Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.118
Filter
1.
J Helminthol ; 98: e38, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721629

ABSTRACT

The deepest recorded depth for trematodes currently stands at approximately 6200 m. This depth record was achieved solely through sequence datasets of Lepidapedon sp. obtained from a gastropod. Given that trematodes of this genus typically use fish as definitive hosts, the origin of the trematode sequence was thought to be larval stages. However, the specific species remained unclear owing to the absence of reported adult-stage sequences. In the present study, we definitively identified the deepest trematode as Lepidapedon oregonense by comparing 28S ribosomal DNA sequences from adult worms from the macrourid fish Coelorinchus gilberti with data from the gastropod in the previous study.


Subject(s)
DNA, Helminth , DNA, Ribosomal , Phylogeny , RNA, Ribosomal, 28S , Trematoda , Animals , Trematoda/classification , Trematoda/genetics , Trematoda/isolation & purification , RNA, Ribosomal, 28S/genetics , DNA, Helminth/genetics , DNA, Ribosomal/genetics , Gastropoda/parasitology , Sequence Analysis, DNA , Fishes/parasitology , Fish Diseases/parasitology , Trematode Infections/parasitology , Trematode Infections/veterinary
2.
Sci Rep ; 14(1): 10292, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704408

ABSTRACT

Presenting new molecular and scanning electron microscope (SEM) features, this study gives additional data to the better knowledge of Thaparocleidus vistulensis (Siwak, 1932) (Monopisthocotyla, Ancylodiscoididae), a parasite of the European catfish Silurus glanis Linnaeus, 1758 (Siluriformes, Siluridae) cultured in a commercial fish farm in Hungary. In addition, notes on the early development of sclerotized anchors are also provided. The main morphological difference of T. vistulensis compared to other congeneric species is associated with the male copulatory organ, which exhibits 5-7 loops in the middle of the penis length and a long open V-shaped sclerotized accessory piece, dividing terminally into two parts, securing the terminal part of the penis tube. The present study provides for the first time molecular characterization data based on the 2694 bp long nucleotide sequence of rDNA (ITS1, 5.8S, ITS2, and flanked with partial 18S and partial 28S) submitted in GenBank with the accession number OR916383. A phylogenetic tree based on ITS1 sequences supports a well-defined clade including T. vistulensis, forming a sister group with T. siluri, a species-specific monopisthocotylan parasite to S. glanis. The morphological characterization of T. vistulensis, especially for the male copulatory organ, together with the molecular data in the present study, extends knowledge about this monopisthocotylan species and provides new information for future phylogeny studies.


Subject(s)
Catfishes , Microscopy, Electron, Scanning , Phylogeny , Animals , Male , Catfishes/parasitology , Catfishes/genetics , Fish Diseases/parasitology , Trematoda/genetics , Trematoda/ultrastructure , Trematoda/classification , DNA, Ribosomal/genetics
3.
J Helminthol ; 98: e37, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706044

ABSTRACT

The genus Ancyrocephalus sensu lato is a large assemblage of species of dactylogyrid monopisthocotyleans without clear taxonomic boundaries. Despite an urgent need for revision, only three representatives of this taxon have been molecularly characterised so far. We found specimens of Ancyrocephalus curtus, a previously non-genotyped species, in gills of Perccottus glenii caught in the River Syumnyur, Amur Basin, Russia. The aim of this study was to assess the phylogenetic position of this parasite using partial sequences of 28S rRNA gene. In the phylogenetic tree, A. curtus appeared as a sister taxon to the dactylogyrine genus Gobioecetes. The new molecular evidence supports the hypothesis about the non-monophyletic status of Ancyrocephalus sensu lato.


Subject(s)
Fish Diseases , Gills , Perciformes , Phylogeny , RNA, Ribosomal, 28S , Animals , Fish Diseases/parasitology , Gills/parasitology , Perciformes/parasitology , RNA, Ribosomal, 28S/genetics , Russia , Rivers/parasitology , Trematode Infections/parasitology , Trematode Infections/veterinary , Platyhelminths/classification , Platyhelminths/genetics , Platyhelminths/isolation & purification , DNA, Helminth/genetics , Trematoda/genetics , Trematoda/classification , Trematoda/isolation & purification , DNA, Ribosomal/genetics , Sequence Analysis, DNA
4.
Parasitol Res ; 123(5): 200, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696061

ABSTRACT

The humpback whale (Megaptera novaeangliae) is a cosmopolitan migratory, seasonal mysticete that frequents the Brazilian coast. Strands of specimens may occur during the migratory stay in the country. In 2021 and 2022, three live humpback whales stranded on the coast of Rio Grande do Sul and Santa Catarina states in southern Brazil. After euthanasia, specimens were necropsied, and organs were thoroughly examined for lesions. Grossly, in all three cases, the liver exhibited multifocal, irregular, firm, white areas on the hepatic capsule, which extended into the parenchyma. On the cut surface, the livers were yellow to pale brown with orangish to greenish areas, the bile ducts were prominent, thickened, and severely dilated, and leaf-shaped flukes were found inside of them. Additionally, one case showed moderate atrophy of the right hepatic lobe. The histological findings included dilation of bile ducts, hyperplasia of the bile duct epithelium, marked inflammatory infiltration of lymphocytes, plasma cells, and eosinophils, and portal fibrosis. The parasite Brachycladium goliath was both morphologically and molecularly identified based on diagnostic key for trematodes and the original description of the species, and the amplification and sequencing of the ITS-2 region, respectively. Even though hepatic injury was not the primary cause of stranding, it may have contributed to the debilitation of the whales. To the authors' knowledge, this is the first study that reports M. novaeangliae as a definitive host of B. goliath and that describes the lesions caused by the parasite in cetaceans.


Subject(s)
Humpback Whale , Liver , Trematoda , Trematode Infections , Animals , Humpback Whale/parasitology , Brazil , Trematoda/classification , Trematoda/anatomy & histology , Trematoda/isolation & purification , Trematoda/genetics , Liver/parasitology , Liver/pathology , Trematode Infections/veterinary , Trematode Infections/parasitology , Phylogeny , Male
5.
Syst Parasitol ; 101(3): 35, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700732

ABSTRACT

Two new species of Urocleidoides are described from the gills of Pseudanos trimaculatus (Characiformes: Anostomidae) from the coastal drainages of the Eastern Amazon, Brazil. Urocleidoides itabocaensis n. sp. is characterized by having a sclerotized, tubular, sigmoid male copulatory organ (MCO), a circular sclerotized tandem brim associated with the base of the MCO; an accessory piece articulated with the MCO, a V-shaped, divided into two subunits, distal subunit spoon-shaped; and a vaginal pore dextroventral with opening marginal. Urocleidoides omphalocleithrum n. sp. is characterized by presenting a C-shaped or sigmoid MCO; an accessory piece articulated with the MCO, L-shaped, divided into two subunits, distal subunit gutter-shaped; a vaginal pore dextroventral with opening marginal; and a ventral bar broadly V-shaped, with anteromedial projection. Molecular phylogenetic analysis based on partial 28S rDNA and COI mtDNA genes indicate that U. itabocaensis n. sp. and U. omphalocleithrum n. sp. are closely related and appear as a sister group to other Urocleidoides species (U. paradoxus, U. digitabulum and U. sinus) parasitizing anostomid fishes. This study represents the first record of monogenoids from the gills of P. trimaculatus for the Eastern Amazon.


Subject(s)
Characiformes , Phylogeny , Species Specificity , Animals , Brazil , Characiformes/parasitology , Gills/parasitology , Trematoda/classification , Trematoda/genetics , Trematoda/anatomy & histology , RNA, Ribosomal, 28S/genetics , Male
6.
Syst Parasitol ; 101(3): 41, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740609

ABSTRACT

Dicrocoeliid trematodes were detected from Iwasaki's snail-eating snake Pareas iwasakii in Iriomote Island, Okinawa Prefecture, Japan, and described as a new species Paradistomum dextra n. sp. in the present study. This new species can be distinguished from the type series of the other members of the genus based on size of eggs and morphological characteristics of body, oral and ventral suckers, and reproductive organs. However, the new species was hard to distinguish from Paradistomum megareceptaculum infecting snakes in Japan, including Iriomote Island where is the type locality of the new species, because it is closely similar to some part of the broad range of morphological variations in P. megareceptaculum. On the other hand, a partial sequence of 28S ribosomal DNA clearly distinguished these two species. Moreover, the new species' host snake Pareas iwasakii is reported to exclusively feed on land snails while host snakes of P. megareceptaculum feed on small vertebrates, indicating that the new species is also ecologically different from P. megareceptaculum. We also redescribed P. megareceptaculum based on adults sampled in this study and past studies to record the morphological variations of this species.


Subject(s)
Species Specificity , Trematoda , Animals , Japan , Trematoda/classification , Trematoda/anatomy & histology , Trematoda/genetics , Snails/parasitology , RNA, Ribosomal, 28S/genetics , Snakes/parasitology , Phylogeny
7.
PeerJ ; 12: e17211, 2024.
Article in English | MEDLINE | ID: mdl-38623495

ABSTRACT

Background: Prior research suggests that trematode rediae, a developmental stage of trematode parasites that reproduce clonally within a snail host, show evidence of division of labor (DOL). Single-species infections often have two morphologically distinct groups: small rediae, the 'soldiers', are active, aggressive, and do not appear to reproduce; large rediae, the 'reproductives', are larger, sluggish, and full of offspring. Most data supporting DOL come from trematodes infecting marine snails, while data from freshwater trematodes are more limited and generally do not supported DOL. The shorter lifespan typical of freshwater snails may partially explain this difference: defending a short-lived host at the expense of reproduction likely provides few advantages. Here, we present data from sixty-one colonies spanning twenty species of freshwater trematode exploring morphological and behavioral patterns commonly reported from marine trematodes believed to have DOL. Methods: Trematode rediae were obtained from sixty-one infected snails collected in central Vermont, USA. A portion of the COI gene was sequenced to make tentative species identifications ('COI species'). Samples of rediae were photographed, observed, and measured to look for DOL-associated patterns including a bimodal size distribution, absence of embryos in small rediae, and pronounced appendages and enlarged pharynges (mouthparts) in small rediae. Additional rediae were used to compare activity levels and likelihood to attack heterospecific trematodes in large vs. small rediae. Results: Many of the tests for DOL-associated patterns showed mixed results, even among colonies of the same COI species. However, we note a few consistent patterns. First, small rediae of most colonies appeared capable of reproduction, and we saw no indication (admittedly based on a small sample size and possibly insufficient attack trial methodology) that small rediae were more active or aggressive. This differs from patterns reported from most marine trematodes. Second, the small rediae of most colonies had larger pharynges relative to their body size than large rediae, consistent with marine trematodes. We also observed that colonies of three sampled COI species appear to produce a group of large rediae that have distinctly large pharynges. Conclusions: We conclude that these freshwater species likely do not have a group of specialized non-reproductive soldiers because small rediae of at least some colonies in almost every species do appear to produce embryos. We cannot rule out the possibility that small rediae act as a temporary soldier caste. We are intrigued by the presence of rediae with enlarged pharynges in some species and propose that they may serve an adaptive role, possibly similar to the defensive role of small 'soldier' rediae of marine trematodes. Large-pharynx rediae have been documented in other species previously, and we encourage future efforts to study these large-pharynx rediae.


Subject(s)
Trematoda , Animals , Trematoda/genetics , Snails/genetics , Behavior, Animal , Social Behavior , Aggression
8.
J Helminthol ; 98: e36, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38659305

ABSTRACT

New morphological and molecular data were generated for trematodes recovered from the intestines of the fish Pseudaspius hakonensis from two locations in the south of the Russian Far East. Morphologically, these trematodes are identical to Pseudozoogonoides ugui (Microphalloidea: Zoogonidae) from Japan. According to results of phylogenetic analysis based on 28S rDNA sequence data, P. ugui was closely related to Zoogonoides viviparus, and P. subaequiporus appears as a sister taxon to these two species. Genetic distance values, calculated based on both 28S rDNA and ITS2 rDNA, between P. ugui and Z. viviparus represents an interspecific differentiation level. Our results have an ambiguous explanation, indicating that the implication of the presence of one or two compact vitellarial aggregations for the differentiation of Zoogonoides and Pseudozoogonoides should be reconsidered or that our results open up the question of the taxonomical status of trematodes previously denoted as Z. viviparus and P. subaequiporus.


Subject(s)
DNA, Helminth , DNA, Ribosomal , Fish Diseases , Phylogeny , RNA, Ribosomal, 28S , Trematoda , Trematode Infections , Animals , Trematoda/genetics , Trematoda/classification , Trematoda/anatomy & histology , RNA, Ribosomal, 28S/genetics , Fish Diseases/parasitology , Trematode Infections/parasitology , Trematode Infections/veterinary , DNA, Helminth/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Russia , Sequence Analysis, DNA , Intestines/parasitology
9.
J Helminthol ; 98: e35, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651383

ABSTRACT

As part of a parasitological survey, several specimens of two new monopisthocotylean species, Neotetraonchus celsomanueli sp. nov. and N.peruvianus sp. nov. (Dactylogyridea, Dactylogyridae), were collected from the gill filaments of the Peruvian sea catfish Galeichthys peruvianus (Siluriformes, Ariidae) off Puerto Pizarro, Tumbes region, Peru. Neotetraonchus celsomanueli sp. nov. is characterised by an MCO with a T-shaped distal end and an accessory piece that is ribbed and expanded proximally with a worm-shaped termination. Neotetraonchus peruvianus sp. nov. is typified by its MCO, which has a sledgehammer-shaped distal end and an accessory piece with a claw-shaped distal end. Additionally, N.peruvianus sp. nov. is characterised by its jellyfish-shaped onchium. A partial 28S rDNA sequence was obtained from N.celsomanueli sp. nov., and a phylogenetic analysis was conducted. This analysis revealed the phylogenetic position of Neotetraonchus celsomanueli sp. nov. within a clade comprising monopisthocotylean parasites of diadromous and marine ariid catfishes, including Hamatopeduncularia spp., Chauhanellus spp., Thysanotohaptor Kritsky, Shameem, Kumari & Krishnaveni, , and Neocalceostomoides spinivaginalis Lim, 1995. This finding brings the number of known Neotetraonchus species to seven and represents the first described Neotetraonchus species infecting marine catfishes from Peru.


Subject(s)
Catfishes , Fish Diseases , Gills , Phylogeny , Animals , Catfishes/parasitology , Peru , Fish Diseases/parasitology , Gills/parasitology , Trematode Infections/veterinary , Trematode Infections/parasitology , DNA, Ribosomal/genetics , Trematoda/classification , Trematoda/genetics , Trematoda/anatomy & histology , Trematoda/isolation & purification , DNA, Helminth/genetics , RNA, Ribosomal, 28S/genetics , Platyhelminths/classification , Platyhelminths/genetics , Platyhelminths/anatomy & histology , Platyhelminths/isolation & purification , Sequence Analysis, DNA
11.
Parasites Hosts Dis ; 62(1): 85-97, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38443773

ABSTRACT

This study aimed to describe the morphological and molecular characteristics of Paralecithodendrium longiforme (Digenea: Lecithodendriidae) adults and cercariae isolated in Thailand. Adult flukes were isolated from the Chinese pipistrelle bat (Hypsugo sp.), and cercariae were detected in the viviparid snail (Filopaludina martensi martensi) from Chiang Mai province. The morphological characteristics were observed and described using conventional methods, and the molecular characteristics with internal transcribed spacer 2 (ITS2) and 28S rDNA gene sequences. The adult flukes were fusiform, 0.84-0.98 mm in length, and 0.37-0.49 mm in width, and were distinguishable from other species by the presence of longitudinal uterine coils. The cercariae were nonvirgulate xiphidiocercariae, with the oral sucker bigger than the acetabulum, the tail without fin fold, a body size of 117.5-138.3 × 48.3-52.2 µm, and a tail size of 100.7-103.7 × 15.0-18.9 µm. Molecular studies revealed that the adults and cercariae shared 99.3% (ITS2) and 99.6% (28S rDNA) homology with each other. They were phylogenetically close to P. longiforme with an identity of 94.5% for ITS2 and 98.7% for 28S rDNA. This study provides new information on the natural definitive host and first intermediate host of P. longiforme in Thailand. The discovery of its cercarial stage in Filopaludina snails highlights the importance of monitoring the associated second intermediate host and prevention and control of this potentially zoonotic trematode.


Subject(s)
Chiroptera , Trematoda , Animals , Thailand , Trematoda/genetics , Cercaria/genetics , DNA, Ribosomal/genetics , Snails/genetics , China
12.
Acta Parasitol ; 69(1): 898-909, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472688

ABSTRACT

OBJECTIVES: The present work aims to expand the knowledge of the digenean species Prosogonotrema bilabiatum (Sclerodistomidae), a parasite of Chaetodipterus faber (Acanthuriformes) from Brazil, with an integrative taxonomic approach, using light microscopy, scanning electron microscopy, histology, and molecular biology. METHODS: Forty-one digenean specimens were stained with hydrochloric carmine for morphological studies. Eleven parasites were dehydrated through a graded ethanol series, critical point dried with carbon dioxide, and coated with gold for scanning electron microscopy analysis. Four specimens were processed following histological routine and stained with hematoxylin and eosin and Gomori trichrome. DNA extracted was amplified using 28S partial primer D1-D3. Maximum likelihood and Bayesian inference were performed for phylogenetic analysis. RESULTS: Morphometric and morphological data of the specimens studied ranged in accordance as observed in previous descriptions of the species. Observations from scanning electron microscopy and histology corroborated with those observed in stained whole mounts. Molecular analysis showed that specimens of P. bilabiatum from Brazil clustered with another two sequences of this species from different hosts and localities, with a high node support value. CONCLUSIONS: The integrative taxonomic approach allowed to record and describe new characteristics of P. bilabiatum related to the tegument, the structure and the arrangement of its tissues. The use of molecular markers confirmed that specimens identified as P. bilabiatum from different hosts and localities are all conspecific. Further studies, mainly molecular with less conserved genetic markers, should be carried out to better understand the phylogenetic relationships of Prosogonotrema with Hemiuroidea.


Subject(s)
Fish Diseases , Microscopy, Electron, Scanning , Phylogeny , Trematoda , Trematode Infections , Animals , Brazil/epidemiology , Fish Diseases/parasitology , Trematoda/classification , Trematoda/genetics , Trematoda/ultrastructure , Trematoda/anatomy & histology , Trematoda/isolation & purification , Microscopy, Electron, Scanning/veterinary , Trematode Infections/parasitology , Trematode Infections/veterinary , Trematode Infections/epidemiology , Fishes/parasitology , DNA, Helminth/genetics , RNA, Ribosomal, 28S/genetics
13.
Parasitol Res ; 123(3): 147, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433153

ABSTRACT

Strigea falconis is a common parasite of birds of prey and owls widely distributed in the Holarctic. We aimed to characterise S. falconis from Iceland via integrative taxonomic approach and to contribute to the understanding of its circulation in the Holarctic. We recovered adult S. falconis from two gyrfalcons (Falco rusticolus) collected in 2011 and 2012 in Iceland (Reykjanes Peninsula, Westfjords) and characterised them by morphological and molecular genetic (D2 of rDNA, cox1, ND1 of the mDNA) methods. We provide the first species record of S. falconis in Iceland which to the best of our knowledge is its northernmost distributional range. The presence of S. falconis in Iceland is surprising, as there are no suitable intermediate hosts allowing completion of its life cycle. Gyrfalcons are fully sedentary in Iceland; thus, the only plausible explanation is that they acquired their infection by preying upon migratory birds arriving from Europe. Our data indicate that the most likely candidates are Anseriformes and Charadriiformes. Also, we corroborate the wide geographical distribution of S. falconis, as we found a high degree of similarity between our haplotypes and sequences of mesocercariae from frogs in France and of a metacercaria from Turdus naumanni in Japan, and adults from Buteo buteo and Circus aeruginosus from the Czech Republic. The case of Strigea falconis shows the advantages of a complex life cycle and also depicts its pitfalls when a parasite is introduced to a new area with no suitable intermediate hosts. In Iceland, gyrfalcons are apparently dead-end hosts for S. falconis.


Subject(s)
Falconiformes , Trematoda , Animals , Iceland/epidemiology , Trematoda/genetics , Europe , Life Cycle Stages
14.
J Helminthol ; 98: e23, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38462988

ABSTRACT

During an ecological study with a near-endangered anuran in Brazil, the Schmidt's Spinythumb frog, Crossodactylus schmidti Gallardo, 1961, we were given a chance to analyze the gastrointestinal tract of a few individuals for parasites. In this paper, we describe a new species of an allocreadiid trematode of the genus Creptotrema Travassos, Artigas & Pereira, 1928, which possesses a unique trait among allocreadiids (i.e., a bivalve shell-like muscular structure at the opening of the ventral sucker); the new species represents the fourth species of allocreadiid trematode parasitizing amphibians. Besides, the new species is distinguished from other congeners by the combination of characters such as the body size, ventral sucker size, cirrus-sac size, and by having small eggs. DNA sequences through the 28S rDNA and COI mtDNA further corroborated the distinction of the new species. Phylogenetic analyses placed the newly generated sequences in a monophyletic clade together with all other sequenced species of Creptotrema. Genetic divergences between the new species and other Creptotrema spp. varied from 2.0 to 4.2% for 28S rDNA, and 15.1 to 16.8% for COI mtDNA, providing robust validation for the recognition of the new species. Even though allocreadiids are mainly parasites of freshwater fishes, our results confirm anurans as hosts of trematodes of this family. Additionally, we propose the reallocation of Auriculostoma ocloya Liquin, Gilardoni, Cremonte, Saravia, Cristóbal & Davies, 2022 to the genus Creptotrema. This study increases the known diversity of allocreadiids and contributes to our understanding of their evolutionary relationships, host-parasite relationships, and biogeographic history.


Subject(s)
Trematoda , Trematode Infections , Humans , Animals , Trematode Infections/veterinary , Trematode Infections/parasitology , Phylogeny , Trematoda/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/chemistry , Anura , DNA, Mitochondrial/genetics , Brazil , RNA, Ribosomal, 28S/genetics
15.
Infect Genet Evol ; 119: 105576, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408586

ABSTRACT

Lymnaeid snails are some of the most widespread snails and are the first intermediate host of trematode parasites that affect human and livestock health. A full understanding of the genetic relationship of hosts and parasites is of paramount importance for effective parasite management. The present study assessed the prevalence of trematode larvae in lymnaeid snails and examined the genetic diversity of these snails collected across Thailand. We collected 672 lymnaeid snails from 39 locations in 22 provinces of six regions in Thailand. Subsequently, cercarial infection in the snails was observed by using the shedding method. Lymnaeid snails released 5 types of trematode cercariae, namely, xiphidiocercariae, echinostome cercariae I, echinostome cercariae II, furcocercous cercariae, and strigea cercariae. The phylogenetic analysis based on ITS2 and 28S rDNA sequences revealed 5 cercaria types assigned to four trematode families, of which two belong to the group of human intestinal flukes. Combination of shell morphology and sequence analysis of the mitochondrial COI and 16S rDNA genes, the lymnaeid snails were classified into two species, Radix rubiginosa and Orientogalba viridis. Moreover, the combined dataset of mtDNA genes (COI + 16S rDNA) from R. rubiginosa and O. viridis revealed 32 and 15 different haplotypes, respectively, of which only a few haplotypes were infected with cercariae. The genetic diversity and genetic structure revealed that R. rubiginosa and O. viridis experienced a bottleneck phenomenon, and showed limited gene flow between populations. Population demographic history analyses revealed that R. rubiginosa and O. viridis experienced population reductions followed by recent population expansion. These findings may improve our understanding of parasite-lymnaeid evolutionary relationships, as well as the underlying molecular genetic basis, which is information that can be used for further effective control of the spread of trematode disease.


Subject(s)
Snails , Trematoda , Animals , Humans , Phylogeny , Thailand/epidemiology , Snails/parasitology , Trematoda/genetics , Trematoda/anatomy & histology , Cercaria/genetics , DNA, Ribosomal , Genetic Variation
16.
Parasitology ; 151(4): 390-399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38389483

ABSTRACT

Exploring the phylogenetic signal of morphological traits using geometric morphometry represents a powerful approach to assess the relative weights of convergence and shared evolutionary history in shaping species' forms. We evaluated the phylogenetic signal in shape and size of ventral and dorsal haptoral anchors of 10 species of monogenoids (Hamatopeduncularia, Chauhanellus and Susanlimocotyle) occurring in marine catfish (Siluriformes: Ariidae) from the Atlantic coast of South America. The phylogenetic relationships among these species were mapped onto the morphospaces of shape and size of dorsal and ventral anchors. Two different tests (squared change-parsimony and Kmult) were applied to establish whether the spatial positions in the phylomorphospace were influenced by phylogenetic relationships. A significant phylogenetic signal was found between anchor form and parasite phylogeny. Allometric effects on anchor shape were non-significant. Phylogenetically distant species on the same host differed markedly in anchor morphology, suggesting little influence of host species on anchor form. A significantly higher level of shape variation among ventral anchors was also found, suggesting that the evolutionary forces shaping ventral anchor morphology may operate with differing intensities or exhibit distinct mechanisms compared to their dorsal counterparts. Our results suggest that phylogenetic relationships were a key driver of changes in shape (but not size) of anchors of monogenoids of South American ariids. However, it seems that the emergence of the digitiform haptor in Hamatopenducularia and in some species of Chauhanellus played an important role in the reduction in anchor size and may cause secondary losses of anchors in other groups of monogenoids.


Subject(s)
Biological Evolution , Catfishes , Fish Diseases , Phylogeny , Animals , Catfishes/parasitology , Fish Diseases/parasitology , South America , Atlantic Ocean , Trematoda/anatomy & histology , Trematoda/classification , Trematoda/genetics , Trematode Infections/parasitology , Trematode Infections/veterinary
17.
Parasitol Res ; 123(2): 127, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38332358

ABSTRACT

The Almaco jack (Seriola rivoliana) is a marine fish maintained in mariculture systems and frequently infested by monogenean parasites like Neobenedenia sp. Severe infestations can lead to high mortalities and economic losses for farmers. This study evaluated the effects of temperature on the immune response on Almaco jack infested with Neobenedenia sp. We exposed infested fishes at temperatures of 20 °C, 24 °C, and 30 °C for 20 days and took samples of different tissues at the beginning of the experiment, and after 3 and 20 days. The tissues considered were the skin, thymus, cephalic kidney, and spleen to evaluate the relative gene expression of different genes: Hsp70, IgM, IL-1ß, IL-10, and MyD88. Our results showed an increase in IL-1ß gene expression in the skin after 20 days of infestation but no significant effect of temperature on gene expression, despite increases in infestation rates with temperature. Therefore, relative genetic expression was controlled by the number of parasites and the days post-infestation. These results show that the parasite infestation induced a local response in the skin, but that temperature has an indirect effect on the immune system of Almaco jack.


Subject(s)
Perciformes , Trematoda , Animals , Temperature , Trematoda/genetics , Perciformes/parasitology , Fishes , Immunity
18.
Parasitology ; 151(1): 77-83, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38229575

ABSTRACT

The genus Encyclometra is one of the two genera in family Encyclometridae, known for parasitising the oesophagus, stomach and intestine of snakes. Among Encyclometra, the species present are: Encyclometra colubrimurorum, Encyclometra japonica, Encyclometra asymmetrica and Encyclometra bungara. Species discrimination within Encyclometra has predominantly relied on morphological differences, such as the length of the caeca and the position of the testes. Morphological overlaps exist among these species making species discrimination challenging. Additionally, the use of molecular information has been limited for Encyclometra. To determine the Encyclometra species infecting Enhydris enhydris from Thailand and Cambodia, morphological and molecular identification was conducted. Morphological characters and measurements were obtained from 30 Encyclometra adults, and they were compared with previous studies of other Encyclometra species. Novel sequences of E. bungara were generated using the nuclear 18S and 28S ribosomal RNA genes, and the mitochondrial cytochrome c oxidase subunit 1 gene. Our results revealed that the specimens could be morphologically identified as E. bungara, with support from molecular information obtained from the phylogenies of the 3 genetic markers employed. Molecular analysis showed that the Encyclometra specimens were distinct from E. colubrimurorum and E. japonica. Through morphological and molecular identification of the Encyclometra specimens found in E. enhydris from Thailand and Cambodia, we describe and provide a record of E. bungara in a new host and new locality. Additionally, novel molecular sequences were generated, revealing the phylogenetic position of E. bungara within the superfamily Gorgoderoidea.


Subject(s)
Trematoda , Animals , Phylogeny , Thailand , Cambodia , Trematoda/genetics , Genes, Mitochondrial
19.
Parasitol Int ; 100: 102862, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38237673

ABSTRACT

We herein provide a supplemental description of Nomasanguinicola dentata (Paperna, 1964) Warren and Bullard, 2023 (Digenea: Sanguinicolidae) and provide a revised 28S phylogeny to test relationships among freshwater fish blood flukes. We examined the heart of three African sharptooth catfish, Clarias gariepinus (Burchell, 1822) Teugles, 1982 from the Kavango River (northeastern Namibia) that was infected with adults of N. dentata. This blood fluke differs from N. canthoensis by having a body 5.3-6.7 longer than wide (vs. 3.5-4.6), an anterior esophageal swelling 7-8% (vs. 14-24%) of total esophageal length, a posterior esophageal swelling 3-5% (vs. 8-10%) of total esophageal length, a pre-cecal (vs. wholly post-cecal) testis, and an ovary that does not extend laterally beyond the nerve cords. The 28S sequence for N. dentata differed from that of N. canthoensis by 144 bp (9% difference). The phylogenetic analysis recovered these species as sister taxa and Sanguinicolidae as monophyletic. This is the first report of a fish blood fluke from sub-Saharan Africa, and the first report of a species of Nomasanguinicola from Africa in ∼40 yrs.


Subject(s)
Catfishes , Fish Diseases , Trematoda , Female , Male , Animals , Phylogeny , Rivers , Namibia , Fish Diseases/epidemiology , Trematoda/genetics
20.
Syst Parasitol ; 101(2): 11, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38193933

ABSTRACT

Trematodes of the genus Mesocoelium Odhner, 1910 (Digenea: Plagiorchioidea: Mesocoeliidae) are globally distributed and parasitize amphibians, reptiles, or occasionally fishes. This genus is one of the most confusing taxa in trematodes because of its poor morphological features. In this study, we examined species of Mesocoelium collected from Japanese amphibians and found that they can be morphologically assigned to two species of Mesocoelium. Mesocoelium brevicaecum Ochi in Goto and Ozaki, 1929 parasitizes various both urodelan and anuran amphibians and occurred widely in Japan, while M. japonicum Goto and Ozaki, 1930 parasitizes a few hynobiid species in a limited part of Japan. We proposed ceca length as a valid key characteristic for species identification in this genus. M. elongatum Goto and Ozaki, 1929, M. lanceatum Goto and Ozaki, 1929, M. minutum Park, 1939, M. ovatum Goto and Ozaki, 1930, and M. pearsei Goto and Ozaki, 1930 are junior synonyms of M. brevicaecum, while M. japonicum can be distinguishable from them by morphologically and molecularly. Our molecular study supported the validity of both species and showed intraspecific divergence associated with geographic distance. Molecular identification suggests that the land snail Euhadra quaesita can serve as the first intermediate host for M. japonicum in Japan. This study also indicates the extremely low specificity of this genus for vertebrate hosts. Finally, we conclude that at least three species of Mesocoelium (M. brevicaecum, M. japonicum, and Mesocoelium sp. 1) are distributed in Japan. Further studies in other regions are undoubtedly required for a better understanding of the taxonomy and ecology of the genus Mesocoelium.


Subject(s)
Anura , Trematoda , Animals , Japan , Species Specificity , Trematoda/genetics , Cyclophosphamide
SELECTION OF CITATIONS
SEARCH DETAIL
...