Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Toxins (Basel) ; 13(9)2021 08 27.
Article in English | MEDLINE | ID: mdl-34564602

ABSTRACT

The aim of this study was to evaluate the interactions between wheat plant (spikelets and straws), a strain of mycotoxigenic pathogen Fusarium graminearum and commercial biocontrol agents (BCAs). The ability of BCAs to colonize plant tissue and inhibit the pathogen or its toxin production was observed throughout two phases of the life cycle of pathogens in natural conditions (colonization and survival). All evaluated BCAs showed effective reduction capacities of pathogenic traits. During establishment and the expansion stage, BCAs provoked an external growth reduction of F. graminearum (77-93% over the whole kinetic studied) and mycotoxin production (98-100% over the whole kinetic studied). Internal growth of pathogen was assessed with digital droplet polymerase chain reaction (ddPCR) and showed a very strong reduction in the colonization of the internal tissues of the spikelet due to the presence of BCAs (98% on average). During the survival stage, BCAs prevented the formation of conservation perithecia of the pathogen on wheat straw (between 88 and 98% of perithecia number reduction) and showed contrasting actions on the ascospores they contain, or perithecia production (-95% on average) during survival form. The mechanisms involved in these different interactions between F. graminearum and BCAs on plant matrices at different stages of the pathogen's life cycle were based on a reduction of toxins, nutritional and/or spatial competition, or production of anti-microbial compounds.


Subject(s)
Biological Control Agents/pharmacology , Fusarium/pathogenicity , Host-Pathogen Interactions/drug effects , Mycotoxins/biosynthesis , Mycotoxins/toxicity , Plant Diseases/prevention & control , Triticum/microbiology , Edible Grain/microbiology , Pythium/chemistry , Pythium/pathogenicity , Streptomyces/chemistry , Streptomyces/pathogenicity , Trichoderma/chemistry , Trichoderma/pathogenicity
2.
Pak J Biol Sci ; 24(4): 527-536, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34486312

ABSTRACT

<b>Background and Objective:</b> Fungi of the genus <i>Trichoderma </i>have high versatility in the control of different plant diseases. Among the main mechanisms of action of these fungi against phytopathogenic fungi, the production of Volatile Organic Compounds (VOCs) is mentioned. These compounds are said to inhibit the mycelial growth of various fungal pathogens. The objective of this work was to evaluate the <i>in vitro</i> inhibition of the mycelial growth of <i>Sclerotinia sclerotiorum </i>by VOCs from six <i>Trichoderma </i>strains in different stages of development of the biocontrol agent. <b>Materials and Methods:</b> In this work, the <i>in vitro </i>evaluation of the mycelial growth of the phytopathogen <i>S. sclerotiorum </i>by VOCs from six <i>Trichoderma </i>strains was carried out: <i>T. koningiopsis </i>(CEN1386), <i>T. asperelloides </i>(CEN1397), <i>T. longibrachiatum </i>(CEN1399) <i>T. lentiforme </i>(CEN1416), <i>T</i>. <i>perbedyi</i> (CEN1389) and <i>T. azevedoi</i> (CEN1241). Observations were made at different stages of antagonist development: mycelial Growth Phase (GP), Sporulation Phase (SP) and paired with the Pathogen Phase (PP). Besides, the sporulation of the tested strains was quantified. <b>Conclusion:</b> In all experimental conditions, the VOCs produced by the CEN1241 strain showed a greater inhibitory effect, although the inhibition was less evident when the cultures of <i>S. sclerotiorum </i>were exposed in the GP phase of the antagonist. Greater sporulation was observed with <i>T. lentiforme</i> (CEN1416), a fact not related to a better ability to inhibit <i>S. sclerotiorum</i>, by VOCs.


Subject(s)
Ascomycota/drug effects , Ascomycota/growth & development , Mycelium/pathogenicity , Trichoderma/pathogenicity , Volatile Organic Compounds/adverse effects , Ascomycota/physiology , Volatile Organic Compounds/metabolism
3.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203436

ABSTRACT

The beneficial role of fungi from the Trichoderma genus and its secondary metabolites in promoting plant growth, uptake and use efficiency of macronutrients and oligo/micro-nutrients, activation of plant secondary metabolism and plant protection from diseases makes it interesting for application in environmentally friendly agriculture. However, the literature data on the effect of Trichoderma inoculation on tomato fruit quality is scarce. Commercially used tomato cultivars were chosen in combination with indigenous Trichodrema species previously characterized on molecular and biochemical level, to investigate the effect of Trichoderma on photosynthetic characteristics and fruit quality of plants grown in organic system of production. Examined cultivars differed in the majority of examined parameters. Response of cultivar Gruzanski zlatni to Trichoderma application was more significant. As a consequence of increased epidermal flavonols and decreased chlorophyll, the nitrogen balance index in leaves has decreased, indicating a shift from primary to secondary metabolism. The quality of its fruit was altered in the sense of increased total flavonoids content, decreased starch, increased Bioaccumulation Index (BI) for Fe and Cr, and decreased BI for heavy metals Ni and Pb. Higher expression of swolenin gene in tomato roots of more responsive tomato cultivar indicates better root colonization, which correlates with observed positive effects of Trichodrema.


Subject(s)
Trichoderma/pathogenicity , Flavonoids/metabolism , Fruit/microbiology , Hypocreales/pathogenicity , Photosynthesis/physiology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/microbiology
4.
PLoS One ; 15(11): e0242480, 2020.
Article in English | MEDLINE | ID: mdl-33196686

ABSTRACT

In the current work we evaluated the anatomical changes induced by T. harzianum and T. asperellum in two soybean cultivars, BRSGO Caiaponia and NA 5909 RG. Soybean production represents a growing market worldwide, and new methods aimed at increasing its productivity and yield are constantly being sought. Fungi of the genus Trichoderma have been widely used in agriculture as a promising alternative for the promotion of plant growth and for biological control of various pathogens. It is known that Trichoderma spp. colonize plant roots, but the anatomical changes that this fungus can cause are still less studied. Experiment was conducted in a greenhouse to collect leaves and soybean roots to perform analysis of growth parameters, enzymatic activity of defense-related enzymes and anatomical changes. It was observed that inoculation of Trichoderma spp. caused anatomical alterations, among them, increase in stomatal index at the abaxial leaf surface, thickness of the root cortex, thickness of adaxial epidermis, mean diameter of the vascular cylinder, thickness of the mesophyll, and thickness of the spongy parenchyma of the soybean plants. These results indicate that the alterations in these factors may be related to the process of plant resistance to pathogens, and better performance against adverse conditions. This study demonstrates that the anatomical study of plants is an important tool to show the effects that are induced by biological control agents.


Subject(s)
Glycine max/anatomy & histology , Glycine max/growth & development , Trichoderma/pathogenicity , Agriculture , Nutrients , Plant Development/physiology , Plant Diseases/microbiology , Plant Leaves , Plant Roots/growth & development , Glycine max/parasitology , Trichoderma/growth & development , Trichoderma/physiology
5.
PLoS Pathog ; 16(2): e1008320, 2020 02.
Article in English | MEDLINE | ID: mdl-32078661

ABSTRACT

Fungal parasitism depends on the ability to invade host organisms and mandates adaptive cell wall remodeling to avoid detection and defense reactions by the host. All plant and human pathogens share invasive strategies, which aid to escape the chitin-triggered and chitin-targeted host immune system. Here we describe the full spectrum of the chitin/chitosan-modifying enzymes in the mycoparasite Trichoderma atroviride with a central role in cell wall remodeling. Rapid adaption to a variety of growth conditions, environmental stresses and host defense mechanisms such as oxidative stress depend on the concerted interplay of these enzymes and, ultimately, are necessary for the success of the mycoparasitic attack. To our knowledge, we provide the first in class description of chitin and associated glycopolymer synthesis in a mycoparasite and demonstrate that they are essential for biocontrol. Eight chitin synthases, six chitin deacetylases, additional chitinolytic enzymes, including six chitosanases, transglycosylases as well as accessory proteins are involved in this intricately regulated process. Systematic and biochemical classification, phenotypic characterization and mycoparasitic confrontation assays emphasize the importance of chitin and chitosan assembly in vegetative development and biocontrol in T. atroviride. Our findings critically contribute to understanding the molecular mechanism of chitin synthesis in filamentous fungi and mycoparasites with the overarching goal to selectively exploit the discovered biocontrol strategies.


Subject(s)
Chitin/metabolism , Chitosan/metabolism , Trichoderma/metabolism , Cell Wall/metabolism , Chitin/physiology , Chitin Synthase/metabolism , Gene Expression Regulation, Fungal/genetics , Glycoside Hydrolases , Phylogeny , Plants/metabolism , Trichoderma/growth & development , Trichoderma/pathogenicity
6.
Int J Mol Sci ; 21(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31906579

ABSTRACT

: Dendrobium are tropical orchid plants that host diverse endophytic fungi. The role of these fungi is not currently well understood in Dendrobium plants. We morphologically and molecularly identified these fungal endophytes, and created an efficient system for evaluating the pathogenicity and symptoms of endophytic fungi on Dendrobium nobile and Dendrobium officinale though in vitro co-culturing. ReThe colony morphological traits of Dendrobium myco-endophytes (DMEs) were recorded for their identification. Molecular identification revealed the presence of Colletotrichum tropicicola, Fusarium keratoplasticum, Fusarium oxysporum, Fusarium solani, and Trichoderma longibrachiatum. The pathogenicity results revealed that T. longibrachiatum produced the least pathogenic effects against D. nobile protocorms. In seedlings, T. longibrachiatum showed the least pathogenic effects against D. officinale seedlings after seven days. C. tropicicola produced highly pathogenic effects against both Dendrobium seedlings. The results of histological examination of infected tissues revealed that F. keratoplasticum and T. longibrachiatum fulfill Koch's postulates for the existence of endophytes inside the living tissues. The DMEs are cross-transmitted inside the host plant cells, playing an important role in plant host development, resistance, and alkaloids stimulation.


Subject(s)
Dendrobium/microbiology , Endophytes/pathogenicity , Fungi/pathogenicity , Plant Diseases/microbiology , Colletotrichum/genetics , Colletotrichum/isolation & purification , Colletotrichum/pathogenicity , DNA, Fungal , Dendrobium/cytology , Endophytes/genetics , Endophytes/isolation & purification , Fungi/cytology , Fungi/genetics , Fungi/isolation & purification , Fusarium/genetics , Fusarium/isolation & purification , Fusarium/pathogenicity , Phylogeny , Seedlings/growth & development , Seedlings/microbiology , Trichoderma/genetics , Trichoderma/isolation & purification , Trichoderma/pathogenicity
7.
Plant Cell ; 32(1): 166-185, 2020 01.
Article in English | MEDLINE | ID: mdl-31690653

ABSTRACT

Multiple long-distance signals have been identified for pathogen-induced systemic acquired resistance, but mobile signals for symbiont-induced systemic resistance (ISR) are less well understood. We used ISR-positive and -negative mutants of maize (Zea mays) and the beneficial fungus Trichoderma virens and identified 12-oxo-phytodienoic acid (12-OPDA) and α-ketol of octadecadienoic acid (KODA) as important ISR signals. We show that a maize 13-lipoxygenase mutant, lox10, colonized by the wild-type T. virens (TvWT) lacked ISR response against Colletotrichum graminicola but instead displayed induced systemic susceptibility. Oxylipin profiling of xylem sap from T. virens-treated plants revealed that 12-OPDA and KODA levels correlated with ISR. Transfusing sap supplemented with 12-OPDA or KODA increased receiver plant resistance in a dose-dependent manner, with 12-OPDA restoring ISR of lox10 plants treated with TvWT or T. virens Δsm1, a mutant unable to induce ISR. Unexpectedly, jasmonic acid (JA) was not involved, as the JA-deficient opr7 opr8 mutant plants retained the capacity for T. virens-induced ISR. Transcriptome analysis of TvWT-treated maize B73 revealed upregulation of 12-OPDA biosynthesis and OPDA-responsive genes but downregulation of JA biosynthesis and JA response genes. We propose a model that differential regulation of 12-OPDA and JA in response to T. virens colonization results in ISR induction.


Subject(s)
Cyclopentanes/metabolism , Disease Resistance/physiology , Oxylipins/metabolism , Xylem/metabolism , Zea mays/physiology , Fatty Acids, Unsaturated , Gene Expression Regulation, Plant , Isomerism , Lipoxygenase/genetics , Plant Diseases/microbiology , Trichoderma/pathogenicity , Zea mays/genetics
8.
Biomolecules ; 9(12)2019 11 26.
Article in English | MEDLINE | ID: mdl-31779176

ABSTRACT

Trichoderma species are known for their ability to produce lytic enzymes, such as exoglucanases, endoglucanases, chitinases, and proteases, which play important roles in cell wall degradation of phytopathogens. ß-glucanases play crucial roles in the morphogenetic-morphological process during the development and differentiation processes in Trichoderma species, which have ß-glucans as the primary components of their cell walls. Despite the importance of glucanases in the mycoparasitism of Trichoderma spp., only a few functional analysis studies have been conducted on glucanases. In the present study, we used a functional genomics approach to investigate the functional role of the gluc31 gene, which encodes an endo-ß-1,3-glucanase belonging to the GH16 family in Trichoderma harzianum ALL42. We demonstrated that the absence of the gluc31 gene did not affect the in vivo mycoparasitism ability of mutant T. harzianum ALL42; however, gluc31 evidently influenced cell wall organization. Polymer measurements and fluorescence microscopy analyses indicated that the lack of the gluc31 gene induced a compensatory response by increasing the production of chitin and glucan polymers on the cell walls of the mutant hyphae. The mutant strain became more resistant to the fungicide benomyl compared to the parental strain. Furthermore, qRT-PCR analysis showed that the absence of gluc31 in T. harzianum resulted in the differential expression of other glycosyl hydrolases belonging to the GH16 family, because of functional redundancy among the glucanases.


Subject(s)
Antibiosis/genetics , Cell Wall/enzymology , Cell Wall/metabolism , Endo-1,3(4)-beta-Glucanase/metabolism , Trichoderma/enzymology , Trichoderma/metabolism , Ascomycota/metabolism , Benomyl/pharmacology , Cell Wall/chemistry , Cell Wall/drug effects , Chitin/metabolism , Endo-1,3(4)-beta-Glucanase/genetics , Fusarium/metabolism , Gene Expression Regulation, Fungal/genetics , Genomics , Microscopy, Fluorescence , Phylogeny , Rhizoctonia/metabolism , Trichoderma/drug effects , Trichoderma/pathogenicity , beta-Glucans/metabolism
9.
Int J Mol Sci ; 20(19)2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31590281

ABSTRACT

Both hormonal balance and plant growth may be shaped by microorganisms synthesizing phytohormones, regulating its synthesis in the plant and inducing plant resistance by releasing elicitors from cell walls (CW) by degrading enzymes (CWDE). It was shown that the Trichoderma DEMTkZ3A0 strain, isolated from a healthy rye rhizosphere, colonized the rhizoplane of wheat seedlings and root border cells (RBC) and caused approximately 40% increase of stem weight. The strain inhibited (in over 90%) the growth of polyphagous Fusarium spp. (F. culmorum, F. oxysporum, F. graminearum) phytopathogens through a mechanism of mycoparasitism. Chitinolytic and glucanolytic activity, strongly stimulated by CW of F. culmorum in the DEMTkZ3A0 liquid culture, is most likely responsible for the lysis of hyphae and macroconidia of phytopathogenic Fusarium spp. as well as the release of plant resistance elicitors. In DEMTkZ3A0 inoculated plants, an increase in the activity of the six tested plant resistance markers and a decrease in the concentration of indoleacetic acid (IAA) auxin were noted. IAA and gibberellic acid (GA) but also the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) enzyme regulating ethylene production by plant were synthesized by DEMTkZ3A0 in the liquid culture. IAA synthesis was dependent on tryptophan and negatively correlated with temperature, whereas GA synthesis was positively correlated with the biomass and temperature.


Subject(s)
Carbon-Carbon Lyases/metabolism , Disease Resistance , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Trichoderma/metabolism , Triticum/microbiology , Fusarium/pathogenicity , Hyphae/metabolism , Rhizosphere , Seedlings/metabolism , Seedlings/microbiology , Trichoderma/pathogenicity , Triticum/metabolism
10.
Biol Res ; 52(1): 51, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31530279

ABSTRACT

BACKGROUND: The leafcutter ant (Atta cephalotes) is associated with losses in the agricultural sector, due to its defoliating activity; for its control, biological, mechanical and chemical methods have been developed, the latter associated with adverse effects on human and environmental health. This research validated in the field for the control of the leafcutter ant (A. cephalotes) using a mixture of Beauveria bassiana and Trichoderma lignorum spores. METHODS: The effectiveness from the combination of spores of B. bassiana and T. lignorum with an initial concentration of 2 × 109 spores/ml, in the following proportions of B. bassiana and T. lignorum, A (1:1), of each fungus. It was evaluated within the university campus, comparing it with two commercial formulations, Mycotrol (B. bassiana) and Mycobac (T. lignorum). Additionally, this formulation was evaluated in 49 nests distributed 16 in 14 locations in Colombia. The formulation application was carried out by direct application, using a pump at a speed of 10 ml/m2. The effectiveness was estimated from the reduction of the flow of ants, evaluating the statistically significant differences using the ANOVA and Tukey-test. RESULTS: Effective control of 90% of the nests was observed in the field phase in 60 days, except in nests with areas > 50 m2 that were located in regions with high rainfall (annual average precipitation above 7000 mm), such as Buenaventura. CONCLUSIONS: In this work, it was demonstrated that the combination of B. bassiana and T. lignorum spores represent a viable alternative for the control of the leafcutter ant, in which the effectiveness is related to several factors, including the size of the nest and the rainfall in the area.


Subject(s)
Ants/microbiology , Beauveria/pathogenicity , Biological Control Agents , Pest Control, Biological/methods , Trichoderma/pathogenicity , Animals , Beauveria/growth & development , Colombia , Spores, Fungal , Symbiosis , Trichoderma/growth & development , Universities
11.
Int J Mol Sci ; 20(15)2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31366159

ABSTRACT

Salt stress is one of the major abiotic stresses limiting crop growth and productivity worldwide. Species of Trichoderma are widely recognized for their bio-control abilities, but little information is regarding to the ability and mechanisms of their promoting plant growth and enhancing plant tolerance to different levels of salt stress. Hence, we determined (i) the role of Trichoderma longibrachiatum T6 (TL-6) in promoting wheat (Triticum aestivum L.) seed germination and seedling growth under different levels of salt stress, and (ii) the mechanisms responsible for the enhanced tolerance of wheat to salt stress by TL-6. Wheat seeds treated with or without TL-6 were grown under different levels of salt stress in controlled environmental conditions. As such, the TL-6 treatments promoted seed germination and increased the shoot and root weights of wheat seedlings under both non-stress and salt-stress conditions. Wheat seedlings with TL-6 treatments under different levels of NaCl stress increased proline content by an average of 11%, ascorbate 15%, and glutathione 28%; and decreased the contents of malondialdehyde (MDA) by an average of 19% and hydrogen peroxide (H2O2) 13%. The TL-6 treatments induced the transcriptional level of reactive oxygen species (ROS) scavenging enzymes, leading to the increases of glutathione s-transferase (GST) by an average of 17%, glutathione peroxidase (GPX) 16%, ascorbate peroxidase (APX) 17%, glutathione reductase (GR) 18%, dehydroascorbate reductase (DHAR) 5%. Our results indicate that the beneficial strain of TL-6 effectively scavenged ROS under NaCl stress through modulating the activity of ROS scavenging enzymes, regulating the transcriptional levels of ROS scavenging enzyme gene expression, and enhancing the nonenzymatic antioxidants in wheat seedling in response to salt stress. Our present study provides a new insight into the mechanisms of TL-6 can activate the enzymatic and nonenzymatic antioxidant defense systems and enhance wheat seedling tolerance to different levels of salt stress at physiological, biochemical and molecular levels.


Subject(s)
Germination , Salt Stress , Trichoderma/pathogenicity , Triticum/metabolism , Ascorbic Acid/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Malondialdehyde/metabolism , Oxidative Stress , Plant Proteins/genetics , Plant Proteins/metabolism , Proline/metabolism , Reactive Oxygen Species/metabolism , Triticum/growth & development , Triticum/microbiology
12.
Sci Rep ; 8(1): 12064, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30104659

ABSTRACT

Mycoparasites, e.g. fungi feeding on other fungi, are prominent within the genus Trichoderma and represent a promising alternative to chemical fungicides for plant disease control. We previously showed that the seven-transmembrane receptor Gpr1 regulates mycelial growth and asexual development and governs mycoparasitism-related processes in Trichoderma atroviride. We now describe the identification of genes being targeted by Gpr1 under mycoparasitic conditions. The identified gene set includes a candidate, sfp2, encoding a protein of the fungal-specific Sur7 superfamily, whose upregulation in T. atroviride upon interaction with a fungal prey is dependent on Gpr1. Sur7 family proteins are typical residents of membrane microdomains such as the membrane compartment of Can1 (MCC)/eisosome in yeast. We found that GFP-labeled Gpr1 and Sfp2 proteins show partly overlapping localization patterns in T. atroviride hyphae, which may point to shared functions and potential interaction during signal perception and endocytosis. Deletion of sfp2 caused heavily altered colony morphology, defects in polarized growth, cell wall integrity and endocytosis, and significantly reduced mycoparasitic activity, whereas sfp2 overexpression enhanced full overgrowth and killing of the prey. Transcriptional activation of a chitinase specific for hyphal growth and network formation and strong downregulation of chitin synthase-encoding genes were observed in Δsfp2. Taken together, these findings imply crucial functions of Sfp2 in hyphal morphogenesis of T. atroviride and its interaction with prey fungi.


Subject(s)
Cell Wall/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Hyphae/growth & development , Trichoderma/metabolism , Chitin Synthase/genetics , Chitin Synthase/metabolism , Chitinases/genetics , Chitinases/metabolism , Down-Regulation , Fungal Proteins/genetics , Gene Expression Profiling , Hyphae/genetics , Hyphae/metabolism , Morphogenesis , Plant Diseases/microbiology , Plant Diseases/prevention & control , Receptors, G-Protein-Coupled/metabolism , Rhizoctonia , Signal Transduction , Transcriptional Activation , Trichoderma/genetics , Trichoderma/growth & development , Trichoderma/pathogenicity , Up-Regulation
13.
J Plant Physiol ; 229: 158-163, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30096586

ABSTRACT

2,4-dichlorophenoxyacetic acid (2,4-D) is among the most commonly used herbicides applied for weed control during wheat cultivation. However, its application could affect wheat growth. The present study investigates the effect of the ascomycetous fungus Trichoderma harzianum on lipid peroxidation, phospholipids, signaling lipids and phospholipase D in the seedlings of wheat (Triticum aestivum L.) treated with 2,4-D (2.5 mg L-1). In the group of 4-day-old seedlings exposed to the herbicide, increased lipid peroxidation and inhibition of growth were observed in shoots and roots. Moreover, elevated levels of oxylipins were noted. Among them, the amount of 13-HOTrE oxygenated from linolenic acid (18:3) increased the most significantly. Concurrently, in the seedlings inoculated with T. harzianum, growth was stimulated when the level of phosphatidylcholine (PC) increased. Moreover, in wheat seedlings treated with 2,4-D and T. harzianum, the level of lipid peroxidation was similar to that in the control and there was no increase observed in oxylipins and phospholipase D activity. T. harzianum might have partly alleviated the toxic effect of 2,4-D on wheat seedlings.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/pharmacology , Trichoderma/pathogenicity , Triticum/metabolism , Triticum/microbiology , Oxidative Stress/physiology , Phosphatidylcholines/metabolism , Phospholipase D/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/microbiology , Plant Shoots/drug effects , Plant Shoots/metabolism , Plant Shoots/microbiology , Seedlings/drug effects , Seedlings/metabolism , Seedlings/microbiology , Triticum/drug effects
14.
J Biotechnol ; 278: 10-19, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-29702132

ABSTRACT

Bacillus subtilis QST713 is extensively used as a biological control agent in agricultural fields including in the button mushroom culture, Agaricus bisporus. This last use exploits its inhibitory activity against microbial pathogens such as Trichoderma aggressivum f. europaeum, the main button mushroom green mould competitor. Here, we report the complete genome sequence of this bacterium with a genome size of 4 233 757 bp, 4263 predicted genes and an average GC content of 45.9%. Based on phylogenomic analyses, strain QST713 is finally designated as Bacillus velezensis. Genomic analyses revealed two clusters encoding potential new antimicrobials with NRPS and TransATPKS synthetase. B. velezensis QST713 genome also harbours several genes previously described as being involved in surface colonization and biofilm formation. This strain shows a strong ability to form in vitro spatially organized biofilm and to antagonize T. aggressivum. The availability of this genome sequence could bring new elements to understand the interactions with micro or/and macroorganisms in crops.


Subject(s)
Agaricus , Anti-Infective Agents , Bacillus/genetics , Bacterial Proteins , Biological Control Agents , Genome, Bacterial/genetics , Bacillus/chemistry , Bacillus/classification , Bacillus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Trichoderma/drug effects , Trichoderma/pathogenicity
15.
J Microbiol Biotechnol ; 28(5): 831-838, 2018 May 28.
Article in English | MEDLINE | ID: mdl-29539878

ABSTRACT

Trophic interactions of introduced biocontrol fungi with soil animals can be a key determinant in the fungal proliferation and activity. This study investigated the trophic interaction of an introduced biocontrol fungus with soil nematodes. The biocontrol fungus Trichoderma harzianum ThzID1-M3 and the fungivorous nematode Aphelenchoides sp. (10 per gram of soil) were added to nonsterile soil, and microbial populations were monitored for 40 days. Similar results were obtained when the experiment was duplicated. ThzID1-M3 stimulated the population growth of indigenous nematodes (p < 0.05), regardless of whether Aphelenchoides sp. was added. Without ThzID1-M3, indigenous nematodes did not increase in number and the added Aphelenchoides sp. nematodes almost disappeared by day 10. With ThzID1-M3, population growth of nematodes was rapid between 5 and 10 days after treatment. ThzID1-M3 biomass peaked on day 5, dropped at day 10, and then almost disappeared at day 20, which was not influenced by the addition of nematodes. In contrast, a large quantity of ThzID1-M3 hyphae were present in a heat-treated soil in which nematodes were eliminated. Total fungal biomass in all treatments peaked on day 5 and subsequently decreased. Addition of nematodes increased the total fungal biomass (p < 0.05), but ThzID1-M3 addition did not affect the fungal biomass. Hyphae of total fungi when homogenously distributed did not support the nematode population growth; however, hyphae of the introduced fungus did when densely localized. The results suggest that soil fungivorous nematodes are an important constraint on the hyphal proliferation of fungal agents introduced into natural soils.


Subject(s)
Biological Control Agents , Rhabditida/microbiology , Trichoderma , Animals , Biomass , Soil Microbiology , Trichoderma/chemistry , Trichoderma/pathogenicity , Trichoderma/physiology
16.
Mol Plant Pathol ; 19(4): 870-882, 2018 04.
Article in English | MEDLINE | ID: mdl-28605157

ABSTRACT

In the present study, we investigated the role of Trichoderma virens (TriV_JSB100) spores or cell-free culture filtrate in the regulation of growth and activation of the defence responses of tomato (Solanum lycopersicum) plants against Fusarium oxysporum f. sp. lycopersici by the development of a biocontrol-plant-pathogen interaction system. Two-week-old tomato seedlings primed with TriV_JSB100 spores cultured on barley grains (BGS) or with cell-free culture filtrate (CF) were inoculated with Fusarium pathogen under glasshouse conditions; this resulted in significantly lower disease incidence in tomato Oogata-Fukuju plants treated with BGS than in those treated with CF. To dissect the pathways associated with this response, jasmonic acid (JA) and salicylic acid (SA) signalling in BGS- and CF-induced resistance was evaluated using JA- and SA-impaired tomato lines. We observed that JA-deficient mutant def1 plants were susceptible to Fusarium pathogen when they were treated with BGS. However, wild-type (WT) BGS-treated tomato plants showed a higher JA level and significantly lower disease incidence. SA-deficient mutant NahG plants treated with CF were also found to be susceptible to Fusarium pathogen and displayed low SA levels, whereas WT CF-treated tomato plants exhibited moderately lower disease levels and substantially higher SA levels. Expression of the JA-responsive defensin gene PDF1 was induced in WT tomato plants treated with BGS, whereas the SA-inducible pathogenesis-related protein 1 acidic (PR1a) gene was up-regulated in WT tomato plants treated with CF. These results suggest that TriV_JSB100 BGS and CF differentially induce JA and SA signalling cascades for the elicitation of Fusarium oxysporum resistance in tomato.


Subject(s)
Cyclopentanes/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Trichoderma/pathogenicity , Fusarium/pathogenicity , Gene Expression Regulation, Plant/physiology , Plant Diseases/microbiology , Signal Transduction/physiology
17.
PLoS One ; 12(10): e0187055, 2017.
Article in English | MEDLINE | ID: mdl-29073211

ABSTRACT

Trichoderma asperellum is one of the species which can be isolated from contaminated Pleurotus ostreatus cultivation substrate with green mold disease. This study focused on the relationship between high temperature and infectivity of T. asperellum to P. ostreatus. Antagonism experiments between T. asperellum and P. ostreatus mycelia revealed that high temperature-treated P. ostreatus mycelia were more easily infected by T. asperellum and covered by conidia. Microscopic observation also showed that P. ostreatus mycelia treated with high temperature could adsorb more T. asperellum conidia. Furthermore, conidia obtained from T. asperellum mycelia grown at 36°C featured higher germination rate compared with that incubated at 28°C. High temperature-treated T. asperellum mycelia can produce conidia in shorter periods, and T. asperellum mycelia were less sensitive to high temperature than P. ostreatus. Deactivated P. ostreatus mycelia can induce T. asperellum cell wall-degrading enzymes (CWDEs) and P. ostreatus mycelia subjected to high temperature showed induced CWDEs more effective than those incubated at 28°C. Moreover, T. asperellum showed higher CWDEs activity at high temperature. In dual cultures, hydrogen peroxide (H2O2) increased after 36°C, and high concentration of H2O2 could significantly inhibit the growth of P. ostreatus mycelia. In summary, our findings indicated for the first time that high temperature can induce a series of mechanisms to enhance infection abilities of T. asperellum to P. ostreatus mycelia and to cause Pleurotus green mold disease.


Subject(s)
Hot Temperature , Mycelium/growth & development , Pleurotus/growth & development , Trichoderma/pathogenicity , Germination
18.
World J Microbiol Biotechnol ; 33(8): 155, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28695465

ABSTRACT

Climate change is one of the biggest challenges of the twenty-first century for sustainable agricultural production. Several reports highlighted the need for better agricultural practices and use of eco-friendly methods for sustainable crop production under such situations. In this context, Trichoderma species could be a model fungus to sustain crop productivity. Currently, these are widely used as inoculants for biocontrol, biofertilization, and phytostimulation. They are reported to improve photosynthetic efficiency, enhance nutrient uptake and increase nitrogen use efficiency in crops. Moreover, they can be used to produce bio-energy, facilitate plants for adaptation and mitigate adverse effect of climate change. The technological advancement in high throughput DNA sequencing and biotechnology provided deep insight into the complex and diverse biotic interactions established in nature by Trichoderma spp. and efforts are being made to translate this knowledge to enhance crop growth, resistance to disease and tolerance to abiotic stresses under field conditions. The discovery of several traits and genes that are involved in the beneficial effects of Trichoderma spp. has resulted in better understanding of the performance of bioinoculants in the field, and will lead to more efficient use of these strains and possibly to their improvement by genetic modification. The present mini-review is an effort to elucidate the molecular basis of plant growth promotion and defence activation by Trichoderma spp. to garner broad perspectives regarding their functioning and applicability for climate resilient agriculture.


Subject(s)
Agriculture/methods , Climate Change , Crops, Agricultural , Trichoderma/physiology , Adaptation, Physiological , Biotechnology/methods , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/immunology , Fertilizers , Food , Nitrogen , Plant Development , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Soil/chemistry , Soil Microbiology , Stress, Physiological , Trichoderma/classification , Trichoderma/genetics , Trichoderma/pathogenicity
19.
Chem Biodivers ; 14(6)2017 Jun.
Article in English | MEDLINE | ID: mdl-28261948

ABSTRACT

Certain Trichoderma species are causing serious losses in mushroom production worldwide. Trichoderma aggressivum and Trichoderma pleuroti are among the major causal agents of the green mould diseases affecting Agaricus bisporus and Pleurotus ostreatus, respectively. The genus Trichoderma is well-known for the production of bioactive secondary metabolites, including peptaibols, which are short, linear peptides containing unusual amino acid residues and being synthesised via non-ribosomal peptide synthetases (NRPSs). The aim of this study was to get more insight into the peptaibol production of T. aggressivum and T. pleuroti. HPLC/MS-based methods revealed the production of peptaibols closely related to hypomurocins B by T. aggressivum, while tripleurins representing a new group of 18-residue peptaibols were identified in T. pleuroti. Putative NRPS genes enabling the biosynthesis of the detected peptaibols could be found in the genomes of both Trichoderma species. In vitro experiments revealed that peptaibols are potential growth inhibitors of mushroom mycelia, and that the host mushrooms may have an influence on the peptaibol profiles of green mould agents.


Subject(s)
Agaricales/growth & development , Peptaibols/biosynthesis , Trichoderma/metabolism , Agaricales/drug effects , Agaricus , Genes, Fungal , Genome, Fungal , Growth Inhibitors , Mycoses , Peptaibols/genetics , Peptaibols/toxicity , Pleurotus , Trichoderma/genetics , Trichoderma/pathogenicity
20.
Antimicrob Agents Chemother ; 60(8): 5029-32, 2016 08.
Article in English | MEDLINE | ID: mdl-27216056

ABSTRACT

Different inocula of Trichoderma longibrachiatum were tested in a murine model, and only the highest one (1 × 10(7) CFU/animal) killed all of the mice at day 15 postinfection, with spleen and liver the most affected organs. The efficacies of amphotericin B deoxycholate, liposomal amphotericin B, voriconazole, and micafungin were evaluated in the same model, with very poor results. Our study demonstrated the low virulence but high resistance to antifungal compounds of this fungus.


Subject(s)
Antifungal Agents/therapeutic use , Trichoderma/drug effects , Trichoderma/pathogenicity , Amphotericin B/therapeutic use , Animals , Deoxycholic Acid/therapeutic use , Drug Combinations , Echinocandins/therapeutic use , Lipopeptides/therapeutic use , Liver/microbiology , Male , Micafungin , Mice , Mycoses/drug therapy , Mycoses/microbiology , Spleen/microbiology , Virulence/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...