Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 612
Filter
1.
FASEB J ; 38(8): e23625, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38661028

ABSTRACT

Platinum resistance remains a major contributor to the poor prognosis of ovarian cancer. Anti-apoptotic protein myeloid cell leukemia-1 (MCL-1) has emerged as a promising target for overcoming drug resistance, but different cancer cells utilize distinct protein degradation pathways to alter MCL-1 level. We systematically investigated E3 ligases to identify novel candidates that mediate platinum resistance in ovarian cancer. Transcription Elongation Factor B (TCEB3) has been identified as a novel E3 ligase recognition subunit that targets MCL-1 in the cytoplasm during platinum treatment other than its traditional function of targeting the Pol II in the nuclear compartment. TCEB3 expression is downregulated in platinum-resistant cell lines and this low expression is associated with poor prognosis. The ubiquitination of MCL-1 induced by TCEB3 leads to cell death in ovarian cancer. Moreover, platinum treatment increased the cytoplasm proportion of TCEB3, and the cytoplasm localization of TCEB3 is important for its targeting of MCL-1. This study emphasizes the dual function of TCEB3 in homeostasis maintenance and in cell fate determination under different conditions, and provides a new insight into drug resistance in ovarian cancer.


Subject(s)
Apoptosis , Drug Resistance, Neoplasm , Myeloid Cell Leukemia Sequence 1 Protein , Ovarian Neoplasms , Ubiquitination , Humans , Female , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Cell Line, Tumor , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Proteolysis , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/genetics , Animals , Mice
2.
Genome Biol ; 25(1): 102, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641822

ABSTRACT

BACKGROUND: Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS: Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS: Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.


Subject(s)
Positive Transcriptional Elongation Factor B , RNA Polymerase II , Humans , Chromatin , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , RNA Polymerase II/metabolism , RNA Splicing , RNA Splicing Factors/genetics , Transcription, Genetic , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
3.
Sci Rep ; 14(1): 6400, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38493200

ABSTRACT

Leukaemia of various subtypes are driven by distinct chromosomal rearrangement or genetic abnormalities. The leukaemogenic fusion transcripts or genetic mutations serve as molecular markers for minimal residual disease (MRD) monitoring. The current study evaluated the applicability of several droplet digital PCR assays for the detection of these targets at RNA and DNA levels (atypical BCR::ABL1 e19a2, e23a2ins52, e13a2ins74, rare types of CBFB::MYH11 (G and I), PCM1::JAK2, KMT2A::ELL2, PICALM::MLLT10 fusion transcripts and CEBPA frame-shift and insertion/duplication mutations) with high sensitivity. The analytical performances were assessed by the limit of blanks, limit of detection, limit of quantification and linear regression. Our data demonstrated serial MRD monitoring for patients at molecular level could become "digitalized", which was deemed important to guide clinicians in treatment decision for better patient care.


Subject(s)
Hematologic Neoplasms , Leukemia , Humans , Neoplasm, Residual/genetics , Neoplasm, Residual/diagnosis , Polymerase Chain Reaction , Leukemia/diagnosis , Chromosome Aberrations , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/genetics , Transcriptional Elongation Factors/genetics
4.
Gene ; 908: 148294, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38373659

ABSTRACT

ß-thalassemia is one of the most common monogenic disorders in areas of the tropics and subtropics, which represents a major familial and social burden to local people. The elevated Hb A2 level, generally specified as greater than 3.5 %, is commonly used as a high efficiency index for screening of ß-thalassemia carriers. However, mutations in other genes such as GATA1 and KLF1, could also result in increased Hb A2 level. In this study, we identified two novel variants in the SUPT5H gene: a frameshift mutation (SUPT5H: c.3032_3033delTG, p.M1011Mfs*9) and a nonsense mutation (SUPT5H: c.397C > T, p.Arg133*) in two Chinese individuals. Utilizing a combination of phenotype analysis, bioinformatics analysis, and functional analysis, we deduced that these two variants modified the SUPT5H protein's structure, thereby impacting its function and consequently leading to the heightened Hb A2 level phenotype found in the carriers. Furthermore, through a comprehensive literature review, a mutation spectrum was consolidated for SUPT5H, an investigation into the genotype-phenotype correlation was conducted, and factors known to influence Hb A2 levels were identified. Based on this in-depth understanding, clinicians are better equipped to carry out large scale screenings in regions with high prevalence of ß-thalassemia.


Subject(s)
beta-Thalassemia , Humans , Genotype , beta-Thalassemia/genetics , beta-Thalassemia/diagnosis , Hemoglobin A2/genetics , Hemoglobin A2/analysis , Mutation , Phenotype , Nuclear Proteins/genetics , Transcriptional Elongation Factors/genetics
5.
EMBO J ; 43(6): 1065-1088, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383864

ABSTRACT

The B complex is a key intermediate stage of spliceosome assembly. To improve the structural resolution of monomeric, human spliceosomal B (hB) complexes and thereby generate a more comprehensive hB molecular model, we determined the cryo-EM structure of B complex dimers formed in the presence of ATP γ S. The enhanced resolution of these complexes allows a finer molecular dissection of how the 5' splice site (5'ss) is recognized in hB, and new insights into molecular interactions of FBP21, SNU23 and PRP38 with the U6/5'ss helix and with each other. It also reveals that SMU1 and RED are present as a heterotetrameric complex and are located at the interface of the B dimer protomers. We further show that MFAP1 and UBL5 form a 5' exon binding channel in hB, and elucidate the molecular contacts stabilizing the 5' exon at this stage. Our studies thus yield more accurate models of protein and RNA components of hB complexes. They further allow the localization of additional proteins and protein domains (such as SF3B6, BUD31 and TCERG1) whose position was not previously known, thereby uncovering new functions for B-specific and other hB proteins during pre-mRNA splicing.


Subject(s)
RNA Splicing , Spliceosomes , Humans , Spliceosomes/genetics , Cryoelectron Microscopy , RNA Splice Sites , Exons , RNA Precursors/genetics , RNA Precursors/metabolism , Transcriptional Elongation Factors/genetics , Nuclear Proteins/metabolism
6.
Nucleic Acids Res ; 52(8): 4151-4166, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38340348

ABSTRACT

In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53. Herein, we report that these DNA intercalators impact chromatin biology by interfering with the chromatin stability of RNA polymerases I, II and III. These three compounds have the capacity to induce degradation of RNA polymerase II and they simultaneously enable the trapping of Topoisomerases TOP2A and TOP2B on the chromatin. In addition, BMH-21 also acts as a catalytic inhibitor of Topoisomerase II, resembling Aclarubicin. Moreover, BMH-21 induces chromatin trapping of the histone chaperone FACT and propels accumulation of Z-DNA and histone eviction, similarly to Aclarubicin and CBL0137. These DNA intercalators have a cumulative impact on general transcription machinery by inducing accumulation of topological defects and impacting nuclear chromatin. Therefore, their cytotoxic capabilities may be the result of compounding deleterious effects on chromatin homeostasis.


Subject(s)
Chromatin , DNA Topoisomerases, Type II , Intercalating Agents , Poly-ADP-Ribose Binding Proteins , RNA Polymerase II , Chromatin/metabolism , Intercalating Agents/pharmacology , Intercalating Agents/chemistry , DNA Topoisomerases, Type II/metabolism , RNA Polymerase II/metabolism , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , DNA-Binding Proteins/metabolism , High Mobility Group Proteins/metabolism , High Mobility Group Proteins/genetics , Histones/metabolism , Topoisomerase II Inhibitors/pharmacology , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , DNA Damage , DNA/metabolism , DNA/chemistry , RNA Polymerase I/metabolism , RNA Polymerase I/antagonists & inhibitors , RNA Polymerase III/metabolism , Transcription, Genetic/drug effects , Carbazoles , Diketopiperazines
7.
Prostate ; 84(5): 460-472, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38192023

ABSTRACT

BACKGROUND: Through whole-exome sequencing of 60 formalin-fixed paraffin-embedded Nigerian (NGRn) benign prostatic hyperplasia (BPH) samples, we identified germline and somatic alterations in apoptotic pathways impacting BPH development and progression. Prostate enlargement is a common occurrence in male aging; however, this enlargement can lead to lower urinary tract symptoms that negatively impact quality of life. This impact is disproportionately present in men of African ancestry. BPH pathophysiology is poorly understood and studies examining non-European populations are lacking. METHODS: In this study, NGRn BPH, normal prostate, and prostate cancer (PCa) tumor samples were sequenced and compared to characterize genetic alterations in NGRn BPH. RESULTS: Two hundred and two nonbenign, ClinVar-annotated germline variants were present in NGRn BPH samples. Six genes [BRCA1 (92%), HSD3B1 (85%), TP53 (37%), PMS2 (23%), BARD1 (20%), and BRCA2 (17%)] were altered in at least 10% of samples; however, compared to NGRn normal and tumor, the frequency of alterations in BPH samples showed no significant differences at the gene or variant level. BRCA2_rs11571831 and TP53_rs1042522 germline alterations had a statistically significant co-occurrence interaction in BPH samples. In at least two BPH samples, 173 genes harbored somatic variants known to be clinically actionable. Three genes (COL18A1, KIF16B, and LRP1) showed a statistically significant (p < 0.05) higher frequency in BPH. NGRn BPH also had five gene pairs (PKD1/KIAA0100, PKHD1/PKD1, DNAH9/LRP1B, NWD1/DCHS2, and TCERG1/LMTK2) with statistically significant co-occurring interactions. Two hundred and seventy-nine genes contained novel somatic variants in NGRn BPH. Three genes (CABP1, FKBP1C, and RP11-595B24.2) had a statistically significant (p < 0.05) higher alteration frequency in NGRn BPH and three were significantly higher in NGRn tumor (CACNA1A, DMKN, and CACNA2D2). Pairwise Fisher's exact tests showed 14 gene pairs with statistically significant (p < 0.05) interactions and four interactions approaching significance (p < 0.10). Mutational patterns in NGRn BPH were similar to COSMIC (Catalog of Somatic Mutations in Cancer) signatures associated with aging and dysfunctional DNA damage repair. CONCLUSIONS: NGRn BPH contained significant germline alteration interactions (BRCA2_rs11571831 and TP53_rs1042522) and increased somatic alteration frequencies (LMTK2, LRP1, COL18A1, CABP1, and FKBP1C) that impact apoptosis. Normal prostate development is maintained by balancing apoptotic and proliferative activity. Dysfunction in either mechanism can lead to abnormal prostate growth. This work is the first to examine genomic sequencing in NGRn BPH and provides data that fill known gaps in the understanding BPH and how it impacts men of African ancestry.


Subject(s)
Prostatic Hyperplasia , Prostatic Neoplasms , Humans , Male , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/pathology , Exome Sequencing , Quality of Life , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostate/pathology , Axonemal Dyneins/genetics , Transcriptional Elongation Factors/genetics , Kinesins/genetics
8.
Oncogene ; 43(8): 566-577, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182897

ABSTRACT

Mutations in APC, found in 80% of colon caner, enhance ß-catenin stabilization, which is the initial step of colonic tumorigenesis. However, the core transcriptional mechanism underlying the induction of colon cancer stemness by stable ß-catenin remains unclear. Here, we found that inducible inhibition of ß-catenin suppressed elongation of Pol II and RNA polymerase-associated factor 1 complex (PAF1C) around the transcription start site (TSS) of LGR5. Moreover, stable ß-catenin enhanced the formation of active Pol II complex cooperatively with CDC73 and CDK9 by facilitating the recruitment of DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) complexes to the Pol II complex. Subsequently, stable ß-catenin facilitated the formation of the Pol II-DSIF-PAF1C complex, suggesting that stable ß-catenin induces cancer stemness by stimulating active Pol II complex through NELF and PAF1C. Furthermore, NELF or PAF1C inhibition recapitulated the changes in cancer stemness-related gene expression induced by the inhibition of stable ß-catenin and suppressed colon cancer stemness. Additionally, the chemical inhibition of CDK12 (a downstream transcription CDK of PAF1C) suppressed colon cancer stemness. These results suggest that NELF and PAF1C are the core transcriptional machineries that control expression of colon cancer stemness-inducing genes and may be therapeutic targets for colon cancer.


Subject(s)
Colonic Neoplasms , Transcription Factors , beta Catenin , Humans , beta Catenin/genetics , beta Catenin/metabolism , Colonic Neoplasms/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
10.
Cancer Biomark ; 39(3): 197-210, 2024.
Article in English | MEDLINE | ID: mdl-38108345

ABSTRACT

BACKGROUND: Post-transcriptional regulation of mRNA induced by microRNA is known crucial in tumor occurrence, progression, and metastasis. This study aims at identifying significant miRNA-mRNA axes for stomach adenocarcinomas (STAD). METHOD: RNA expression profiles were collected from The Cancer Genome Atlas (TCGA) and GEO database for screening differently expressed RNAs and miRNAs (DE-miRNAs/DE-mRNAs). Functional enrichment analysis was conducted with Hiplot and DAVID-mirPath. Connectivity MAP was applied in compounds prediction. MiRNA-mRNA axes were forecasted by TarBase and MiRTarBase. Real-time reverse transcription polymerase chain reaction (RT-qPCR) of stomach specimen verified these miRNA-mRNA pairs. Diagnosis efficacy of miRNA-mRNA interactions was measured by Receiver operation characteristic curve and Decision Curve Analysis. Clinical and survival analysis were also carried out. CIBERSORT and ESTIMATE was employed for immune microenvironment measurement. RESULT: Totally 228 DE-mRNAs (105 upregulated and 123 downregulated) and 38 DE-miRNAs (22 upregulated and 16 downregulated) were considered significant. TarBase and MiRTarBase identified 18 miRNA-mRNA pairs, 12 of which were verified in RT-qPCR. The network of miR-301a-3p/ELL2 and miR-1-3p/ANXA2 were established and verified in external validation. The model containing all 4 signatures showed better diagnosis ability. Via interacting with M0 macrophage and resting mast cell, these miRNA-mRNA axes may influence tumor microenvironment. CONCLUSION: This study established a miRNA-mRNA network via bioinformatic analysis and experiment validation for STAD.


Subject(s)
Adenocarcinoma , MicroRNAs , Stomach Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Adenocarcinoma/genetics , Stomach Neoplasms/genetics , Tumor Microenvironment/genetics , Transcriptional Elongation Factors/genetics
11.
Gene ; 893: 147959, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37923091

ABSTRACT

RSC (remodels the structure of chromatin) is an essential ATP-dependent chromatin remodeling complex in Saccharomyces cerevisiae. RSC utilizes its ATPase subunit, Sth1, to slide or remove nucleosomes. RSC has been shown to regulate the width of the nucleosome-depleted regions (NDRs) by sliding the flanking nucleosomes away from NDRs. As such, when RSC is depleted, nucleosomes encroach NDRs, leading to transcription initiation defects. In this study, we examined the effects of the catalytic-dead Sth1 on transcription and compared them to those observed during acute and rapid Sth1 depletion by auxin-induced degron strategy. We found that rapid depletion of Sth1 reduces recruitment of TBP and Pol II in highly transcribed genes, as would be expected considering its role in regulating chromatin structure at promoters. In contrast, cells harboring the catalytic-dead Sth1 (sth1-K501R) exhibited a severe reduction in TBP binding, but, surprisingly, also displayed a substantial accumulation in Pol II occupancies within coding regions. The Pol II occupancies further increased upon depleting endogenous Sth1 in the catalytic-dead mutant, suggesting that the inactive Sth1 contributes to Pol II accumulation in coding regions. Notwithstanding the Pol II increase, the ORF occupancies of histone chaperones, FACT and Spt6 were significantly reduced in the mutant. These results suggest a potential role for RSC in recruiting/retaining these chaperones in coding regions. Pol II accumulation despite substantial reductions in TBP, FACT, and Spt6 occupancies in the catalytic-dead mutant could indicate severe transcription elongation and termination defects. Such defects would be consistent with studies showing that RSC is recruited to coding regions in a transcription-dependent manner. Thus, these findings imply a role for RSC in transcription elongation and termination processes, in addition to its established role in transcription initiation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Chromatin/genetics , Chromatin/metabolism , DNA-Binding Proteins/genetics , High Mobility Group Proteins/genetics , Nucleosomes/genetics , Nucleosomes/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Transcriptional Elongation Factors/genetics
12.
Mol Cell ; 83(22): 3972-3999, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37922911

ABSTRACT

The elongation stage of transcription by RNA polymerase II (RNA Pol II) is central to the regulation of gene expression in response to developmental and environmental cues in metazoan. Dysregulated transcriptional elongation has been associated with developmental defects as well as disease and aging processes. Decades of genetic and biochemical studies have painstakingly identified and characterized an ensemble of factors that regulate RNA Pol II elongation. This review summarizes recent findings taking advantage of genetic engineering techniques that probe functions of elongation factors in vivo. We propose a revised model of elongation control in this accelerating field by reconciling contradictory results from the earlier biochemical evidence and the recent in vivo studies. We discuss how elongation factors regulate promoter-proximal RNA Pol II pause release, transcriptional elongation rate and processivity, RNA Pol II stability and RNA processing, and how perturbation of these processes is associated with developmental disorders, neurodegenerative disease, cancer, and aging.


Subject(s)
Neurodegenerative Diseases , RNA Polymerase II , Animals , Humans , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcriptional Elongation Factors/genetics , Neurodegenerative Diseases/genetics , Transcription, Genetic , Gene Expression Regulation , Aging/genetics , Genes, Developmental
13.
PLoS Genet ; 19(11): e1010492, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37939109

ABSTRACT

Heterochromatin is a condensed chromatin structure that represses transcription of repetitive DNA elements and developmental genes, and is required for genome stability. Paradoxically, transcription of heterochromatic sequences is required for establishment of heterochromatin in diverse eukaryotic species. As such, components of the transcriptional machinery can play important roles in establishing heterochromatin. How these factors coordinate with heterochromatin proteins at nascent heterochromatic transcripts remains poorly understood. In the model eukaryote Schizosaccharomyces pombe (S. pombe), heterochromatin nucleation can be coupled to processing of nascent transcripts by the RNA interference (RNAi) pathway, or to other post-transcriptional mechanisms that are RNAi-independent. Here we show that the RNA polymerase II processivity factor Spt5 negatively regulates heterochromatin in S. pombe through its C-terminal domain (CTD). The Spt5 CTD is analogous to the CTD of the RNA polymerase II large subunit, and is comprised of multiple repeats of an amino acid motif that is phosphorylated by Cdk9. We provide evidence that genetic ablation of Spt5 CTD phosphorylation results in aberrant RNAi-dependent nucleation of heterochromatin at an ectopic location, as well as inappropriate spread of heterochromatin proximal to centromeres. In contrast, truncation of Spt5 CTD repeat number enhanced RNAi-independent heterochromatin formation and bypassed the requirement for RNAi. We relate these phenotypes to the known Spt5 CTD-binding factor Prf1/Rtf1. This separation of function argues that Spt5 CTD phosphorylation and CTD length restrict heterochromatin through unique mechanisms. More broadly, our findings argue that length and phosphorylation of the Spt5 CTD repeat array have distinct regulatory effects on transcription.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Phosphorylation , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Heterochromatin/genetics , Heterochromatin/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcriptional Elongation Factors/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Terminal Repeat Sequences , RNA Interference
14.
Sci Rep ; 13(1): 18600, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903840

ABSTRACT

Familial dysautonomia (FD) is a rare neurodevelopmental and neurodegenerative disease caused by a splicing mutation in the Elongator Acetyltransferase Complex Subunit 1 (ELP1) gene. The reduction in ELP1 mRNA and protein leads to the death of retinal ganglion cells (RGCs) and visual impairment in all FD patients. Currently patient symptoms are managed, but there is no treatment for the disease. We sought to test the hypothesis that restoring levels of Elp1 would thwart the death of RGCs in FD. To this end, we tested the effectiveness of two therapeutic strategies for rescuing RGCs. Here we provide proof-of-concept data that gene replacement therapy and small molecule splicing modifiers effectively reduce the death of RGCs in mouse models for FD and provide pre-clinical foundational data for translation to FD patients.


Subject(s)
Dysautonomia, Familial , Neurodegenerative Diseases , Mice , Animals , Humans , Retinal Ganglion Cells/metabolism , Dysautonomia, Familial/genetics , Dysautonomia, Familial/therapy , Dysautonomia, Familial/metabolism , Neurodegenerative Diseases/metabolism , RNA Splicing , Genetic Therapy , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
15.
Hemoglobin ; 47(4): 145-146, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37807711

ABSTRACT

We identified a novel mutation in the SUPT5H gene in a Chinese female who presented with a ß-thalassemia trait. The substitution of c.193C > T (p.Arg65*) leads to a premature stop codon on residue 65 and could be associated with haploinsufficiency. This variant was inherited from the mother who also had the asymptomatic phenotype of ß-thalassemia trait. Our case further supports the role of SUPT5H as a potential ß-globin chain production-modulating gene.


Subject(s)
beta-Thalassemia , Humans , Female , beta-Thalassemia/diagnosis , beta-Thalassemia/genetics , Codon , Phenotype , Mutation , Nuclear Proteins , Transcriptional Elongation Factors/genetics
16.
Cell Physiol Biochem ; 57(5): 395-408, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37876219

ABSTRACT

Suppressor of Ty homolog-5 (SPT5) discovered in the yeast mutant screens as a suppressor of mutation caused by the insertion of the Transposons of yeast (Ty) element along with SPT4, with which it forms a holoenzyme complex known as DRB sensitivity-inducing factor (DSIF) and plays an essential role in the regulation of transcription. SPT5 is a highly conserved protein across all three domains of life and performs critical functions in transcription, starting from promoter-proximal pausing to termination. We also highlight the emerging role of SPT5 in other non-canonical functions, such as the regulation of post-translational modifications (PTM) and the transcriptional regulation of non-coding genes. Also, in brief, we highlight the clinical implications of SPT5 dysregulation.


Subject(s)
Nuclear Proteins , Saccharomyces cerevisiae Proteins , Nuclear Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic
17.
Dev Cell ; 58(20): 2112-2127.e4, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37586368

ABSTRACT

Controlled release of promoter-proximal paused RNA polymerase II (RNA Pol II) is crucial for gene regulation. However, studying RNA Pol II pausing is challenging, as pause-release factors are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H, which encodes SPT5, in individuals with ß-thalassemia. During erythropoiesis in healthy human cells, cell cycle genes were highly paused as cells transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, RNA Pol II pause release was globally disrupted, and as cells began transitioning from progenitors to precursors, differentiation was delayed, accompanied by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, identifying a role for RNA Pol II pausing in temporally coordinating the cell cycle and erythroid differentiation.


Subject(s)
Gene Expression Regulation , RNA Polymerase II , Humans , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Cell Differentiation , Cell Cycle , Transcription, Genetic , Nuclear Proteins/metabolism , Transcriptional Elongation Factors/genetics
18.
Trends Genet ; 39(11): 858-872, 2023 11.
Article in English | MEDLINE | ID: mdl-37481442

ABSTRACT

Transcription elongation requires elaborate coordination between the transcriptional machinery and chromatin regulatory factors to successfully produce RNA while preserving the epigenetic landscape. Recent structural and genomic studies have highlighted that suppressor of Ty 6 (Spt6), a conserved histone chaperone and transcription elongation factor, sits at the crux of the transcription elongation process. Other recent studies have revealed that Spt6 also promotes DNA replication and genome integrity. Here, we review recent studies of Spt6 that have provided new insights into the mechanisms by which Spt6 controls transcription and have revealed the breadth of Spt6 functions in eukaryotic cells.


Subject(s)
Histones , Humans , DNA Replication/genetics , Genomic Instability/genetics , Histone Chaperones/genetics , Histone Chaperones/chemistry , Histone Chaperones/metabolism , Histones/genetics , Histones/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription, Genetic , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/metabolism , Animals
19.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(5): 741-748, 2023 May 20.
Article in Chinese | MEDLINE | ID: mdl-37313815

ABSTRACT

OBJECTIVE: To explore the correlation of polymorphisms of AF4/FMR2 family genes and IL-10 gene with genetic susceptibility to ankylosing spondylitis (AS) and identify the high-risk factors of AS. METHODS: This case-control study was conducted among 207 AS patients and 321 healthy individuals. The tag single nucleotide polymorphisms (SNPs) rs340630, rs241084, rs10865035, rs1698105, and rs1800896 of the AF4/FMR2 family gene and IL-10 gene of the AS patients were genotyped, and the distribution frequencies of the genotypes and alleles were analyzed to explore the relationship between different genetic models and AS and the gene-gene and gene-environment interactions. RESULTS: Gender ratio, smoking history, drinking history, hypertension, erythrocyte sedimentation rate and C-reactive protein differed significantly between the case group and the control group (P < 0.05). The dominant model and recessive model of AFF1 rs340630, the recessive model of AFF3 rs10865035, and the recessive model of IL-10 rs1800896 were significantly different between the two groups (P=0.031, 0.010, 0.031, and 0.019, respectively). Gene-environment interaction analysis suggested that the interaction model incorporating AFF1 rs340630, AFF2 rs241084, AFF3 rs10865035, AFF4 rs1698105, IL-10 rs1800896, smoking history and drinking history was the best model. The genes related with AF4/FMR2 and IL-10 were enriched in the biological processes of AF4 super extension complex, interleukin family signal transduction, cytokine stimulation and apoptosis. The expression levels of AF4/FMR2 and IL-10 were positively correlated with immune infiltration (r > 0). CONCLUSION: The SNPs of AF4/FMR2 and IL-10 genes are associated with the susceptibility to AS, and the interactions of AF4/FMR2 and IL-10 genes with the environmental factors contributes causes AS through immune infiltration.


Subject(s)
Interleukin-10 , Nuclear Proteins , Spondylitis, Ankylosing , Transcriptional Elongation Factors , Humans , Case-Control Studies , Genetic Predisposition to Disease , Interleukin-10/genetics , Polymorphism, Single Nucleotide , Spondylitis, Ankylosing/genetics , Transcriptional Elongation Factors/genetics , Nuclear Proteins/genetics
20.
Am J Med Genet A ; 191(8): 2113-2131, 2023 08.
Article in English | MEDLINE | ID: mdl-37377026

ABSTRACT

Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (>60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS-like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or "DTRs"). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype-phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population.


Subject(s)
De Lange Syndrome , Nuclear Proteins , Humans , Nuclear Proteins/genetics , De Lange Syndrome/diagnosis , De Lange Syndrome/genetics , De Lange Syndrome/pathology , Transcription Factors/genetics , Cell Cycle Proteins/genetics , Phenotype , Mutation , Genomics , Genetic Association Studies , Transcriptional Elongation Factors/genetics , Histone Deacetylases/genetics , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...