Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.980
Filter
1.
Nat Commun ; 15(1): 4017, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740759

ABSTRACT

Ultrasound-driven bioelectronics could offer a wireless scheme with sustainable power supply; however, current ultrasound implantable systems present critical challenges in biocompatibility and harvesting performance related to lead/lead-free piezoelectric materials and devices. Here, we report a lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation, which integrates two developed lead-free sandwich porous 1-3-type piezoelectric composite elements with enhanced harvesting performance in a flexible printed circuit board. The implant is ultrasonically powered through a portable external dual-frequency transducer and generates programmable biphasic stimulus pulses in clinically relevant frequencies. Furthermore, we demonstrate ultrasound-driven implants for long-term biosafety therapy in deep brain stimulation through an epileptic rodent model. With biocompatibility and improved electrical performance, the lead-free materials and devices presented here could provide a promising platform for developing implantable ultrasonic electronics in the future.


Subject(s)
Deep Brain Stimulation , Wireless Technology , Deep Brain Stimulation/instrumentation , Deep Brain Stimulation/methods , Animals , Wireless Technology/instrumentation , Rats , Electrodes, Implanted , Epilepsy/therapy , Male , Prostheses and Implants , Rats, Sprague-Dawley , Transducers , Equipment Design , Ultrasonic Waves
2.
Clin Oral Investig ; 28(5): 294, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698252

ABSTRACT

OBJECTIVES: To compare ultrasonic scaler prototypes based on a planar piezoelectric transducer with different working frequencies featuring a titanium (Ti-20, Ti-28, and Ti-40) or stainless steel (SS-28) instrument, with a commercially available scaler (com-29) in terms of biofilm removal and reformation, dentine surface roughness and adhesion of periodontal fibroblasts. MATERIALS AND METHODS: A periodontal multi-species biofilm was formed on specimens with dentine slices. Thereafter specimens were instrumented with scalers in a periodontal pocket model or left untreated (control). The remaining biofilms were quantified and allowed to reform on instrumented dentine slices. In addition, fibroblasts were seeded for attachment evaluation after 72 h of incubation. Dentine surface roughness was analyzed before and after instrumentation. RESULTS: All tested instruments reduced the colony-forming unit (cfu) counts by about 3 to 4 log10 and the biofilm quantity (each p < 0.01 vs. control), but with no statistically significant difference between the instrumented groups. After 24-hour biofilm reformation, no differences in cfu counts were observed between any groups, but the biofilm quantity was about 50% in all instrumented groups compared to the control. The attachment of fibroblasts on instrumented dentine was significantly higher than on untreated dentine (p < 0.05), with the exception of Ti-20. The dentine surface roughness was not affected by any instrumentation. CONCLUSIONS: The planar piezoelectric scaler prototypes are able to efficiently remove biofilm without dentine surface alterations, regardless of the operating frequency or instrument material. CLINICAL RELEVANCE: Ultrasonic scalers based on a planar piezoelectric transducer might be an alternative to currently available ultrasonic scalers.


Subject(s)
Biofilms , Dental Scaling , Dentin , Fibroblasts , Periodontal Ligament , Surface Properties , Titanium , Humans , Dental Scaling/instrumentation , In Vitro Techniques , Dentin/microbiology , Periodontal Ligament/cytology , Transducers , Cell Adhesion , Stainless Steel , Equipment Design , Ultrasonic Therapy/instrumentation
3.
Sensors (Basel) ; 24(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732775

ABSTRACT

Photoacoustic imaging (PAI) is a rapidly developing emerging non-invasive biomedical imaging technique that combines the strong contrast from optical absorption imaging and the high resolution from acoustic imaging. Abnormal biological tissues (such as tumors and inflammation) generate different levels of thermal expansion after absorbing optical energy, producing distinct acoustic signals from normal tissues. This technique can detect small tissue lesions in biological tissues and has demonstrated significant potential for applications in tumor research, melanoma detection, and cardiovascular disease diagnosis. During the process of collecting photoacoustic signals in a PAI system, various factors can influence the signals, such as absorption, scattering, and attenuation in biological tissues. A single ultrasound transducer cannot provide sufficient information to reconstruct high-precision photoacoustic images. To obtain more accurate and clear image reconstruction results, PAI systems typically use a large number of ultrasound transducers to collect multi-channel signals from different angles and positions, thereby acquiring more information about the photoacoustic signals. Therefore, to reconstruct high-quality photoacoustic images, PAI systems require a significant number of measurement signals, which can result in substantial hardware and time costs. Compressed sensing is an algorithm that breaks through the Nyquist sampling theorem and can reconstruct the original signal with a small number of measurement signals. PAI based on compressed sensing has made breakthroughs over the past decade, enabling the reconstruction of low artifacts and high-quality images with a small number of photoacoustic measurement signals, improving time efficiency, and reducing hardware costs. This article provides a detailed introduction to PAI based on compressed sensing, such as the physical transmission model-based compressed sensing method, two-stage reconstruction-based compressed sensing method, and single-pixel camera-based compressed sensing method. Challenges and future perspectives of compressed sensing-based PAI are also discussed.


Subject(s)
Algorithms , Photoacoustic Techniques , Photoacoustic Techniques/methods , Humans , Image Processing, Computer-Assisted/methods , Diagnostic Imaging/methods , Transducers
4.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732804

ABSTRACT

In general, it is difficult to visualize internal ocular structure and detect a lesion such as a cataract or glaucoma using the current ultrasound brightness-mode (B-mode) imaging. This is because the internal structure of the eye is rich in moisture, resulting in a lack of contrast between tissues in the B-mode image, and the penetration depth is low due to the attenuation of the ultrasound wave. In this study, the entire internal ocular structure of a bovine eye was visualized in an ex vivo environment using the compound acoustic radiation force impulse (CARFI) imaging scheme based on the phase-inverted ultrasound transducer (PIUT). In the proposed method, the aperture of the PIUT is divided into four sections, and the PIUT is driven by the out-of-phase input signal capable of generating split-focusing at the same time. Subsequently, the compound imaging technique was employed to increase signal-to-noise ratio (SNR) and to reduce displacement error. The experimental results demonstrated that the proposed technique could provide an acoustic radiation force impulse (ARFI) image of the bovine eye with a broader depth-of-field (DOF) and about 80% increased SNR compared to the conventional ARFI image obtained using the in-phase input signal. Therefore, the proposed technique can be one of the useful techniques capable of providing the image of the entire ocular structure to diagnose various eye diseases.


Subject(s)
Elasticity Imaging Techniques , Eye , Signal-To-Noise Ratio , Transducers , Animals , Cattle , Eye/diagnostic imaging , Elasticity Imaging Techniques/methods , Ultrasonography/methods
5.
Sci Adv ; 10(16): eadj0268, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640247

ABSTRACT

Continuous monitoring of biomarkers at locations adjacent to targeted internal organs can provide actionable information about postoperative status beyond conventional diagnostic methods. As an example, changes in pH in the intra-abdominal space after gastric surgeries can serve as direct indicators of potentially life-threatening leakage events, in contrast to symptomatic reactions that may delay treatment. Here, we report a bioresorbable, wireless, passive sensor that addresses this clinical need, designed to locally monitor pH for early detection of gastric leakage. A pH-responsive hydrogel serves as a transducer that couples to a mechanically optimized inductor-capacitor circuit for wireless readout. This platform enables real-time monitoring of pH with fast response time (within 1 hour) over a clinically relevant period (up to 7 days) and timely detection of simulated gastric leaks in animal models. These concepts have broad potential applications for temporary sensing of relevant biomarkers during critical risk periods following diverse types of surgeries.


Subject(s)
Absorbable Implants , Transducers , Animals , Wireless Technology , Hydrogen-Ion Concentration , Biomarkers
6.
Anal Chim Acta ; 1305: 342590, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38677844

ABSTRACT

Monitoring extracellular calcium ion (Ca2+) chemical signals in neurons is crucial for tracking physiological and pathological changes associated with brain diseases in live animals. Potentiometry based solid-state ion-selective electrodes (ISEs) with the assist of functional carbon nanomaterials as ideal solid-contact layer could realize the potential response for in vitro and in vivo analysis. Herein, we employ a kind of biomass derived porous carbon as a transducing layer to prompt efficient ion to electron transduction while stabilizes the potential drift. The eco-friendly porous carbon after activation (APB) displays a high specific area with inherit macropores, micropores, and large specific capacitance. When employed as transducer in ISEs, a stable potential response, minimized potential drift can be obtained. Benefiting from these excellent properties, a solid-state Ca2+ selective carbon fiber electrodes (CFEs) with a sandwich structure is constructed and employed for real time sensing of Ca2+ under electrical stimulation. This study presents a new approach to develop sustainable and versatile transducers in solid-state ISEs, a crucial way for in vivo sensing.


Subject(s)
Calcium , Carbon , Nanostructures , Calcium/chemistry , Calcium/analysis , Carbon/chemistry , Nanostructures/chemistry , Ion-Selective Electrodes , Animals , Porosity , Transducers , Electrochemical Techniques/instrumentation
7.
Ultrason Imaging ; 46(3): 186-196, 2024 May.
Article in English | MEDLINE | ID: mdl-38647142

ABSTRACT

Conventional B-mode ultrasound imaging has difficulty in delineating homogeneous soft tissues with similar acoustic impedances, as the reflectivity depends on the acoustic impedance at the interface. As a quantitative imaging biomarker sensitive to alteration of biomechanical properties, speed-of-sound (SoS) holds promising potential for tissue and disease differentiation such as delineation of different breast tissue types with similar acoustic impedance. Compared to two-dimensional (2D) SoS images, three-dimensional (3D) volumetric SoS images achieved through a full-angle ultrasound scan can reveal more intricate morphological structures of tissues; however, they generally require a ring transducer. In this study, we introduce a 3D SoS reconstruction system that utilizes hand-held linear arrays instead. This system employs a passive reflector positioned opposite the linear arrays, serving as an echogenic reference for time-of-flight (ToF) measurements, and a high-definition camera to track the location corresponding to each group of transmit-receive data. To merge these two streams of ToF measurements and location tracking, a voxel-based reconstruction algorithm is implemented. Experimental results with gelatin phantom and ex vivo tissue have demonstrated the stability of our proposed method. Moreover, the results underscore the potential of this system as a complementary diagnostic modality, particularly in the context of diseases such as breast cancer.


Subject(s)
Imaging, Three-Dimensional , Phantoms, Imaging , Ultrasonography , Ultrasonography/methods , Imaging, Three-Dimensional/methods , Animals , Algorithms , Transducers , Equipment Design , Humans , Female
8.
Comput Methods Programs Biomed ; 250: 108169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643604

ABSTRACT

BACKGROUND AND OBJECTIVE: Computational Ultrasound Imaging (CUI) has become increasingly popular in the medical ultrasound community, facilitated by free simulation software. These tools enable the design and exploration of transmit sequences, transducer arrays, and signal processing. We recently introduced SIMUS, a frequency-based ultrasound simulator within the open-source MUST toolbox, which offers numerical advantages and allows easy consideration of frequency-dependent factors. In response to the growing interest in simulating ultrasound imaging with 2-D matrix arrays, we present 3-D versions, PFIELD3 and SIMUS3. METHOD: The linear acoustic equations driving these functions are described, with theoretical assumptions reviewed for user guidance. RESULTS: Comparative analyses with Field II, using a 32×32 element 3-MHz matrix array, highlight the performance of PFIELD3 and SIMUS3 under various transmission conditions. CONCLUSIONS: This work extends the capabilities of existing CUI tools and provides researchers with valuable resources for advanced ultrasound simulations.


Subject(s)
Computer Simulation , Imaging, Three-Dimensional , Software , Ultrasonography , Ultrasonography/methods , Humans , Transducers , Algorithms , Phantoms, Imaging
9.
Ultrasound Med Biol ; 50(6): 920-926, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521695

ABSTRACT

OBJECTIVE: High-intensity magnetic resonance-guided focused ultrasound (MRgFUS) is a non-invasive therapy to lesion brain tissue, used clinically in patients and pre-clinically in several animal models. Challenges with focused ablation in rodent brains can include skull and near-field heating and accurately targeting small and deep brain structures. We overcame these challenges by creating a novel method consisting of a craniectomy skull preparation, a high-frequency transducer (3 MHz) with a small ultrasound focal spot, a transducer positioning system with an added manual adjustment of ∼0.1 mm targeting accuracy, and MR acoustic radiation force imaging for confirmation of focal spot placement. METHODS: The study consisted of two main parts. First, two skull preparation approaches were compared. A skull thinning approach (n = 7 lesions) was compared to a craniectomy approach (n = 22 lesions), which confirmed a craniectomy was necessary to decrease skull and near-field heating. Second, the two transducer positioning systems were compared with the fornix chosen as a subcortical ablation target. We evaluated the accuracy of targeting using histologic methods from a high-frequency transducer with a small ultrasound focal spot and MR acoustic radiation force imaging. RESULTS: Comparing a motorized adjustment system (∼1 mm precision, n = 17 lesions) to the motorized system with an added micromanipulator (∼0.1 mm precision, n = 14 lesions), we saw an increase in the accuracy of targeting the fornix by 133%. CONCLUSIONS: The described work allows for repeatable and accurate targeting of small and deep structures in the rodent brain, such as the fornix, enabling the investigation of neurological disorders in chronic disease models.


Subject(s)
Fornix, Brain , High-Intensity Focused Ultrasound Ablation , Animals , Rats , High-Intensity Focused Ultrasound Ablation/methods , Fornix, Brain/diagnostic imaging , Fornix, Brain/surgery , Rats, Sprague-Dawley , Transducers , Surgery, Computer-Assisted/methods , Male , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging, Interventional/methods
10.
Sensors (Basel) ; 24(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38544110

ABSTRACT

Compact high-frequency arrays are of interest for clinical and preclinical applications in which a small-footprint or endoscopic device is needed to reach the target anatomy. However, the fabrication of compact arrays entails the connection of several dozens of small elements to the imaging system through a combination of flexible printed circuit boards at the array end and micro-coaxial cabling to the imaging system. The methods currently used, such as wire bonding, conductive adhesives, or a dry connection to a flexible circuit, considerably increase the array footprint. Here, we propose an interconnection method that uses vacuum-deposited metals, laser patterning, and electroplating to achieve a right-angle, compact, reliable connection between array elements and flexible-circuit traces. The array elements are thickened at the edges using patterned copper traces, which increases their cross-sectional area and facilitates the connection. We fabricated a 2.3 mm by 1.7 mm, 64-element linear array with elements at a 36 µm pitch connected to a 4 cm long flexible circuit, where the interconnect adds only 100 µm to each side of the array. Pulse-echo measurements yielded an average center frequency of 55 MHz and a -6 dB bandwidth of 41%. We measured an imaging resolution of 35 µm in the axial direction and 114 µm in the lateral direction and demonstrated the ex vivo imaging of porcine esophageal tissue and the in vivo imaging of avian embryonic vasculature.


Subject(s)
Transducers , Animals , Swine , Equipment Design , Ultrasonography , Phantoms, Imaging , Electric Impedance
11.
Ultrasonics ; 138: 107223, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38553135

ABSTRACT

Thrombotic occlusions of large blood vessels are increasingly treated with catheter based mechanical approaches, one of the most prominent being to employ aspiration to extract clots through a hollow catheter lumen. A central technical challenge for aspiration catheters is to achieve sufficient suction force to overcome the resistance of clot material entering into the distal tip. In this study, we examine the feasibility of inducing cavitation within hollow cylindrical transducers with a view to ultimately using them to degrade the mechanical integrity of thrombus within the tip of an aspiration catheter. Hollow cylindrical radially polarized PZT transducers with 3.3/2.5 mm outer/inner diameters were assessed. Finite element simulations and hydrophone experiments were used to investigate the pressure field distribution as a function of element length and resonant mode (thickness, length). Operating in thickness mode (∼5 MHz) was found to be associated with the highest internal pressures, estimated to exceed 23 MPa. Cavitation was demonstrated to be achievable within the transducer under degassed water (10 %) conditions using hydrophone detection and high-frequency ultrasound imaging (40 MHz). Cavitation clouds occupied a substantial portion of the transducer lumen, in a manner that was dependent on the pulsing scheme employed (10 and 100 µs pulse lengths; 1.1, 11, and 110 ms pulse intervals). Collectively the results support the feasibility of achieving cavitation within a transducer compatible with mounting in the tip of an aspiration format catheter.


Subject(s)
High-Intensity Focused Ultrasound Ablation , High-Intensity Focused Ultrasound Ablation/methods , Transducers , Suction , Catheters , Water
12.
Phys Med Biol ; 69(9)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38518377

ABSTRACT

Objective.Histotripsy is a noninvasive focused ultrasound therapy that mechanically disintegrates tissue by acoustic cavitation clouds. In this study, we investigate a mechanism limiting the density of bubbles that can nucleate during a histotripsy pulse. In this mechanism, the pressure generated by the initial bubble expansion effectively negates the incident pressure in the vicinity of the bubble. From this effect, the immediately adjacent tissue is prevented from experiencing the transient tension to nucleate bubbles. Approach.A Keller-Miksis-type single-bubble model was employed to evaluate the dependency of this effect on ultrasound pressure amplitude and frequency, viscoelastic medium properties, bubble nucleus size, and transducer geometric focusing. This model was further combined with a spatial propagation model to predict the peak negative pressure field as a function of position from a cavitating bubble.Main results. The single-bubble model showed the peak negative pressure near the bubble surface is limited to the inertial cavitation threshold. The predicted bubble density increased with increasing frequency, tissue viscosity, and transducer focusing angle. The simulated results were consistent with the trends observed experimentally in prior studies, including changes in density with ultrasound frequency and transducerF-number.Significance.The efficacy of the therapy is dependent on several factors, including the density of bubbles nucleated within the cavitation cloud formed at the focus. These results provide insight into controlling the density of nucleated bubbles during histotripsy and the therapeutic efficacy.


Subject(s)
High-Energy Shock Waves , High-Intensity Focused Ultrasound Ablation , Lithotripsy , High-Intensity Focused Ultrasound Ablation/methods , Lithotripsy/methods , Ultrasonography , Transducers
13.
Nat Commun ; 15(1): 2802, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555281

ABSTRACT

With the huge progress in micro-electronics and artificial intelligence, the ultrasound probe has become the bottleneck in further adoption of ultrasound beyond the clinical setting (e.g. home and monitoring applications). Today, ultrasound transducers have a small aperture, are bulky, contain lead and are expensive to fabricate. Furthermore, they are rigid, which limits their integration into flexible skin patches. New ways to fabricate flexible ultrasound patches have therefore attracted much attention recently. First prototypes typically use the same lead-containing piezo-electric materials, and are made using micro-assembly of rigid active components on plastic or rubber-like substrates. We present an ultrasound transducer-on-foil technology based on thermal embossing of a piezoelectric polymer. High-quality two-dimensional ultrasound images of a tissue mimicking phantom are obtained. Mechanical flexibility and effective area scalability of the transducer are demonstrated by functional integration into an endoscope probe with a small radius of 3 mm and a large area (91.2×14 mm2) non-invasive blood pressure sensor.


Subject(s)
Artificial Intelligence , Electronics , Ultrasonography , Phantoms, Imaging , Electricity , Transducers , Equipment Design
14.
Ultrasound Med Biol ; 50(6): 775-778, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38485533

ABSTRACT

The COVID-19 pandemic highlighted the importance of infection prevention and control measures for all medical procedures, including ultrasound examinations. As the use of ultrasound increases across more medical modalities, including point-of-care ultrasound, so does the risk of possible transmission from equipment to patients and patients to patients. This is particularly relevant for endocavity transducers, such as trans-vaginal, trans-rectal and trans-oesophageal, which could be contaminated with organisms from blood, mucosal, genital or rectal secretions. This article proports to update the WFUMB 2017 guidelines which focussed on the cleaning and disinfection of trans-vaginal ultrasound transducers between patients.


Subject(s)
COVID-19 , Disinfection , Equipment Contamination , Transducers , Ultrasonography , Humans , Ultrasonography/methods , Ultrasonography/instrumentation , COVID-19/transmission , COVID-19/prevention & control , Equipment Contamination/prevention & control , Disinfection/methods , SARS-CoV-2 , Infection Control/methods , Infection Control/standards , Practice Guidelines as Topic , Point-of-Care Systems
15.
Int J Hyperthermia ; 41(1): 2325477, 2024.
Article in English | MEDLINE | ID: mdl-38439505

ABSTRACT

OBJECTIVE: Monitoring sensitivity of sonography in focused ultrasound ablation surgery (FUAS) is limited (no hyperechoes in ∼50% of successful coagulation in uterine fibroids). A more accurate and sensitive approach is required. METHOD: The echo amplitudes of the focused ultrasound (FUS) transducer in a testing mode (short pulse duration and low power) were found to correlate with the ex vivo coagulation. To further evaluate its coagulation prediction capabilities, in vivo experiments were carried out. The liver, kidney, and leg muscles of three adult goats were treated using clinical FUAS settings, and the echo amplitude of the FUS transducer and grayscale in sonography before and after FUAS were collected. On day 7, animals were sacrificed humanely, and the treated tissues were dissected to expose the lesion. Echo amplitude changes and lesion areas were analyzed statistically, as were the coagulation prediction metrics. RESULTS: The echo amplitude changes of the FUS transducer correlate well with the lesion areas in the liver (R = 0.682). Its prediction in accuracy (94.4% vs. 50%), sensitivity (92.9% vs. 35.7%), and negative prediction (80% vs. 30.8%) is better than sonography, but similar in specificity (80% vs. 100%) and positive prediction (100% vs. 100%). In addition, the correlation between tissue depth and the lesion area is not good (|R| < 0.2). Prediction performances in kidney and leg muscles are similar. CONCLUSION: The FUS echo amplitudes are sensitive to the tissue properties and their changes after FUAS. They are sensitive and reliable in evaluating and predicting FUAS outcomes.


Subject(s)
Ultrasonic Therapy , Animals , Liver/diagnostic imaging , Liver/surgery , Kidney/diagnostic imaging , Kidney/surgery , Blood Coagulation , Transducers
16.
Ultrasound Med Biol ; 50(6): 908-919, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548527

ABSTRACT

OBJECTIVE: Dual-frequency high-intensity focused ultrasound (HIFU) thermal ablation is an exceptionally promising technique for treating tumors due to its precision and effectiveness. However, there are still a few studies on improving the accuracy and efficiency of HIFU in superficial ablation applications. This study proposes a method utilizing dual frequency switching ultrasound (DFSU) to enhance the efficiency and precision of superficial treatments. METHODS: A dual-frequency HIFU transducer operating at 4.5 MHz and 13.7 MHz was designed, and a dual-frequency impedance matching network was designed to optimize electro-acoustic conversion efficiency. Phantom and ex vivo tests were conducted to measure and compare thermal lesion areas and temperature rises caused by single-frequency ultrasound (SFU) and DFSU. RESULTS: In both phantom and ex vivo tests, the utilization of DFSU resulted in larger lesion areas compared to SFU. Moreover, DFSU provided improved control and versatility, enabling precise and efficient ablation. CONCLUSION: DFSU exhibits the ability to generate larger ablation areas in superficial tissue compared to SFU, and DFSU allows flexible control over the ablation area and temperature rise rate. The acoustic power deposition of HIFU can be optimized to achieve precise ablation.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Phantoms, Imaging , High-Intensity Focused Ultrasound Ablation/methods , Animals , Equipment Design , Swine , Transducers
17.
Ultrason Imaging ; 46(3): 139-150, 2024 May.
Article in English | MEDLINE | ID: mdl-38334055

ABSTRACT

Two-dimensional ultrasound transducers enable the acquisition of fully volumetric data that have been demonstrated to provide greater diagnostic information in the clinical setting and are a critical tool for emerging ultrasound methods, such as super-resolution and functional imaging. This technology, however, is not without its limitations. Due to increased fabrication complexity, some matrix probes with disjoint piezoelectric panels may require initial calibration. In this manuscript, two methods for calibrating the element positions of the Vermon 1024-channel 8 MHz matrix transducer are detailed. This calibration is a necessary step for acquiring high resolution B-mode images while minimizing transducer-based image degradation. This calibration is also necessary for eliminating vessel-doubling artifacts in super-resolution images and increasing the overall signal-to-noise ratio (SNR) of the image. Here, we show that the shape of the point spread function (PSF) can be significantly improved and PSF-doubling artifacts can be reduced by up to 10 dB via this simple calibration procedure.


Subject(s)
Artifacts , Equipment Design , Signal-To-Noise Ratio , Transducers , Ultrasonography , Calibration , Ultrasonography/methods , Ultrasonography/instrumentation , Phantoms, Imaging
18.
Pediatr Radiol ; 54(5): 737-742, 2024 May.
Article in English | MEDLINE | ID: mdl-38418631

ABSTRACT

BACKGROUND: Ultrasound is the modality of choice for the diagnosis of hypertrophic pyloric stenosis (HPS). The evolution of high-frequency transducers in ultrasound has led to inconsistent ways of measuring the pylorus. OBJECTIVE: To standardize the measurements and evaluate the appearance of the normal and hypertrophied pylorus with high-frequency transducers. MATERIALS AND METHODS: We retrospectively analyzed abdominal ultrasounds of infants with suspected HPS from January 2019-December 2020. We classified the layers of the pylorus while assessing the stratified appearance. Two pediatric radiologists measured the muscle thickness of the pylorus independently by two methods for interrater agreement. Measurement (a) includes the muscularis propria and muscularis mucosa. Measurement (b) includes only the muscularis propria. We also evaluated the echogenicity of the muscularis propria. The interrater agreement, mean, range of the muscle thickness, and the diagnostic accuracy of the two sets of measurements were calculated. RESULTS: We included 300 infants (114 F:186 M), 59 with HPS and 241 normal cases. There was a strong agreement between the readers assessed in the first 100 cases, and ICC was 0.99 (95% CI, 0.98-0.99). Measurement (a), median thickness is 2.4 mm in normal cases and 4.8 mm in HPS. Measurement (b), median thickness is 1.4 mm in normal cases and 4.0 mm in HPS. Measurement (a) has an accuracy of 89.7% (95% CI, 85.7-92.8%) with 98.3% sensitivity and 87.6% specificity. Measurement (b) has an accuracy of 98.0% (95% CI, 95.7-99.3%) with 89.8% sensitivity and 100.0% specificity. The pylorus stratification is preserved in all normal cases and 31/59 (52.5%) cases of HPS. There was complete/partial loss of stratification in 28/59 (47.5%) cases of HPS. In all HPS cases, the muscularis propria was echogenic. CONCLUSION: Measuring the muscularis propria solely has a better diagnostic accuracy, decreasing the overlap of negative and positive cases. The loss of pyloric wall stratification and echogenic muscularis propria is only seen in HPS.


Subject(s)
Pyloric Stenosis, Hypertrophic , Pylorus , Transducers , Ultrasonography , Humans , Retrospective Studies , Male , Female , Ultrasonography/methods , Pylorus/diagnostic imaging , Infant , Pyloric Stenosis, Hypertrophic/diagnostic imaging , Infant, Newborn , Sensitivity and Specificity
19.
Adv Sci (Weinh) ; 11(16): e2308277, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38380504

ABSTRACT

This paper presents an acoustic transducer for fully implantable cochlear implants (FICIs), which can be implanted on the hearing chain to detect and filter the ambient sound in eight frequency bands between 250 and 6000 Hz. The transducer dimensions are conventional surgery compatible. The structure is formed with 3  × 3 × 0.36 mm active space for each layer and 5.2 mg total active mass excluding packaging. Characterization of the transducer is carried on an artificial membrane whose vibration characteristic is similar to the umbo vibration. On the artificial membrane, piezoelectric transducer generates up to 320.3 mVpp under 100 dB sound pressure level (SPL) excitation and covers the audible acoustic frequency. The measured signal-to-noise-ratio (SNR) of the channels is up to 84.2 dB. Sound quality of the transducer for fully implantable cochlear implant application is graded with an objective qualification method (PESQ) for the first time in the literature to the best of the knowledge, and scored 3.42/4.5.


Subject(s)
Cochlear Implants , Transducers , Vibration , Humans , Equipment Design , Signal-To-Noise Ratio , Acoustics/instrumentation , Ear Ossicles/surgery , Prosthesis Design/methods
20.
Phys Med Biol ; 69(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38344935

ABSTRACT

Objective. Photoacoustic emitters on the tip of a therapeutic device have been intensively studied for echo-guided intervention purposes. In this study, a novel method for localizing the guidewire tip emitter in the elevation direction using a 1D array probe is proposed to resolve the issue of the tip potentially deviating from the ultrasound-imaged plane.Approach. Our method uses the 'interference split' that appears when the emitter is off-plane. Here, a point source from the emitter splits into two points in images. Based on the split, 'split-based elevation localization (SEL)' is introduced to estimate the absolute elevation position of the emitter. Additionally, 'Signed SEL' incorporates an asymmetric feature into the 1D probe to obtain the sign of the elevation localization. An attenuative coupler is attached to the half side of the probe to control the interference split. In SEL and Signed SEL, we propose a modeled split matching (MSM) algorithm to localize the tip position. MSM performs pattern matching of a measured split waveform with modeled split waveforms corresponding to all emitter positions in a region of interest. The modeled waveforms are precalculated using the spatial impulse response. The proposed method is numerically and experimentally validated.Main results. Numerical simulations for time-domain wave propagation clearly demonstrated the interference split phenomena. In the experimental validation with a vessel-mimicking phantom, the proposed methods successfully estimated the elevation positions,yb.SEL exhibited a root-mean-squared error (RMSE) of 2.0 mm for the range of 0 mm ≤yb≤ 30 mm, while Signed SEL estimated the absolute position with an RMSE of 2.4 mm and the sign with an accuracy of 80.8% for the range of -30 mm ≤yb≤ 30 mm.Significance.These results suggest that the proposed method could provide approximate tip positions and help sonographers track it by fanning the probe.


Subject(s)
Algorithms , Transducers , Ultrasonography/methods , Phantoms, Imaging , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...