-Level Light Therapy , Skin/radiation effects , Ultraviolet Rays/adverse effects , Wound Healing/drug effects , Wound Healing/radiation effects , Animals , Disease Models, Animal , Female , JNK Mitogen-Activated Protein Kinases/metabolism , Matrix Metalloproteinase 1/metabolism , Mice , Mice, Hairless , Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Signal Transduction , Transcription Factor AP-1/metabolismABSTRACT
It has been established that ZFP36 (also known as Tristetraprolin or TTP) promotes mRNA degradation of proteins involved in inflammation, proliferation and tumor invasiveness. In mammary epithelial cells ZFP36 expression is induced by STAT5 activation during lactogenesis, while in breast cancer ZFP36 expression is associated with lower grade and better prognosis. Here, we show that the AP-1 transcription factor components, i.e. JUN, JUNB, FOS, FOSB, in addition to DUSP1, EGR1, NR4A1, IER2 and BTG2, behave as a conserved co-regulated group of genes whose expression is associated to ZFP36 in cancer cells. In fact, a significant down-modulation of this gene network is observed in breast, liver, lung, kidney, and thyroid carcinomas compared to their normal counterparts. In breast cancer, the normal-like and Luminal A, show the highest expression of the ZFP36 gene network among the other intrinsic subtypes and patients with low expression of these genes display poor prognosis. It is also proposed that AP-1 regulates ZFP36 expression through responsive elements detected in the promoter region of this gene. Culture assays show that AP-1 activity induces ZFP36 expression in mammary cells in response to prolactin (PRL) treatment thorough ERK1/2 activation. These results suggest that JUN, JUNB, FOS and FOSB are not only co-expressed, but would also play a relevant role in regulating ZFP36 expression in mammary epithelial cells.
Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Breast/metabolism , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Transcription Factor AP-1/metabolism , Tristetraprolin/metabolism , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Computational Biology/methods , Female , Humans , Prognosis , Transcription Factor AP-1/genetics , Tristetraprolin/geneticsABSTRACT
The HIV-1 accessory protein Nef downregulates the cell surface expression of major histocompatibility complex class I (MHC-I) molecules to facilitate virus spreading. The Nef-induced downregulation of MHC-I molecules such as HLA-A requires the clathrin adaptor protein 1 (AP-1) complex. The cooperative interaction of Nef, AP-1, and the cytosolic tail (CT) of HLA-A leads to a redirection of HLA-A targeting from the trans-Golgi network (TGN) to lysosomes for degradation. Although the γ-adaptin subunit of AP-1 has two distinct isoforms (γ1 and γ2), which may form two AP-1 complex variants, so far, only the importance of AP-1γ1 in MHC-I downregulation by Nef has been investigated. Here, we report that the AP-1γ2 isoform also participates in this process. We found that AP-1γ2 forms a complex with Nef and HLA-A2_CT and that this interaction depends on the Y320 residue in HLA-A2_CT and Nef expression. Moreover, Nef targets AP-1γ1 and AP-1γ2 to different compartments in T cells, and the depletion of either AP-1 variant impairs the Nef-mediated reduction of total endogenous HLA-A levels and rescues HLA-A levels on the cell surface. Finally, immunofluorescence and immunoelectron microscopy analyses reveal that the depletion of γ2 in T cells compromises both the Nef-mediated retention of HLA-A molecules in the TGN and targeting to multivesicular bodies/late endosomes. Altogether, these results show that in addition to AP-1γ1, Nef also requires the AP-1γ2 variant for efficient MHC-I downregulation.IMPORTANCE HIV-1 Nef mediates evasion of the host immune system by inhibiting MHC-I surface presentation of viral antigens. To achieve this goal, Nef modifies the intracellular trafficking of MHC-I molecules in several ways. Despite being the subject of intense study, the molecular details underlying these modifications are not yet fully understood. Adaptor protein 1 (AP-1) plays an essential role in the Nef-mediated downregulation of MHC-I molecules such as HLA-A in different cell types. However, AP-1 has two functionally distinct variants composed of either γ1 or γ2 subunit isoforms. Because previous studies on the role of AP-1 in MHC-I downregulation by Nef focused on AP-1γ1, an important open question is the participation of AP-1γ2 in this process. Here, we show that AP-1γ2 is also essential for Nef-mediated depletion of surface HLA-A molecules in T cells. Our results indicate that Nef hijacks AP-1γ2 to modify HLA-A intracellular transport, redirecting these proteins to lysosomes for degradation.
Subject(s)
Down-Regulation , Gene Expression Regulation , HLA-A2 Antigen/metabolism , Transcription Factor AP-1/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , Adaptor Protein Complex gamma Subunits/metabolism , Cell Membrane/metabolism , Cytosol/metabolism , Endosomes/metabolism , HEK293 Cells , HeLa Cells , Humans , Lysosomes/metabolism , Microscopy, Immunoelectron , Protein Transport , T-Lymphocytes/immunology , T-Lymphocytes/virology , trans-Golgi Network/metabolismABSTRACT
SCOPE: The objectives are to evaluate the anti-inflammatory and anti-atherosclerotic effects of digested total protein and digested protein fractions from chia seed in macrophages in vitro. METHODS AND RESULTS: Total protein and protein fractions (albumin, globulin, glutelin, and prolamin) are isolated from chia seed and digested using simulated gastrointestinal conditions, resulting in digested total protein (DTP) and digested protein fractions (DPF). DTP and DPF are applied (1.0 mg mL-1 ) in RAW 264.4 macrophages stimulated with LPS (1 µg mL-1 ) for inflammation or ox-LDL (80 µg mL-1 ) for atherosclerosis. In the inflammatory process, DTP and DPF reduce p-NF-κB, iNOS, p-JNK, and AP-1. Digested glutelin reduces the secretion of nitric oxide (65.1%), reactive oxygen species (19.7%), prostaglandins (34.6%), TNF-α (24.1%), MCP-1 (18.9%), IL-6 (39.6%), and IL-10 (68.7%). DTP and DPF reduce the NF-κB translocation to nuclei. DTP and digested glutelin reduce iCAM expression (86.4%, 80.8%), LOX-1 (37.3%, 35.7%), iNOS (67.0%, 42.2%), and NF-κB (57.5%, 71.1%). DTP is effective in reducing secretion of nitric oxide (43.4%), lipid accumulation (41.9%), prostaglandins (41.9%), TNF-α (43.3%), MCP-1 (47.6%), and IL-6 (50.5%). Peptides from chia DTP and DPF are also characterized. CONCLUSION: DTP and digested glutelin from chia seed reduce expression and secretion of markers related to inflammation and atherosclerosis pathways.
Subject(s)
Atherosclerosis/metabolism , Biomarkers/analysis , Inflammation/metabolism , Macrophages/drug effects , Plant Extracts/pharmacology , Salvia , Animals , Dinoprostone/metabolism , Glutens/chemistry , Glutens/pharmacology , Intercellular Adhesion Molecule-1/analysis , Lipid Metabolism/drug effects , Macrophages/metabolism , Mice , Nitric Oxide/metabolism , Plant Proteins/pharmacokinetics , RAW 264.7 Cells , Scavenger Receptors, Class E/analysis , Seeds/chemistry , Transcription Factor AP-1/metabolismABSTRACT
Stress-induced oxidative damage and the inflammatory response lead to degradation of collagen and elastic fibres and wrinkle formation. Topical retinol (or vitamin A) can be a strategy to attenuate the effects of stress in skin as it promotes collagen and elastic fibre production and reduces protease synthesis. This study investigated the effect of topical retinol in stressed human skin using in vitro and ex vivo models. Human skin explants were treated with high levels of epinephrine (as observed in stressed patients) and topically with retinol for 13 days. Human dermal fibroblasts were treated with conditioned medium of ex vivo retinol-treated and non-stressed (without epinephrine) human skin for 24 hours. In ex vivo human skin, retinol reversed the epinephrine-induced reduction in epidermal proliferation and differentiation, normalizing epidermal thickness. Retinol also inhibited the epinephrine-induced reduction in elastic fibre deposition and organization, restoring dermal thickness. In addition, retinol reversed the epinephrine-induced increase in c-JUN protein expression, but it did not alter extracellular signal-regulated kinase 1/2 (ERK) phosphorylation in ex vivo human skin. Conditioned medium of ex vivo retinol-treated and non-stressed human skin presented an increased protein expression of epidermal growth factor (EGF). In human dermal fibroblasts, conditioned medium of ex vivo retinol-treated and non-stressed human skin increased protein and gene expression of fibrillin-1 and protein expression of EGF receptor (EGFR). In conclusion, topical retinol attenuates stress-induced skin ageing signs in human skin ex vivo, probably through EGFR activation via EGF, but not by the stress-activated ERK 1/2 and c-JUN pathways.
Subject(s)
Skin Aging/drug effects , Skin/drug effects , Vitamin A/administration & dosage , Vitamins/administration & dosage , Administration, Cutaneous , Adult , Cell Line , Elastic Tissue/metabolism , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Female , Fibroblasts/metabolism , Humans , In Vitro Techniques , Male , NF-kappa B/metabolism , Skin/metabolism , Stress, Physiological , Transcription Factor AP-1/metabolism , Young AdultABSTRACT
OBJECTIVES: ß-Escin, one of the constituents of Aesculus hippocastanum L. (Hippocastanaceae) seed extract (AH), inhibits NF-κB activation, which plays an important role in HSV-1 replication. The aim was to examine the antiherpetic activity of ß-escin and AH, as well as their effect on the activation of NF-κB and AP-1 and cytokine secretion in epithelial cells and macrophages. METHODS: Cell viability was evaluated using MTT assay, and antiviral and virucidal activity was determined by plaque assay. The effect on NF-κB and AP-1 signalling pathways activation was determined by a luciferase reporter assay, and cytokine production was measured by ELISA. KEY FINDINGS: ß-Escin and AH had virucidal and anti-HSV-1 activities, and the antiviral activity was discovered for other enveloped viruses (VSV and Dengue). Moreover, ß-escin and AH significantly reduced NF-κB and AP-1 activation and cytokine production in macrophages stimulated with HSV-1 and TLRs ligands. However, an enhanced activation of these pathways and an increase in the levels of pro-inflammatory cytokines in ß-escin and AH-treated HSV-1-infected epithelial cells were found. CONCLUSIONS: This study demonstrates virucidal and broad-spectrum antiviral activities for ß escin and AH. Besides, ß-escin and AH modulate cytokine production depending on the stimuli (viral or non-viral) and the cell type under study.
Subject(s)
Aesculus , Antiviral Agents/pharmacology , Epithelial Cells/drug effects , Escin/pharmacology , Immunologic Factors/pharmacology , Macrophages/drug effects , Plant Extracts/pharmacology , Viruses/drug effects , A549 Cells , Aesculus/chemistry , Animals , Antiviral Agents/isolation & purification , Cytokines/metabolism , Dengue Virus/drug effects , Dengue Virus/pathogenicity , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/virology , Escin/isolation & purification , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/pathogenicity , Humans , Immunologic Factors/isolation & purification , Inflammation Mediators/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Mice , NF-kappa B/metabolism , Plant Extracts/isolation & purification , Transcription Factor AP-1/metabolism , Vesiculovirus/drug effects , Vesiculovirus/pathogenicity , Viruses/pathogenicityABSTRACT
BACKGROUND: To investigate the effect of CXCL12 gene silencing on proliferation,invasion, angiogenesis and the relationship of MAPK/PI3K/AP-1 signaling pathway in colon cancer cells. METHODS: RT-PCR and Western-blot were used to detect the expression of CXCL12 mRNA and protein in four colon cancer cell lines. Human colon cancer cells were transfected with CXCL12 siRNA carrying by Lipofectamine 2000. The expression of CXCL12 protein was confirmed by immunoblotting. WST-1, invasion and angiogenesis assay were used to examine the effect on proliferation, invasion and angiogenesis in colon cancer cells after CXCL12 siRNA silence, respectively. The phosphorylation of MAPK/PI3K/AP-1 protein levels was detected by Western blotting in CXCL12 siRNA suppression DLD-1 cell. RESULTS: CXCL12 mRNA and proteins were only expressed in DLD-1 colon cancer cell lines. CXCL12 siRNA were transfected into DLD-1 cells, the expression CXCL12 proteins was significantly inhibited (P < 0.01), and the proliferation, invasion and angiogenesis of DLD-1 cells were inhibited significantly (P < 0.01). CXCL12 gene silencing resulted in blockage of MAPK, PI3K and AP-1 phosphorylation by CXCL12-induced in DLD-1 colon cancer cell. CONCLUSION: The silencing CXCL12 gene significantly inhibits the proliferation, invasion and angiogenesis ability of some types colon carcinoma cells through down-regulation of MAPK/PI3K/AP-1 signaling pathway.
Subject(s)
Chemokine CXCL12/antagonists & inhibitors , Colonic Neoplasms/secondary , Gene Expression Regulation, Neoplastic , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , RNA, Small Interfering/genetics , Transcription Factor AP-1/metabolism , Apoptosis , Cell Movement , Cell Proliferation , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Gene Silencing , Humans , Mitogen-Activated Protein Kinases/genetics , Neoplasm Invasiveness , Neovascularization, Pathologic , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation , Signal Transduction , Transcription Factor AP-1/genetics , Tumor Cells, CulturedABSTRACT
Fragaria x ananassa Duch., popularly called strawberry, is known for its worldwide consumption and important biological activities, and these effects are related to its high concentration of anthocyanins. Pelargonidin-3-O-glucoside (P3G) is a major anthocyanin found in strawberry, and was evaluated for its anti-inflammatory action in experimental models. The effect of strawberry extract and P3G, on leukocyte migration, exudation levels and many inflammatory mediators, was therefore evaluated in an in vivo model. An in vitro study was also carried out to characterize the effect of P3G on mitogen-activated protein kinases, and on nuclear transcript factors NF-κB and AP-1. The results revealed that the strawberry and P3G have important anti-inflammatory proprieties, and the anti-inflammatory mechanism of P3G involves the arrest of IkB-α activation and reduction in JNKMAPK phosphorylation. The results reinforce that strawberry fruits are functional foods that can act as an adjuvant in the treatment of inflammatory conditions.
Subject(s)
Anthocyanins/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Fragaria/chemistry , Adenosine Deaminase/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cell Movement/drug effects , Female , Fruit/chemistry , Leukocytes/drug effects , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Peroxidase/metabolism , Phosphorylation/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pleurisy/drug therapy , Transcription Factor AP-1/metabolismABSTRACT
Mycobacterium tuberculosis is the causal agent of tuberculosis. Tumor necrosis factor alpha (TNF-α), transforming growth factor ß (TGF-ß), and gamma interferon (IFN-γ) secreted by activated macrophages and lymphocytes are considered essential to contain Mycobacterium tuberculosis infection. The CD43 sialomucin has been reported to act as a receptor for bacilli through its interaction with the chaperonin Cpn60.2, facilitating mycobacterium-macrophage contact. We report here that Cpn60.2 induces both human THP-1 cells and mouse-derived bone marrow-derived macrophages (BMMs) to produce TNF-α and that this production is CD43 dependent. In addition, we present evidence that the signaling pathway leading to TNF-α production upon interaction with Cpn60.2 requires active Src family kinases, phospholipase C-γ (PLC-γ), phosphatidylinositol 3-kinase (PI3K), p38, and Jun N-terminal protein kinase (JNK), both in BMMs and in THP-1 cells. Our data highlight the role of CD43 and Cpn60.2 in TNF-α production and underscore an important role for CD43 in the host-mycobacterium interaction.
Subject(s)
Bacterial Proteins/metabolism , Chaperonin 60/metabolism , Leukosialin/metabolism , Mycobacterium tuberculosis/physiology , Tumor Necrosis Factor-alpha/biosynthesis , Cell Line , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , NF-kappa B/metabolism , Protein Binding , Signal Transduction , Transcription Factor AP-1/metabolismABSTRACT
Ginsenoside Rh2 has been shown to have an anti-tumor effect on a wide range of cancers. A previous study has shown that ginsenoside Rh2 can inhibit the proliferation of the human lung adenocarcinoma A549 cell line in a dose-dependent manner by activating caspase-8/3 activity to promote apoptosis. However, the association of the JNK signaling pathways and transcription factors with ginsenoside Rh2 in the suppression of non-small cell lung cancer has not yet been reported. In this study, we found that ginsenoside Rh2 can activate the JNK/MAPKs signaling pathway and increase the phosphorylation and transcriptional activity of the transcription factors AP-1 and ATF2. Ginsenoside Rh2 also reduced the expression of transcription factors E2F1 and c-Myc. Furthermore, ginsenoside Rh2 affected the expression levels of cyclin D1 and the CDK4 protein, which are key regulatory factors of the G1/S cyclin-dependent kinase. The anti-proliferative and induced apoptotic effects of ginsenoside Rh2 on A549 cell provide evidence to support the application of traditional Chinese medicine to lung cancer treatment.
Subject(s)
Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Ginsenosides/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , MAP Kinase Signaling System/drug effects , A549 Cells , Activating Transcription Factor 2/metabolism , Adenocarcinoma/enzymology , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Apoptosis/drug effects , Caspase 8/metabolism , Cell Growth Processes/drug effects , Cell Proliferation/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Transcription Factor AP-1/metabolismABSTRACT
Vaccinia virus (VACV) is a poxvirus and encodes many proteins that modify the host cell metabolism or inhibit the host response to infection. For instance, it is known that VACV infection can activate the mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) pathway and inhibit activation of the pro-inflammatory transcription factor NF-κB. Since NF-κB and MAPK/AP-1 share common upstream activators we investigated whether six different VACV Bcl-2-like NF-κB inhibitors can also influence MAPK/AP-1 activation. Data presented show that proteins A52, B14 and K7 each contribute to AP-1 activation during VACV infection, and when expressed individually outwith infection. B14 induced the greatest stimulation of AP-1 and further investigation showed B14 activated mainly the MAPKs ERK (extracellular signal-regulated kinase) and JNK (Jun N-terminal kinase), and their substrate c-Jun (a component of AP-1). These data indicate that the same viral protein can have different effects on distinct signalling pathways, in blocking NF-κB activation whilst leading to MAPK/AP-1 activation.
Subject(s)
Host-Pathogen Interactions , Immunologic Factors/metabolism , Transcription Factor AP-1/metabolism , Vaccinia virus/physiology , Viral Proteins/metabolism , Signal TransductionABSTRACT
Estrogen receptor α (ERα) exerts regulatory actions through genomic mechanisms. In the classical pathway, ligand-activated ERα binds directly to DNA through estrogen response elements (ERE) located in the promoter of target genes. ERα can also exert indirect regulation of transcription via protein-protein interaction with other transcription factors such as AP-1.S everal ERα synonymous polymorphisms have been identified and efforts to understand their implications have been made. Nevertheless effects of synonymous polymorphisms are still neglected. This chapter focuses on the experimental procedure employed in order to characterize the transcriptional activity of a synonymous polymorphism of the ERα (rs746432) called Alanine 87 (Ala87). Activity of both WT and Ala87 ERα isoforms on transcriptional pathways can be analyzed in transiently transfected cells using different reporter constructs. ERα efficiency on the classical genomic pathway can be analyzed by determining its transactivation activity on an ERE-driven thymidine kinase (TK) promoter controlling the expression of the luciferase reporter gene. Transcriptional activity through the indirect genomic pathway can be analyzed by employing an AP-1 DNA response element-driven promoter also controlling the expression of luciferase reporter gene.
Subject(s)
Estrogen Receptor alpha/metabolism , Mutation , Response Elements , Thymidine Kinase/genetics , Transcription Factor AP-1/metabolism , Transcriptional Activation , Alanine , Estrogen Receptor alpha/genetics , Gene Expression Regulation , Genes, Reporter , HeLa Cells , Hep G2 Cells , Humans , Luciferases/genetics , Luciferases/metabolism , Protein Binding , Transcription, Genetic , Transfection , WorkflowABSTRACT
Pulmonary tuberculosis (TB) is characterized by oxidative stress and lung tissue destruction by matrix metalloproteinases (MMPs). The interplay between these distinct pathological processes and the implications for TB diagnosis and disease staging are poorly understood. Heme oxygenase-1 (HO-1) levels were previously shown to distinguish active from latent TB, as well as successfully treated Mycobacterium tuberculosis infection. MMP-1 expression is also associated with active TB. In this study, we measured plasma levels of these two important biomarkers in distinct TB cohorts from India and Brazil. Patients with active TB expressed either very high levels of HO-1 and low levels of MMP-1 or the converse. Moreover, TB patients with either high HO-1 or MMP-1 levels displayed distinct clinical presentations, as well as plasma inflammatory marker profiles. In contrast, in an exploratory North American study, inversely correlated expression of HO-1 and MMP-1 was not observed in patients with other nontuberculous lung diseases. To assess possible regulatory interactions in the biosynthesis of these two enzymes at the cellular level, we studied the expression of HO-1 and MMP-1 in M. tuberculosis-infected human and murine macrophages. We found that infection of macrophages with live virulent M. tuberculosis is required for robust induction of high levels of HO-1 but not MMP-1. In addition, we observed that CO, a product of M. tuberculosis-induced HO-1 activity, inhibits MMP-1 expression by suppressing c-Jun/AP-1 activation. These findings reveal a mechanistic link between oxidative stress and tissue remodeling that may find applicability in the clinical staging of TB patients.