Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 136(6): 698-714, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32350520

ABSTRACT

Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive hematologic malignancy. Previous studies showed that AEL leukemic cells often carry complex karyotypes and mutations in known AML-associated oncogenes. To better define the underlying molecular mechanisms driving the erythroid phenotype, we studied a series of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epigenetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low mutational burden. We established an erythroid vs myeloid transcriptome-based space in which, independently of the molecular subgroup, the majority of the AEL samples exhibited a unique mapping different from both non-M6 AML and myelodysplastic syndrome samples. Notably, >25% of AEL patients, including in the genetically undefined subgroup, showed aberrant expression of key transcriptional regulators, including SKI, ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic stem or progenitor cells.


Subject(s)
Leukemia, Erythroblastic, Acute/genetics , Neoplasm Proteins/physiology , Transcription Factors/physiology , Transcriptome , Adult , Animals , Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Dioxygenases , Erythroblasts/metabolism , Erythropoiesis/genetics , Female , GATA1 Transcription Factor/deficiency , GATA1 Transcription Factor/genetics , Gene Knock-In Techniques , Genetic Heterogeneity , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Middle Aged , Mutation , Neoplasm Proteins/genetics , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/physiology , RNA-Seq , Radiation Chimera , Repressor Proteins/genetics , Repressor Proteins/physiology , Transcription Factors/genetics , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/physiology , Exome Sequencing , Young Adult
2.
Genome Res ; 29(2): 223-235, 2019 02.
Article in English | MEDLINE | ID: mdl-30606742

ABSTRACT

The aberrant activities of transcription factors such as the androgen receptor (AR) underpin prostate cancer development. While the AR cis-regulation has been extensively studied in prostate cancer, information pertaining to the spatial architecture of the AR transcriptional circuitry remains limited. In this paper, we propose a novel framework to profile long-range chromatin interactions associated with AR and its collaborative transcription factor, erythroblast transformation-specific related gene (ERG), using chromatin interaction analysis by paired-end tag (ChIA-PET). We identified ERG-associated long-range chromatin interactions as a cooperative component in the AR-associated chromatin interactome, acting in concert to achieve coordinated regulation of a subset of AR target genes. Through multifaceted functional data analysis, we found that AR-ERG interaction hub regions are characterized by distinct functional signatures, including bidirectional transcription and cotranscription factor binding. In addition, cancer-associated long noncoding RNAs were found to be connected near protein-coding genes through AR-ERG looping. Finally, we found strong enrichment of prostate cancer genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) at AR-ERG co-binding sites participating in chromatin interactions and gene regulation, suggesting GWAS target genes identified from chromatin looping data provide more biologically relevant findings than using the nearest gene approach. Taken together, our results revealed an AR-ERG-centric higher-order chromatin structure that drives coordinated gene expression in prostate cancer progression and the identification of potential target genes for therapeutic intervention.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Receptors, Androgen/metabolism , Transcription, Genetic , Cell Line, Tumor , Chromatin/chemistry , Gene Regulatory Networks , Genome, Human , Humans , Male , Oncogene Proteins, Fusion/analysis , Polymorphism, Single Nucleotide , Prostatic Neoplasms/metabolism , RNA, Long Noncoding/metabolism , Transcriptional Regulator ERG/metabolism , Transcriptional Regulator ERG/physiology
3.
Nat Genet ; 49(9): 1294-1295, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28854182

ABSTRACT

ERG overexpression in prostate cancers promotes the development of widespread changes in gene expression and chromatin landscapes, leading to redistribution of key transcription factors in prostate cancers positive for the TMPRSS2-ERG fusion gene. The overexpression of ERG is further assisted by the development of a super-enhancer in the ERG locus.


Subject(s)
Chromatin/metabolism , Prostatic Neoplasms/genetics , Chromatin Assembly and Disassembly/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Molecular Targeted Therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/therapy , Serine Endopeptidases/physiology , Transcriptional Regulator ERG/physiology
4.
Cancer Cell ; 31(3): 452-465, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28292442

ABSTRACT

Chimeric transcription factors are a hallmark of human leukemia, but the molecular mechanisms by which they block differentiation and promote aberrant self-renewal remain unclear. Here, we demonstrate that the ETO2-GLIS2 fusion oncoprotein, which is found in aggressive acute megakaryoblastic leukemia, confers megakaryocytic identity via the GLIS2 moiety while both ETO2 and GLIS2 domains are required to drive increased self-renewal properties. ETO2-GLIS2 directly binds DNA to control transcription of associated genes by upregulation of expression and interaction with the ETS-related ERG protein at enhancer elements. Importantly, specific interference with ETO2-GLIS2 oligomerization reverses the transcriptional activation at enhancers and promotes megakaryocytic differentiation, providing a relevant interface to target in this poor-prognosis pediatric leukemia.


Subject(s)
Leukemia, Megakaryoblastic, Acute/pathology , Oncogene Proteins, Fusion/physiology , Transcriptional Activation , Animals , Cell Differentiation , Child , Enhancer Elements, Genetic , GATA1 Transcription Factor/genetics , Humans , Mice , Oncogene Proteins, Fusion/chemistry , Transcriptional Regulator ERG/physiology
5.
Nucleic Acids Res ; 44(22): 10644-10661, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27604872

ABSTRACT

Aberrant stem cell-like gene regulatory networks are a feature of leukaemogenesis. The ETS-related gene (ERG), an important regulator of normal haematopoiesis, is also highly expressed in T-ALL and acute myeloid leukaemia (AML). However, the transcriptional regulation of ERG in leukaemic cells remains poorly understood. In order to discover transcriptional regulators of ERG, we employed a quantitative mass spectrometry-based method to identify factors binding the 321 bp ERG +85 stem cell enhancer region in MOLT-4 T-ALL and KG-1 AML cells. Using this approach, we identified a number of known binders of the +85 enhancer in leukaemic cells along with previously unknown binders, including ETV6 and IKZF1. We confirmed that ETV6 and IKZF1 were also bound at the +85 enhancer in both leukaemic cells and in healthy human CD34+ haematopoietic stem and progenitor cells. Knockdown experiments confirmed that ETV6 and IKZF1 are transcriptional regulators not just of ERG, but also of a number of genes regulated by a densely interconnected network of seven transcription factors. At last, we show that ETV6 and IKZF1 expression levels are positively correlated with expression of a number of heptad genes in AML and high expression of all nine genes confers poorer overall prognosis.


Subject(s)
Ikaros Transcription Factor/physiology , Proto-Oncogene Proteins c-ets/physiology , Repressor Proteins/physiology , Transcription, Genetic , Base Sequence , Binding Sites , Cell Line, Tumor , Consensus Sequence , Enhancer Elements, Genetic , Gene Expression Regulation, Leukemic , Gene Regulatory Networks , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Prognosis , Proportional Hazards Models , Protein Binding , Proteome , Proteomics , Transcriptional Regulator ERG/physiology , ETS Translocation Variant 6 Protein
6.
Oncotarget ; 7(32): 51375-51392, 2016 Aug 09.
Article in English | MEDLINE | ID: mdl-27285981

ABSTRACT

Prostate cancer is a major health issue in the Western world. The most common gene rearrangement in prostate cancer is the TMPRSS2-ERG fusion, which results in aberrant expression of the transcription factor ERG. The insulin-like growth factor-1 receptor (IGF1R) plays a key role in cell growth and tumorigenesis, and is overexpressed in most malignancies, including prostate cancer. In this study we show that TMPRSS2-ERG mediates its tumorigenic effects through regulation of IGF1R gene expression. Silencing of T-ERG in VCaP cells resulted in downregulation of both IGF1R and Sp1, a critical IGF1R regulator. Co-immunoprecipitation assays revealed a physical interaction between transcription factors ERG and Sp1, with potential relevance in IGF1R gene regulation. In addition, transactivation of the IGF1R gene by ERG was mediated at the level of transcription, as indicated by results of promoter assays. To identify new co-activators of the TMPRSS2-ERG fusion protein we performed mass spectrometry-based proteomic analyses. Among other interactors, we identified AP-2 complex subunit mu (AP2M1) and caveolin-1 (CAV1) in association with ERG in cell nuclei. These proteins play a mechanistic role in IGF1R internalization. Our analyses are consistent with a potential novel function of TMPRSS2-ERG as a major regulator of IGF1R gene expression. Results may impinge upon ongoing efforts to target the IGF1R in the clinics.


Subject(s)
Oncogene Proteins, Fusion/physiology , Prostatic Neoplasms/genetics , Receptors, Somatomedin/genetics , Sp1 Transcription Factor/physiology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , HEK293 Cells , Humans , Male , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Interaction Maps , Receptor, IGF Type 1 , Serine Endopeptidases/metabolism , Serine Endopeptidases/physiology , Transcriptional Regulator ERG/physiology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...