Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.556
Filter
1.
Mikrochim Acta ; 191(6): 335, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760484

ABSTRACT

The release of tire wear substances in the environment is raising concerns about potential impacts on aquatic ecosystems. The purpose of this study was to develop a quick and inexpensive screening test for the following tire wear substances: 6-phenylphenyldiamine quinone (6-PPD quinone), hexamethoxymethylmelamine (HMMM), 1-3-diphenylguanidine (1,3-DPG), and melamine. A dual strategy consisting of nanogold (nAu) signal intensity and the plasmonic ruler principle was used based on the spectral shift from the unaggregated free-form nAu from 525 nm to aggregated nAu at higher wavelengths. The shift in resonance corresponded to the relative sizes of the tire wear substances at the surface of nAu: 6-PPD (560 nm), HMMM (590 nm), 1,3-DPG (620 nm), and melamine (660 nm) in a concentration-dependent manner. When present in mixtures, a large indiscriminate band between 550 and 660 nm with a maximum corresponding to the mean intermolecular distance of 0.43 nm from the tested individual substances suggests that all compounds indiscriminately interacted at the surface of nAu. An internal calibration methodology was developed for mixtures and biological extracts from mussels and biofilms and revealed a proportional increase in absorbance at the corresponding resonance line for each test compound. Application of this simple and quick methodology revealed the increased presence of melamine and HMMM compounds in mussels and biofilms collected at urban sites (downstream city, road runoffs), respectively. The data also showed that treated municipal effluent decreased somewhat melamine levels in mussels.


Subject(s)
Gold , Metal Nanoparticles , Triazines , Gold/chemistry , Metal Nanoparticles/chemistry , Triazines/analysis , Triazines/chemistry , Surface Plasmon Resonance/methods , Water Pollutants, Chemical/analysis
2.
J Chromatogr A ; 1726: 464977, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38735117

ABSTRACT

A magnetic molecularly imprinted polymer (MMIP) adsorbent incorporating amino-functionalized magnetite nanoparticles, nitrogen-doped graphene quantum dots and mesoporous carbon (MIP@MPC@N-GQDs@Fe3O4NH2) was fabricated to extract triazine herbicides from fruit juice. The embedded magnetite nanoparticles simplified the isolation of the adsorbent from the sample solution. The N-GQDs and MPC enhanced adsorption by affinity binding with triazines. The MIP layer provided highly specific recognition sites for the selective adsorption of three target triazines. The extracted triazines were determined by high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD). The developed method exhibited linearity from 1.5 to 100.0 µg L-1 with a detection limit of 0.5 µg L-1. Recoveries from spiked fruit juice samples were in the range of 80.1- 108.4 %, with a relative standard deviation of less than 6.0 %. The developed MMIP adsorbent demonstrated good selectivity, high extraction efficiency, ease of fabrication and use, and good stability.


Subject(s)
Carbon , Fruit and Vegetable Juices , Herbicides , Limit of Detection , Molecularly Imprinted Polymers , Quantum Dots , Triazines , Quantum Dots/chemistry , Triazines/chemistry , Triazines/analysis , Triazines/isolation & purification , Herbicides/analysis , Herbicides/isolation & purification , Herbicides/chemistry , Fruit and Vegetable Juices/analysis , Adsorption , Molecularly Imprinted Polymers/chemistry , Carbon/chemistry , Chromatography, High Pressure Liquid/methods , Magnetite Nanoparticles/chemistry , Solid Phase Microextraction/methods , Molecular Imprinting/methods , Porosity , Graphite/chemistry
3.
Environ Sci Technol ; 58(15): 6814-6824, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38581381

ABSTRACT

Identifying persistent, mobile, and toxic (PMT) substances from synthetic chemicals is critical for chemical management and ecological risk assessment. Inspired by the triazine analogues (e.g., atrazine and melamine) in the original European Union's list of PMT substances, the occurrence and compositions of alkylamine triazines (AATs) in the estuarine sediments of main rivers along the eastern coast of China were comprehensively explored by an integrated strategy of target, suspect, and nontarget screening analysis. A total of 44 AATs were identified, of which 23 were confirmed by comparison with authentic standards. Among the remaining tentatively identified analogues, 18 were emerging pollutants not previously reported in the environment. Tri- and di-AATs were the dominant analogues, and varied geographic distributions of AATs were apparent in the investigated regions. Toxic unit calculations indicated that there were acute and chronic risks to algae from AATs on a large geographical scale, with the antifouling biocide cybutryne as a key driver. The assessment of physicochemical properties further revealed that more than half of the AATs could be categorized as potential PMT and very persistent and very mobile substances at the screening level. These results highlight that AATs are a class of PMT substances posing high ecological impacts on the aquatic environment and therefore require more attention.


Subject(s)
Atrazine , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Rivers/chemistry , Triazines/analysis , Atrazine/analysis , China , Environmental Monitoring
4.
Mikrochim Acta ; 191(5): 283, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38652169

ABSTRACT

A new method is proposed for detecting typical melamine dopants in food using surface-enhanced Raman scattering (SERS) biosensing technology. Melamine specific aptamer was used as the identification probe, and gold magnets (AuNPs@MNPs) and small gold nanoparticles (AuNPs@MBA) were used as the basis for Raman detection. The Raman signal of the detection system can directly detect melamine quantitatively. Under optimized conditions, the detection of melamine was carried out in the low concentration range of 0.001-500 mg/kg, the enhancement factor (EF) was 2.3 × 107, and the detection limit was 0.001 mg/kg. The method is sensitive and rapid, and can be used for the rapid detection of melamine in the field environment.


Subject(s)
Aptamers, Nucleotide , Gold , Limit of Detection , Metal Nanoparticles , Spectrum Analysis, Raman , Triazines , Triazines/analysis , Triazines/chemistry , Spectrum Analysis, Raman/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Aptamers, Nucleotide/chemistry , Food Contamination/analysis , Biosensing Techniques/methods , DNA/chemistry
5.
Environ Pollut ; 348: 123883, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548154

ABSTRACT

The escalating focus on the environmental occurrence and toxicology of emerging pollutants underscores the imperative need for a profound exploration of their metabolic transformations mediated by human CYP450 enzymes. Such investigations have the potential to unravel the intricate metabolite profiles, substantially altering the toxicological outcomes. In this study, we integrated the computational simulations with in vitro metabolism experiments to investigate the metabolic activity and mechanism of an emerging pollutant, 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TDBP-TAZTO), catalyzed by human CYP450s. The results highlight the important contributions of CYP2E1, 3A4 and 2C9 to the biotransformation of TDBP-TAZTO, leading to the identification of four distinct metabolites. The effective binding conformations governing biotransformation reactions of TDBP-TAZTO within active CYP450s are unveiled. Structural instability of primary hydroxyTDBP-TAZTO products suggests three potential outcomes: (1) generation of an alcohol metabolite through successive debromination and reduction reactions, (2) formation of a dihydroxylated metabolite through secondary hydroxylation by CYP450, and (3) production of an N-dealkylated metabolite via decomposition and isomerization reactions in the aqueous environment. The formation of a desaturated debrominated metabolite may arise from H-abstraction and barrier-free Br release during the primary oxidation, potentially competing with the generation of hydroxyTDBP-TAZTO. These findings provide detailed mechanistic insight into TDBP-TAZTO biotransformation by CYP450s, which can enrich our understanding of the metabolic fate and associated health risk of this chemical.


Subject(s)
Environmental Pollutants , Flame Retardants , Humans , Flame Retardants/metabolism , Triazines/analysis , Cytochrome P-450 Enzyme System/metabolism , Biotransformation , Oxidation-Reduction
6.
J Sep Sci ; 47(5): e2300746, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38471966

ABSTRACT

In this work, monodisperse and nano-porous poly(bismaleimide-co-divinylbenzene) microspheres with large specific surface area (427.6 m2 /g) and rich pore structure were prepared by one-pot self-stable precipitation polymerization of 2,2'-bis[4-(4-maleimidophenoxy) phenyl] propane and divinylbenzene. The prepared poly(bismaleimide-co-divinylbenzene) microspheres were employed as dispersive solid-phase extraction (DSPE) adsorbent for the extraction of triazine herbicides. Under optimized conditions, good linearities were obtained between the peak area and the concentration of triazine herbicides in the range of 1-400 µg/L (R2 ≥ 0.9987) with the limits of detection of 0.12-0.31 µg/L. Triazine herbicides were detected using the described approach in vegetable samples (i.e., cucumber, tomato, and maize) with recoveries of 93.6%-117.3% and relative standard deviations of 0.4%-3.5%. In addition, the recoveries of triazine herbicides remained above 80.7% after being used for nine DSPE cycles, showing excellent reusability of poly(bismaleimide-co-divinylbenzene) microspheres. The adsorption of poly(bismaleimide-co-divinylbenzene) microspheres toward triazine herbicides was a monolayer and chemical adsorption. The adsorption mechanism between triazine herbicides and adsorbents might be a combination of hydrogen bonding, electrostatic interaction, and π-π conjugation. The results confirmed the potential use of the poly(bismaleimide-co-divinylbenzene) microspheres-based DSPE coupled to the high-performance liquid chromatography method for the detection of triazine herbicide residues in vegetable samples.


Subject(s)
Herbicides , Vegetables , Vinyl Compounds , Vegetables/chemistry , Chromatography, High Pressure Liquid/methods , Microspheres , Porosity , Triazines/analysis , Solid Phase Extraction/methods , Herbicides/analysis , Limit of Detection
7.
Environ Pollut ; 345: 123502, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38316252

ABSTRACT

Microplastics (MPs) pose a global concern due to their ubiquitous distribution. Once in the environment, they are subject to aging, which changes their chemical-physical properties and ability to interact with organic pollutants, such as pesticides. Therefore, this study investigated the interaction of the hydrophobic herbicide terbuthylazine (TBA), which is widely used in agriculture, with artificially aged polyethylene (PE) MP (PE-MP) to understand how aging affects its sorption. PE was aged by an accelerated weathering process including UV irradiation, hydrogen peroxide, and ultrasonic treatment, and aged particles were characterized in comparison to pristine particles. Sorption kinetics were performed for aged and pristine materials, while further sorption studies with aged PE-MP included determining environmental factors such as pH, temperature, and TBA concentration. Sorption of TBA was found to be significantly lower on aged PE-MP compared to pristine particles because aging led to the formation of oxygen-containing functional groups, resulting in a reduction in hydrophobicity and the formation of negatively charged sites on oxidized surfaces. For pristine PE-MP, sorption kinetics were best described by the pseudo-second-order model, while it was intra-particle diffusion for aged PE-MP as a result of crack and pore formation. Sorption followed a decreasing trend with increasing pH, while it became less favorable at higher temperatures. The isotherm data revealed a complex sorption process on altered, heterogeneous surfaces involving hydrophobic interactions, hydrogen bonding, and π-π interactions, and the process was best described by the Sips adsorption isotherm model. Desorption was found to be low, confirming a strong interaction. However, thermodynamic results imply that increased temperatures, such as those resulting from climate change, could promote the re-release of TBA from aged PE-MP into the environment. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed TBA sorption onto PE.


Subject(s)
Pesticides , Water Pollutants, Chemical , Microplastics/chemistry , Plastics/chemistry , Pesticides/analysis , Triazines/analysis , Polyethylene/chemistry , Adsorption , Water Pollutants, Chemical/analysis
8.
Environ Pollut ; 345: 123472, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38320686

ABSTRACT

Leather is produced by a multi-step process among which the tanning phase is the most relevant, transforming animal skin collagen into a stable, non-putrescible material used to produce a variety of different goods, for the footwear, automotive, garments, and sports industry. Most of the leather produced today is tanned with chromium (III) salts or alternatively with aldehydes or synthetic tannins, generating high environmental concern. Over the years, high exhaustion tanning systems have been developed to reduce the environmental impact of chromium salts, which nevertheless do not avoid the use of metals. Chrome-free alternatives such as aldehydes and phenol based synthetic tannins, are suffering from Reach restrictions due to their toxicity. Thus, the need for environmentally benign and economically sustainable tanning agents is increasingly urgent. In this review, the synthesis, use and tanning mechanism of a new class of tanning agents, 1,3,5-triazines derivatives, have been reported together with organoleptic, physical mechanical characteristics of tanned leather produced. Additionally environmental performance and economic data available for 1,3,5-triazines have been compared with those of a standard basic chromium sulphate tanning process, evidencing the high potentiality for sustainable, metal, aldehyde, and phenol free leather manufacturing.


Subject(s)
Tanning , Tannins , Animals , Aldehydes , Chromium/toxicity , Chromium/analysis , Industrial Waste/analysis , Industry , Phenol , Phenols , Salts , Triazines/analysis , Triazines/chemistry
9.
Talanta ; 272: 125750, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38364559

ABSTRACT

Imidazoline-linked cationic covalent triazine framework (IM-iCTF) was facilely prepared through the Debus-Radziszewski reaction, involving 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline, formaldehyde and methylglyoxal. The IM-iCTF was applied as a sorbent for cartridge solid-phase extraction (SPE). It provided good adsorption performance for estrogen and estrogen mimics including bisphenol F, bisphenol A, 7ß-estradiol, bisphenol B and estrone. The adsorption isotherm, adsorption kinetic model, thermodynamic calculations and adsorption mechanism were investigated to reveal the adsorption behavior. The IM-iCTF was employed for the extraction of the estrogens and estrogen mimics from water, fish and shrimp (fish and shrimp samples were extracted with acetonitrile before the SPE). The analytes were then determined by high-performance liquid chromatography with diode array detection. The limits of detection were 0.008-0.05 ng mL-1 for water, 0.015-0.11 µg g-1 for fish, and 0.012-0.10 µg g-1 for shrimp samples. This research not only offers a new approach to construct cationic covalent triazine framework, but also provides a reliable strategy for the adsorption/enrichment trace level of organic pollutants.


Subject(s)
Estrogens , Triazines , Animals , Triazines/analysis , Estrogens/analysis , Estradiol/analysis , Estrone/analysis , Chromatography, High Pressure Liquid/methods , Solid Phase Extraction/methods , Water/chemistry , Adsorption , Limit of Detection
10.
Environ Sci Pollut Res Int ; 31(3): 3572-3581, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38085476

ABSTRACT

Diuron and Irgarol are common antifouling biocides used in paints to prevent the attachment and growth of fouling organisms on ship hulls and other submerged structures. Concerns about their toxicity to non-target aquatic organisms have led to various restrictions on their use in antifouling paints worldwide. Previous studies have shown the widespread presence of these substances in port areas along the Brazilian coast, with a concentration primarily in the southern part of the country. In this study, we conducted six sampling campaigns over the course of 1 year to assess the presence and associated risks of Diuron and Irgarol in water collected from areas under the influence of the Maranhão Port Complex in the Brazilian Northeast. Our results revealed the absence of Irgarol in the study area, irrespective of the sampling season and site. In contrast, the mean concentrations of Diuron varied between 2.0 ng L-1 and 34.1 ng L-1 and were detected at least once at each sampling site. We conducted a risk assessment of Diuron levels in this area using the risk quotient (RQ) method. Our findings indicated that Diuron levels at all sampling sites during at least one campaign yielded an RQ greater than 1, with a maximum of 22.7, classifying the risk as "high" based on the proposed risk classification. This study underscores the continued concern regarding the presence of antifouling biocides in significant ports and marinas in Brazilian ports, despite international bans.


Subject(s)
Biofouling , Disinfectants , Water Pollutants, Chemical , Diuron/analysis , Disinfectants/analysis , Brazil , Estuaries , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Triazines/analysis
12.
Environ Sci Pollut Res Int ; 30(56): 118418-118429, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37907825

ABSTRACT

The occurrence and distribution of 157 pesticides were investigated in surface water and sediment in Jiangsu Province, China. Gas chromatography-mass spectrometry was used to analyze and quantify these pesticides, and the risk quotient method was used to evaluate their respective environmental risk. The results showed that 91 pesticides were detected in surface water. The organophosphates (OPPs), fungicides, and amide herbicides were predominant. The total concentration in surface water ranged from 63.7 to 22,463 ng/L, 3.90 to 7262 ng/L, and ND to 34,120 ng/L, respectively. The mean concentration was 3479 ng/L, 1644 ng/L, and 1878 ng/L, respectively. The concentration range of detected pesticides in the Yangtze River Basin was generally lower than that in the Huai River Basin. In sediment samples, a total of 63 pesticides were detected. OPPs and amide herbicides were also ranked highest; the total concentration in sediment samples ranged from 2951 to 47,739 ng/g and 106 to 12,996 ng/g, respectively. And the mean concentrations was 6971 ng/g and 5130 ng/g, respectively. Suqian City had the highest concentration for OPPs and amide herbicides in the Huai River Basin, followed by Huai'an City, while Nanjing City and Yangzhou City ranked highest in the Yangtze River Basin. The spatial distribution of pesticides in Jiangsu Province indicated a concentration significantly higher in the western and northern regions than in the eastern and southern regions, and a concentration generally higher in lakes than in rivers. The risk assessment results showed that OPPs, fungicides, amide herbicides, organochlorines, and triazine herbicides in most surface water samples posed a high risk and had regional pollution characteristics. In sediment samples, organochlorines, carbamates, other herbicides, and other insecticides posed a high risk in northern Jiangsu Province, whereas OPPs, amide herbicides, and triazine herbicides posed high risks everywhere in Jiangsu Province.


Subject(s)
Fungicides, Industrial , Herbicides , Hydrocarbons, Chlorinated , Pesticides , Water Pollutants, Chemical , Pesticides/analysis , Water/analysis , Fungicides, Industrial/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Herbicides/analysis , Rivers/chemistry , Hydrocarbons, Chlorinated/analysis , China , Risk Assessment , Amides , Triazines/analysis
13.
Chemosphere ; 344: 140373, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806324

ABSTRACT

The increasing use of chemicals and their release into aquatic ecosystems are harming aquatic biota. Despite extensive ecotoxicological research, many environmental pollutants' ecological effects are still unknown. This study examined the spatial avoidance, behavioural and biochemical impacts of ibuprofen, irgarol, and terbuthylazine on the early life stages of zebrafish (Danio rerio) under a range of ecologically relevant concentrations (0-500 µg/L). Embryos were exposed following the OECD guideline "fish embryo toxicity test" complemented with biochemical assessment of AChE activity and behavioural analyses (swimming activity) using the video tracking system Zebrabox. Moreover, spatial avoidance was assessed by exposing 120 hpf-old larvae of D. rerio to a gradient of each chemical, by using the heterogeneous multi-habitat assay system (HeMHAS). The results obtained revealed that the 3 compounds delayed hatching at concentrations of 50 and 500 µg/L for both ibuprofen and irgarol and 500 µg/L for terbuthylazine. Moreover, all chemicals elicited a dose-dependent depression of movement (swimming distance) with LOEC values of 5, 500 and 50 µg/L for ibuprofen, irgarol and terbuthylazine, respectively. Zebrafish larvae avoided the three chemicals studied, with 4 h-AC50 values for ibuprofen, irgarol, and terbuthylazine of 64.32, 79.86, and 131.04 µg/L, respectively. The results of the HeMHAS assay suggest that larvae may early on avoid (just after 4 h of exposure) concentrations of the three chemicals that may later induce, apical and biochemical effects. Findings from this study make clear some advantages of using HeMHAS in ecotoxicology as it is: ecologically relevant (by simulating a chemically heterogeneous environmental scenario), sensitive (the perception of chemicals and the avoidance can occur at concentrations lower than those producing lethal or sublethal effects) and more humane and refined approach (organisms are not mandatorily exposed to concentrations that can produce individual toxicity).


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Ibuprofen/toxicity , Ecosystem , Triazines/analysis , Larva , Water Pollutants, Chemical/analysis , Embryo, Nonmammalian
14.
Ann Hum Biol ; 50(1): 442-451, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37819172

ABSTRACT

BACKGROUND: The development of Alzheimer's disease (AD) is promoted by a combination of genetic and environmental factors. Notably, combined exposure to triazine herbicides atrazine (ATR), simazine (SIM), and propazine (PRO) may promote the development of AD, but the mechanism is unknown. AIM: To study the molecular mechanism of AD induced by triazine herbicides. METHODS: Differentially expressed genes (DEGs) of AD patients and controls were identified. The intersectional targets of ATR, SIM, and PRO for possible associations with AD were screened through network pharmacology and used for gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis. The binding potentials between the core targets and herbicides were validated by molecular docking and molecular dynamics. RESULTS: A total of 1,062 DEGs were screened between the AD patients and controls, which identified 148 intersectional targets of herbicides causing AD that were screened by network pharmacology analysis. GO and KEGG enrichment analysis revealed that cell cycling and cellular senescence were important signalling pathways. Finally, the core targets EGFR, FN1, and TYMS were screened and validated by molecular docking and molecular dynamics. CONCLUSION: Our results suggest that combined exposure to triazine herbicides might promote the development of AD, thereby providing new insights for the prevention of AD.


Subject(s)
Alzheimer Disease , Atrazine , Herbicides , Humans , Molecular Docking Simulation , Alzheimer Disease/chemically induced , Alzheimer Disease/genetics , Herbicides/toxicity , Herbicides/analysis , Triazines/toxicity , Triazines/analysis , Simazine/analysis , Simazine/metabolism , Simazine/pharmacology , Atrazine/analysis , Computational Biology
16.
Chemosphere ; 340: 139807, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37574087

ABSTRACT

Polymeric porous adsorbents are reported for removal of explosives, namely picric acid, 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN) and their subsequent quantification using direct analysis with ambient plasma mass spectrometry. The adsorbents are obtained by functionalization of short-chain poly(2-oxazoline)s with methyl ester side chains using 4-(aminomethyl)pyridine with a degree of functionalization equal to 0, 5, 10, and 20%. The subsequent step consist of cross-linking using a high internal phase emulsion procedure by further side-chain amidation with diethylenetriamine as crosslinker. Picric acid, RDX, and PETN were chosen as the model compounds as they belong to three different groups of explosives, in particular nitroaromatics, nitroamines, and nitrate esters, respectively. The adsorption isotherms, kinetics, as well as the influence of pH and temperature on the adsorption process was investigated. The porous adsorbents showed the highest maximum adsorption capacity towards picric acid, reaching 334 mg g-1, while PETN (80 mg g-1) and RDX (17.4 mg g-1) were less efficiently adsorbed. Subsequent quantification of the adsorbed explosives is performed by a specially designed ambient mass spectrometry setup equipped with a thermal heater. The obtained limits of detection were found to be 20-times improved compared to direct analysis of analyte solutions. The effectiveness of the proposed analytical setup is confirmed by successful quantification of the explosives in river water samples. The research clearly shows that functional porous adsorbents coupled directly with ambient mass spectrometry can be used for rapid quantification of explosives, which can be, e.g., used for tracking illegal manufacturing sites of these compounds.


Subject(s)
Explosive Agents , Pentaerythritol Tetranitrate , Trinitrotoluene , Explosive Agents/analysis , Trinitrotoluene/analysis , Porosity , Triazines/analysis , Pentaerythritol Tetranitrate/analysis
17.
Food Chem ; 428: 136789, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37423110

ABSTRACT

A simple and rapid colorimetric method for the detection of melamine in milk samples is described. Polythymidine oligonucleotide was adsorbed on to the surface of gold nanoparticles (AuNPs), protecting it from aggregation. In the presence of melamine, polythymidine oligonucleotide combined with melamine formed a double-strand DNA-like structure, allowing AuNPs aggregation. In the presence of positively charged SYBR Green I (SG I), AuNPs were further aggregated. In the presence of melamine and SG I, aggregation of AuNPs was synergistic. Thus, in this principle, melamine can be detected visually. Plasmon resonance peak changes enabled detection of melamine quantitatively using UV-vis spectroscopy. The limit of detection for this colorimetric method was 16 µg L-1 with a good linear range from 19.5 µg L-1 to 1.25 × 103 µg L-1, and detection took only 1 min. The method was successfully applied for detection of melamine in milk samples.


Subject(s)
Metal Nanoparticles , Animals , Metal Nanoparticles/chemistry , Gold/chemistry , Milk/chemistry , Triazines/analysis , Colorimetry/methods , Oligonucleotides , Limit of Detection
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123143, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37478706

ABSTRACT

Melamine is one of the common limited contaminations in dairy products. The traditional detection method has a long period and complicated pretreatment process. The rapid detection method is the better method to solve the screening of limited contaminations. In this paper, taking melamine as the research object, the surface enhanced Raman spectrum of melamine in liquid milk were collected by portable Raman spectrometer, and melamine was qualitatively identified and semi-quantitatively analyzed by Raman characteristic peak and Raman intensity, and a simple and efficient rapid screening method for limited contaminations was developed. The limit of detection is 0.25 mg/kg. The probability of detection is 100% at 2.5 mg/kg, which is the same between the two laboratories, indicating that the semi-quantitative method has good repeatability. The method of melamine proposed in this study can meet the rapid screening requirements of limited contaminations at the maximum residue limit, and has a good application prospect.


Subject(s)
Milk , Spectrum Analysis, Raman , Animals , Milk/chemistry , Spectrum Analysis, Raman/methods , Triazines/analysis , Food Contamination/analysis
19.
Talanta ; 265: 124801, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37385193

ABSTRACT

A new three-component magnetic eutectogel composed of a crosslinked copolymeric deep eutectic solvent (DES) and polyvinylpyrrolidone-coated Fe3O4 nano-powder impregnated in calcium alginate gel was synthesized and applied as a sorbent material in a green alternative micro solid-phase extraction of melamine in milk and dairy products. The analyses were performed using the HPLC-UV technique. The copolymeric DES was prepared through thermally-induced free-radical polymerization of [2-hydroxyethyl methacrylate]:[thymol] DES (1:1 mol ratio) as functional monomer, azobisisobutyronitrile (as initiator), and ethylene glycol dimethacrylate (as crosslinker). The sorbent was characterized using ATR-FTIR, 1H & 13C FT-NMR, SEM, VSM, and BET techniques. The stability of the eutectogel in water and its effect on the pH of the aqueous solution was studied. A one-at-a-time approach was applied to optimize the impact of significant factors influencing sample preparation efficiency (sorbent mass, desorption conditions, adsorption time, pH, and ionic strength). The method validation was performed by evaluating matrix-matched calibration linearity (2-300 µg kg-1, r2 = 0.9902), precision, system suitability, specificity, enrichment factor, and matrix effect. The obtained limit of quantification (0.38 µg kg-1) was lower than the established maximum level for melamine by Food and Drug Administration (FDA) (0.25 mg kg-1), Food and Agriculture Organization (FAO) (0.5 & 2.5 mg kg-1), and The European Union (EU) (2.5 mg kg-1) in milk and dairy products. The optimized procedure was applied for the analysis of melamine in bovine milk, yogurt, cream, cheese, and ice cream. The obtained normalized recoveries of 77.4-105.3% (RSD% <7.0%) were acceptable regarding the practical default range set by the European Commission (70-120%, RSD≤20%). The sustainability and green aspects of the procedure were evaluated by the Analytical Greenness Metric Approach (0.6/1.0) and the Analytical Eco-Scale tool (73/100). This paper presents the first-time synthesis and application of this micro-eutectogel for the analysis of melamine in milk and milk-based dairy products.


Subject(s)
Deep Eutectic Solvents , Milk , Animals , Milk/chemistry , Triazines/analysis , Polymers/chemistry , Water/analysis , Magnetic Phenomena , Solvents/chemistry
20.
Anal Chim Acta ; 1261: 341225, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37147057

ABSTRACT

A rapid, fast, widely applicable liquid-solid microextraction and purification method of triazine herbicides (TRZHs) in muti-media samples using salting-out assisted liquid-liquid extraction (SALLE) combined with self-assembled monolithic spin columns-solid phase micro extraction (MSC-SPME) was developed. Environmentally friendly coconut shell biochar (CSB) was used as the adsorbents of MSC-SPME. Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was the separation and determination method. The adsorption kinetics and isotherms were investigated to indicate the interaction between CSB and TRZHs. Several parameters influencing the liquid-solid microextraction efficiency, such as sample pH, salting-out solution volume and pH, sample loading speed, elution speed, elution ratio and volume of eluent were systematically investigated with the aid of orthogonal design. The whole extraction process was operated within 10 min. Under the optimum extraction and determination conditions, good linearities for three TRZHs were obtained in a range of 0.10-200.00 ng mL-1, with linear coefficients (R2) greater than 0.999. The limits of detection (LODs) and limits of quantification (LOQs) were in the range of 6.99-11.00 ng L-1 and 23.33-36.68 ng L-1, respectively. The recoveries of the three TRZHs in multi-media environmental samples were ranged from 69.00% to 124.72%, with relative standard deviations (RSDs) lower than 0.43%. This SALLE-MSC-SPME-UPLC-MS/MS method was successfully applied to the determination of TRZHs in environmental and food samples and exhibited the advantages of high efficiency and sensitivity, low cost, and environmental friendliness. Compared with the methods published before, CSB-MSC was green, rapid, easy-operated, and reduced the whole cost of the experiment; SALLE combined MSC-SPME eliminated the matrix references effectively; what's more, the SALLE-MSC-SPME-UPLC-MS/MS method could be applied to various sample without complicated sample pretreatment procedure.


Subject(s)
Cocos , Herbicides , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Herbicides/analysis , Chromatography, High Pressure Liquid/methods , Solid Phase Extraction , Triazines/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...