Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
1.
Sci Adv ; 10(17): eadn3991, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657073

ABSTRACT

Tremendous plant metabolic diversity arises from phylogenetically restricted specialized metabolic pathways. Specialized metabolites are synthesized in dedicated cells or tissues, with pathway genes sometimes colocalizing in biosynthetic gene clusters (BGCs). However, the mechanisms by which spatial expression patterns arise and the role of BGCs in pathway evolution remain underappreciated. In this study, we investigated the mechanisms driving acylsugar evolution in the Solanaceae. Previously thought to be restricted to glandular trichomes, acylsugars were recently found in cultivated tomato roots. We demonstrated that acylsugars in cultivated tomato roots and trichomes have different sugar cores, identified root-enriched paralogs of trichome acylsugar pathway genes, and characterized a key paralog required for root acylsugar biosynthesis, SlASAT1-LIKE (SlASAT1-L), which is nested within a previously reported trichome acylsugar BGC. Last, we provided evidence that ASAT1-L arose through duplication of its paralog, ASAT1, and was trichome-expressed before acquiring root-specific expression in the Solanum genus. Our results illuminate the genomic context and molecular mechanisms underpinning metabolic diversity in plants.


Subject(s)
Gene Duplication , Gene Expression Regulation, Plant , Multigene Family , Plant Roots , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Evolution, Molecular , Biosynthetic Pathways/genetics , Trichomes/genetics , Trichomes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny
2.
Sci Rep ; 14(1): 9752, 2024 04 28.
Article in English | MEDLINE | ID: mdl-38679676

ABSTRACT

The TTG2 transcription factor of Arabidopsis regulates a set of epidermal traits, including the differentiation of leaf trichomes, flavonoid pigment production in cells of the inner testa (or seed coat) layer and mucilage production in specialized cells of the outer testa layer. Despite the fact that TTG2 has been known for over twenty years as an important regulator of multiple developmental pathways, little has been discovered about the downstream mechanisms by which TTG2 co-regulates these epidermal features. In this study, we present evidence of phosphoinositide lipid signaling as a mechanism for the regulation of TTG2-dependent epidermal pathways. Overexpression of the AtPLC1 gene rescues the trichome and seed coat phenotypes of the ttg2-1 mutant plant. Moreover, in the case of seed coat color rescue, AtPLC1 overexpression restored expression of the TTG2 flavonoid pathway target genes, TT12 and TT13/AHA10. Consistent with these observations, a dominant AtPLC1 T-DNA insertion allele (plc1-1D) promotes trichome development in both wild-type and ttg2-3 plants. Also, AtPLC1 promoter:GUS analysis shows expression in trichomes and this expression appears dependent on TTG2. Taken together, the discovery of a genetic interaction between TTG2 and AtPLC1 suggests a role for phosphoinositide signaling in the regulation of trichome development, flavonoid pigment biosynthesis and the differentiation of mucilage-producing cells of the seed coat. This finding provides new avenues for future research at the intersection of the TTG2-dependent developmental pathways and the numerous molecular and cellular phenomena influenced by phospholipid signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Signal Transduction , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Phosphatidylinositols/metabolism , Trichomes/genetics , Trichomes/metabolism , Trichomes/growth & development , Plant Epidermis/metabolism , Plant Epidermis/genetics , Plant Epidermis/cytology , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Mutation , Phenotype , Flavonoids/metabolism
3.
Mol Biol Rep ; 51(1): 479, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578511

ABSTRACT

BACKGROUND: GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) genes encode a typical helix-loop-helix (bHLH) transcription factors that primarily regulate trichome branching and root hair development, DNA endoreduplication, trichoblast size, and stomatal formation. The functions of GL3 genes in cotton crop have been poorly characterized. In this study, we performed comprehensive genome-wide scans for GL3 and EGL3 homologs to enhance our comprehension of their potential roles in trichome and fiber development in cotton crop. METHODS AND RESULTS: Our findings paraded that Gossypium hirsutum and G. barbadense have 6 GL3s each, unevenly distributed on 4 chromosomes whereas, G. arboreum, and G. raimondii have 3 GL3s each, unevenly distributed on 2 chromosomes. Gh_A08G2088 and Gb_A09G2187, despite having the same bHLH domain as the other GL3 genes, were excluded due to remarkable short sequences and limited number of motifs, indicating a lack of potential functional activity. The phylogenetic analysis categorized remaining 16 GL3s into three subfamilies (Group I-III) closely related to A. thaliana. The 16 GL3s have complete bHLH domain, encompassing 590-631 amino acids, with molecular weights (MWs) ranging from 65.92 to 71.36 kDa. Within each subfamily GL3s depicted shared similar gene structures and motifs, indicating conserved characteristics within respective groups. Promoter region analysis revealed 27 cis-acting elements, these elements were responsive to salicylic acid, abscisic acid (ABA), methyl jasmonate (MeJA), and gibberellin. The expression of GL3 genes was analyzed across 12 tissues in both G. barbadense and G. hirsutum using the publicly available RNA-seq data. Among GL3s, Gb_D11G0219, Gb_D11G0214, and Gb_D08G2182, were identified as relatively highly expressed across different tissues, consequently selected for hormone treatment and expression validation in G. barbadense. RT-qPCR results demonstrated significant alterations in the expression levels of Gb_D11G0219 and Gb_D11G0214 following MeJA, GA, and ABA treatment. Subcellular localization prediction revealed that most GL3 proteins were predominantly expressed in the nucleus, while a few were localized in the cytoplasm and chloroplasts. CONCLUSIONS: In summary, this study lays the foundation for subsequent functional validation of GL3 genes by identifying hormonal regulation patterns and probable sites of action in cotton trichome formation and fiber development. The results stipulate a rationale to elucidate the roles and regulatory mechanisms of GL3 genes in the intricate process of cotton fibre and trichome development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gossypium/genetics , Gossypium/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Trichomes/genetics , Trichomes/metabolism , Phylogeny , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant/genetics
4.
Theor Appl Genet ; 137(5): 98, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592431

ABSTRACT

KEY MESSAGE: The ClLOG gene encoding a cytokinin riboside 5'-monophosphate phosphoribohydrolase determines trichome length in watermelon, which is associated with its promoter variations. Trichomes, which are differentiated from epidermal cells, are special accessory structures that cover the above-ground organs of plants and possibly contribute to biotic and abiotic stress resistance. Here, a bulked segregant analysis (BSA) of an F2 population with significant variations in trichome length was undertaken. A 1.84-Mb candidate region on chromosome 10 was associated with trichome length. Resequencing and fine-mapping analyses indicated that a 12-kb structural variation in the promoter of Cla97C10G203450 (ClLOG) led to a significant expression difference in this gene in watermelon lines with different trichome lengths. In addition, a virus-induced gene silencing analysis confirmed that ClLOG positively regulated trichome elongation. These findings provide new information and identify a potential target gene for controlling multicellular trichome elongation in watermelon.


Subject(s)
Cytokinins , Trichomes , Trichomes/genetics , Glycosides , Promoter Regions, Genetic , Sequence Analysis, DNA
5.
Genes (Basel) ; 15(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38540367

ABSTRACT

Black gram (Vigna mungo (L.) Hepper) is a pulses crop with good digestible protein and a high carbohydrate content, so it is widely consumed as human food and animal feed. Trichomes are large, specialized epidermal cells that confer advantages on plants under biotic and abiotic stresses. Genes regulating the development of trichomes are well characterized in Arabidopsis and tomato. However, little is known about trichome development in black gram. In this study, a high-density map with 5734 bin markers using an F2 population derived from a trichome-bearing and a glabrous cultivar of black gram was constructed, and a major quantitative trait locus (QTL) related to trichomes was identified. Six candidate genes were located in the mapped interval region. Fourteen single-nucleotide polymorphisms (SNPs) or insertion/deletions (indels) were associated with those genes. One indel was located in the coding region of the gene designated as Scaffold_9372_HRSCAF_11447.164. Real-time quantitative PCR (qPCR) analysis demonstrated that only one candidate gene, Scaffold_9372_HRSCAF_11447.166, was differentially expressed in the stem between the two parental lines. These two candidate genes encoded the RNA polymerase-associated protein Rtf1 and Bromodomain adjacent to zinc finger domain protein 1A (BAZ1A). These results provide insights into the regulation of trichome development in black gram. The candidate genes may be useful for creating transgenic plants with improved stress resistance and for developing molecular markers for trichome selection in black gram breeding programs.


Subject(s)
Vigna , Animals , Humans , Vigna/genetics , Trichomes/genetics , Plant Breeding , Quantitative Trait Loci , Genes, Plant , Bromodomain Containing Proteins , Chromosomal Proteins, Non-Histone/genetics
6.
Int J Biol Macromol ; 264(Pt 1): 130579, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432280

ABSTRACT

Glandular trichomes are epidermal outgrowths that secret a variety of secondary metabolites, which not only help plants adapt to environmental stresses but also have important commercial value in fragrances, pharmaceuticals, and pesticides. In Nicotiana tabacum, it has been confirmed that a B-type cyclin, CycB2, negatively regulates the formation of long glandular trichomes (LGTs). This study aimed to identify the upstream regulatory gene involved in LGT formation by screening LGT-specific cis-elements within the NtCycB2 promoter. Using GUS as a reporter gene, the tissue-driven ability of NtCycB2 promoter showed that NtCycB2 promoter could drive GUS expression specifically in LGTs. Function analysis of a series of successive 5' truncations and synthetic segments of the NtCycB2 promoter indicated that the 87-bp region from -1221 to -1134 of the NtCycB2 promoter was required for gene expression in LGTs, and the L1-element (5'-AAAATTAATAAGAG-3') located in the 87-bp region contributed to the gene expression in the stalk of LGTs. Further Y1H and LUC assays confirmed that this L1-element exclusively binds to a HD-Zip IV protein, NtHD13. Gene function analysis revealed that NtHD13 positively controlled LGT formation, as overexpression of NtHD13 resulted in a high number of LGTs, whereas knockout of NtHD13 led to a decrease in LGTs. These findings demonstrate that NtHD13 can bind to an L1-element within the NtCycB2 promoter to regulate LGT formation.


Subject(s)
Plant Proteins , Trichomes , Trichomes/genetics , Trichomes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Gene Expression , Gene Expression Regulation, Plant
7.
PeerJ ; 12: e16722, 2024.
Article in English | MEDLINE | ID: mdl-38406271

ABSTRACT

Quantitative trait loci (QTL) mapping is used for the precise localization of genomic regions regulating various traits in plants. Two major QTLs regulating Soil Plant Analysis Development (SPAD) value (qSPAD-7-1) and trichome density (qTric-7-2) in mungbean were identified using recombinant inbred line (RIL) populations (PMR-1×Pusa Baisakhi) on chromosome 7. Functional analysis of QTL region identified 35 candidate genes for SPAD value (16 No) and trichome (19 No) traits. The candidate genes regulating trichome density on the dorsal leaf surface of the mungbean include VRADI07G24840, VRADI07G17780, and VRADI07G15650, which encodes for ZFP6, TFs bHLH DNA-binding superfamily protein, and MYB102, respectively. Also, candidate genes having vital roles in chlorophyll biosynthesis are VRADIO7G29860, VRADIO7G29450, and VRADIO7G28520, which encodes for s-adenosyl-L-methionine, FTSHI1 protein, and CRS2-associated factor, respectively. The findings unfolded the opportunity for the development of customized genotypes having high SPAD value and high trichome density having a possible role in yield and mungbean yellow vein mosaic India virus (MYMIV) resistance in mungbean.


Subject(s)
Quantitative Trait Loci , Vigna , Quantitative Trait Loci/genetics , Vigna/genetics , Chromosome Mapping , Genotype , Soil , Trichomes/genetics , Plant Leaves/genetics
8.
Mol Genet Genomics ; 299(1): 19, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416229

ABSTRACT

KEY MESSAGE: GaKAN2, a member of the KANADI family, was found to be widely expressed in the cotton tissues and regulates trichome development through complex pathways. Cotton trichomes are believed to be the defense barrier against insect pests. Cotton fiber and trichomes are single-cell epidermal extensions with shared regulatory mechanisms. Despite several studies underlying mechanism of trichome development remains elusive. The KANADI is one of the key transcription factors (TFs) family, regulating Arabidopsis trichomes growth. However, the function of KANADI genes in cotton remains unknown. In the current study genome-wide scanning, transcriptomic analysis, gene silencing, subcellular localization, and yeast two-hybrid techniques were employed to decipher the function of KANADI TFs family genes in cotton crop. A total of 7 GaKAN genes were found in the Gossypium arboreum. Transcriptomic data revealed that these genes were significantly expressed in stem and root. Moreover, GaKAN2 was widely expressed in other tissues also. Subsequently, we selected GaKAN2 to validate the function of KANADI genes. Silencing of GaKAN2 resulted in a 24.99% decrease in single-cell trichomes and an 11.33% reduction in internodal distance, indicating its potential role in regulating trichomes and plant growth. RNA-Seq analysis elucidated that GaSuS and GaERS were the downstream genes of GaKAN2. The transcriptional activation and similarity in silencing phenotype between GaKAN2 and GaERS suggested that GaKAN2 regulates trichomes development through GaERS. Moreover, KEGG analysis revealed that a significant number of genes were enriched in the biosynthesis of secondary metabolites and plant hormone signal transduction pathways, thereby suggesting that GaKAN2 regulates the stem trichomes and plant growth. The GFP subcellular localization and yeast transcriptional activation analysis elucidated that GaKAN2 was located in the nucleus and capable of regulating the transcription of downstream genes. This study elucidated the function and characteristics of the KANADI gene family in cotton, providing a fundamental basis for further research on GaKAN2 gene in cotton plant trichomes and plant developmental processes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Transcription Factors/genetics , Gossypium/genetics , Trichomes/genetics , Saccharomyces cerevisiae , Gene Expression Regulation
9.
Plant J ; 118(4): 1155-1173, 2024 May.
Article in English | MEDLINE | ID: mdl-38332528

ABSTRACT

Cannabis glandular trichomes (GTs) are economically and biotechnologically important structures that have a remarkable morphology and capacity to produce, store, and secrete diverse classes of secondary metabolites. However, our understanding of the developmental changes and the underlying molecular processes involved in cannabis GT development is limited. In this study, we developed Cannabis Glandular Trichome Detection Model (CGTDM), a deep learning-based model capable of differentiating and quantifying three types of cannabis GTs with a high degree of efficiency and accuracy. By profiling at eight different time points, we captured dynamic changes in gene expression, phenotypes, and metabolic processes associated with GT development. By integrating weighted gene co-expression network analysis with CGTDM measurements, we established correlations between phenotypic variations in GT traits and the global transcriptome profiles across the developmental gradient. Notably, we identified a module containing methyl jasmonate (MeJA)-responsive genes that significantly correlated with stalked GT density and cannabinoid content during development, suggesting the existence of a MeJA-mediated GT formation pathway. Our findings were further supported by the successful promotion of GT development in cannabis through exogenous MeJA treatment. Importantly, we have identified CsMYC4 as a key transcription factor that positively regulates GT formation via MeJA signaling in cannabis. These findings provide novel tools for GT detection and counting, as well as valuable information for understanding the molecular regulatory mechanism of GT formation, which has the potential to facilitate the molecular breeding, targeted engineering, informed harvest timing, and manipulation of cannabinoid production.


Subject(s)
Acetates , Cannabis , Cyclopentanes , Deep Learning , Gene Expression Profiling , Gene Expression Regulation, Plant , Oxylipins , Trichomes , Oxylipins/pharmacology , Oxylipins/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Cannabis/genetics , Cannabis/growth & development , Cannabis/metabolism , Acetates/pharmacology , Trichomes/genetics , Trichomes/metabolism , Trichomes/growth & development , Gene Expression Profiling/methods , Transcriptome , Plant Growth Regulators/metabolism
10.
Plant Physiol ; 195(1): 552-565, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38243383

ABSTRACT

Plant trichome development is influenced by diverse developmental and environmental signals, but the molecular mechanisms involved are not well understood in most plant species. Fruit spines (trichomes) are an important trait in cucumber (Cucumis sativus L.), as they affect both fruit smoothness and commercial quality. Spine Base Size1 (CsSBS1) has been identified as essential for regulating fruit spine size in cucumber. Here, we discovered that CsSBS1 controls a season-dependent phenotype of spine base size in wild-type plants. Decreased light intensity led to reduced expression of CsSBS1 and smaller spine base size in wild-type plants, but not in the mutants with CsSBS1 deletion. Additionally, knockout of CsSBS1 resulted in smaller fruit spine base size and eliminated the light-induced expansion of spines. Overexpression of CsSBS1 increased spine base size and rescued the decrease in spine base size under low light conditions. Further analysis revealed that ELONGATED HYPOTCOTYL5 (HY5), a major transcription factor involved in light signaling pathways, directly binds to the promoter of CsSBS1 and activates its expression. Knockout of CsHY5 led to smaller fruit spine base size and abolished the light-induced expansion of spines. Taken together, our study findings have clarified a CsHY5-CsSBS1 regulatory module that mediates light-regulated spine expansion in cucumber. This finding offers a strategy for cucumber breeders to develop fruit with stable appearance quality under changing light conditions.


Subject(s)
Cucumis sativus , Gene Expression Regulation, Plant , Light , Plant Proteins , Cucumis sativus/genetics , Cucumis sativus/growth & development , Cucumis sativus/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Fruit/growth & development , Trichomes/genetics , Trichomes/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Phenotype , Promoter Regions, Genetic/genetics
11.
Gene ; 904: 148213, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38281672

ABSTRACT

The leaves of Artemisia annua contain GSTs (Glandular secretory trichomes) that can secrete and store artemisinin, the drug most effective for treating uncomplicated malaria. Therefore, increasing the density of GSTs in A. annua is an efficient way to enhance artemisinin content. However, our understanding of how GSTs develop still needs to be improved. Here, we isolated an A. annua homolog of AtGL3 (GLABRA3), known as AaGL3-like, that positively regulates trichome density in A. annua. AaGL3-like is nuclear-localized and transcriptionally active. It is least expressed in roots and most prominently in aerial components like leaves, stems, and inflorescence. Under JA and GA hormonal treatments, AaGL3-like expression is significantly increased. In transgenic over-expression AaGL3-like lines, trichome developmental genes such as AaHD1 and AaGSW2 showed much increased expression. The AaGL3RNAi line exhibited considerably lower levels of AaHD1 and AaGSW2 transcripts. As a result, the AaGL3-RNAi lines showed reduced levels of artemisinin content and trichome density compared to wild-type and overexpression lines. Additionally, we have found that when co-expressed with AaJAZ8, the induction of trichome developmental genes was reduced as compared to individual OEAaGL3-like lines. Further, AaJAZ8 directly binds to AaGL3-like in the Y2H assay. These findings suggest that AaGL3-like is a jasmonate-induced bHLH transcription factor that drastically increases the final accumulation of artemisinin content by regulating trichome density in A. annua.


Subject(s)
Artemisia annua , Artemisinins , Cyclopentanes , Oxylipins , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Trichomes/genetics , Trichomes/metabolism , Artemisia annua/genetics , Artemisia annua/metabolism , Artemisinins/pharmacology , Plant Proteins/metabolism
12.
Plant Cell ; 36(4): 1007-1035, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38124479

ABSTRACT

Exocyst component of 70-kDa (EXO70) proteins are constituents of the exocyst complex implicated in vesicle tethering during exocytosis. MILDEW RESISTANCE LOCUS O (MLO) proteins are plant-specific calcium channels and some MLO isoforms enable fungal powdery mildew pathogenesis. We here detected an unexpected phenotypic overlap of Arabidopsis thaliana exo70H4 and mlo2 mlo6 mlo12 triple mutant plants regarding the biogenesis of leaf trichome secondary cell walls. Biochemical and Fourier transform infrared spectroscopic analyses corroborated deficiencies in the composition of trichome cell walls in these mutants. Transgenic lines expressing fluorophore-tagged EXO70H4 and MLO exhibited extensive colocalization of these proteins. Furthermore, mCherry-EXO70H4 mislocalized in trichomes of the mlo triple mutant and, vice versa, MLO6-GFP mislocalized in trichomes of the exo70H4 mutant. Expression of GFP-marked PMR4 callose synthase, a known cargo of EXO70H4-dependent exocytosis, revealed reduced cell wall delivery of GFP-PMR4 in trichomes of mlo triple mutant plants. In vivo protein-protein interaction assays in plant and yeast cells uncovered isoform-preferential interactions between EXO70.2 subfamily members and MLO proteins. Finally, exo70H4 and mlo6 mutants, when combined, showed synergistically enhanced resistance to powdery mildew attack. Taken together, our data point to an isoform-specific interplay of EXO70 and MLO proteins in the modulation of trichome cell wall biogenesis and powdery mildew susceptibility.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Trichomes/genetics , Trichomes/metabolism , Arabidopsis/metabolism , Plant Proteins/metabolism , Cell Wall/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Plant Diseases/microbiology , Disease Resistance/genetics , Vesicular Transport Proteins/metabolism
13.
Int J Mol Sci ; 24(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37629108

ABSTRACT

The plant Artemisia annua L. is famous for producing "artemisinin", which is an essential component in the treatment of malaria. The glandular secretory trichomes (GSTs) on the leaves of A. annua secrete and store artemisinin. Previous research has demonstrated that raising GST density can effectively raise artemisinin content. However, the molecular mechanism of GST initiation is not fully understood yet. In this study, we identified an MYB transcription factor, the AaMYB108-like, which is co-induced by light and jasmonic acid, and positively regulates glandular secretory trichome initiation in A. annua. Overexpression of the AaMYB108-like gene in A. annua increased GST density and enhanced the artemisinin content, whereas anti-sense of the AaMYB108-like gene resulted in the reduction in GST density and artemisinin content. Further experiments demonstrated that the AaMYB108-like gene could form a complex with AaHD8 to promote the expression of downstream AaHD1, resulting in the initiation of GST. Taken together, the AaMYB108-like gene is a positive regulator induced by light and jasmonic acid for GST initiation in A. annua.


Subject(s)
Artemisia annua , Artemisinins , Artemisia annua/genetics , Trichomes/genetics
14.
J Exp Bot ; 74(18): 5870-5880, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37578504

ABSTRACT

The unfolded protein response (UPR) is a cellular mechanism that alleviates endoplasmic reticulum stress to maintain protein homeostasis. Although SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB) is characterized as an emerging UPR factor downstream of the IRE-bZIP60 pathway, whether its homologs participate in the plant UPR remains unknown. Here, we showed that an SVB homolog, SVB-like (SVBL), functions redundantly with SVB in endoplasmic reticulum stress tolerance. The svb-1 svbl-1 double mutant showed a hypersensitivity phenotype and had higher UPR gene expression under endoplasmic reticulum stress than single mutants and the wild type. SVB responded to endoplasmic reticulum stress by accumulating in the root epidermis and phloem cells, but SVBL did not. Ectopic expression of the UPR factor NAC089 up-regulated both SVB and SVBL genes, suggesting that SVB and SVBL work downstream of NAC089. Thus, SVB and SVBL play distinct roles that are modulated by the common upstream regulator NAC089 to cope with endoplasmic reticulum stress in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Trichomes/genetics , Trichomes/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Unfolded Protein Response , Endoplasmic Reticulum Stress/physiology
15.
Biotechnol Appl Biochem ; 70(6): 1870-1880, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37424116

ABSTRACT

Artemisinin is the most practical medication for the treatment of malaria, but is only very minimally synthesized in Artemisia annua, significantly less than the market needs. In this study, indole-3-acetic acid (IAA) was used to investigate its effects on trichomes, artemisinin accumulation, and biosynthetic gene expression in A. anuua. The results showed that exogenous IAA could contribute to the growth and development of A. annua and increase the density of trichomes. Analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that artemisinin and dihydroartemisinic acid (DHAA) contents were increased by 1.9-fold (1.1 mg/g) and 2.1-fold (0.51 mg/g) after IAA treatment in comparison with control lines (CK), respectively. Furthermore, quantitative real-time PCR results showed that AaADS, AaCYP71AV1, AaALDH1, and AaDBR2, four critical enzyme genes for the biosynthesis of artemisinin, had relatively high transcription levels in leaves of A. annua treated with IAA. In summary, this study indicated that exogenous IAA treatment was a feasible strategy to enhance artemisinin production, which paves the way for further metabolic engineering of artemisinin biosynthesis.


Subject(s)
Artemisia annua , Artemisinins , Artemisia annua/metabolism , Trichomes/genetics , Trichomes/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Artemisinins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Plant J ; 116(3): 756-772, 2023 11.
Article in English | MEDLINE | ID: mdl-37516999

ABSTRACT

Cell differentiation and morphogenesis are crucial for the establishment of diverse cell types and organs in multicellular organisms. Trichome cells offer an excellent paradigm for dissecting the regulatory mechanisms of plant cell differentiation and morphogenesis due to their unique growth characteristics. Here, we report the isolation of an Arabidopsis mutant, aberrantly branched trichome 3-1 (abt3-1), with a reduced trichome branching phenotype. Positional cloning and molecular complementation experiments confirmed that abt3-1 is a new mutant allele of Auxin resistant 1 (AXR1), which encodes the N-terminal half of ubiquitin-activating enzyme E1 and functions in auxin signaling pathway. Meanwhile, we found that transgenic plants expressing constitutively active version of ROP2 (CA-ROP2) caused a reduction of trichome branches, resembling that of abt3-1. ROP2 is a member of Rho GTPase of plants (ROP) family, serving as versatile signaling switches involved in a range of cellular and developmental processes. Our genetic and biochemical analyses showed AXR1 genetically interacted with ROP2 and mediated ROP2 protein stability. The loss of AXR1 aggravated the trichome defects of CA-ROP2 and induced the accumulation of steady-state ROP2. Consistently, elevated AXR1 expression levels suppressed ROP2 expression and partially rescued trichome branching defects in CA-ROP2 plants. Together, our results presented a new mutant allele of AXR1, uncovered the effects of AXR1 and ROP2 during trichome development, and revealed a pathway of ROP2-mediated regulation of plant cell morphogenesis in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Trichomes/genetics , Trichomes/metabolism , Indoleacetic Acids , Alleles , Cell Differentiation , Morphogenesis/genetics , Plants, Genetically Modified/genetics , Mutation , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism
17.
Pest Manag Sci ; 79(9): 3342-3353, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37132116

ABSTRACT

BACKGROUND: The green peach aphid (Myzus persicae Sulzer) is a harmful agricultural pest that causes severe crop damage by directly feeding or indirectly vectoring viruses. 1,8-cineole synthase (CINS) is a multiproduct enzyme that synthesizes monoterpenes, with 1,8-cineole dominating the volatile organic compound profile. However, the relationship between aphid preference and CINS remains elusive. RESULTS: Here, we present evidence that SoCINS, a protein from garden sage (Salvia officinalis), enhanced aphid repellence and increased trichome density in transgenic tobacco. Our results demonstrated that overexpression of SoCINS (SoCINS-OE) led to the emission of 1,8-cineole at a level of up to 181.5 ng per g fresh leaf. Subcellular localization assay showed that SoCINS localized to chloroplasts. A Y-tube olfactometer assay and free-choice assays revealed that SoCINS-OE plants had a repellent effect on aphids, without incurring developmental or fecundity-related penalties. Intriguingly, the SoCINS-OE plants displayed an altered trichome morphology, showing increases in trichome density and in the relative proportion of glandular trichomes, as well as enlarged glandular cells. We also found that SoCINS-OE plants had significantly higher jasmonic acid (JA) levels than wild-type plants. Furthermore, application of 1,8-cineole elicited increased JA content and trichome density. CONCLUSION: Our results demonstrate that SoCINS-OE plants have a repellent effect on aphids, and suggest an apparent link between 1,8-cineole, JA and trichome density. This study presents a viable and sustainable approach for aphid management by engineering the expression of 1,8-cineole synthase gene in plants, and underscores the potential usefulness of monoterpene synthase for pest control. © 2023 Society of Chemical Industry.


Subject(s)
Aphids , Nicotiana , Animals , Nicotiana/genetics , Nicotiana/metabolism , Metabolic Engineering , Aphids/genetics , Aphids/metabolism , Eucalyptol , Trichomes/genetics
18.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239820

ABSTRACT

Trichomes are attractive cells for terpenoid biosynthesis and accumulation in Artemisia annua. However, the molecular process underlying the trichome of A. annua is not yet fully elucidated. In this study, an analysis of multi-tissue transcriptome data was performed to examine trichome-specific expression patterns. A total of 6646 genes were screened and highly expressed in trichomes, including artemisinin biosynthetic genes such as amorpha-4,11-diene synthase (ADS) and cytochrome P450 monooxygenase (CYP71AV1). Mapman and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that trichome-specific genes were mainly enriched in lipid metabolism and terpenoid metabolism. These trichome-specific genes were analyzed by a weighted gene co-expression network analysis (WGCNA), and the blue module linked to terpenoid backbone biosynthesis was determined. Hub genes correlated with the artemisinin biosynthetic genes were selected based on TOM value. ORA, Benzoate carboxyl methyltransferase (BAMT), Lysine histidine transporter-like 8 (AATL1), Ubiquitin-like protease 1 (Ulp1) and TUBBY were revealed as key hub genes induced by methyl jasmonate (MeJA) for regulating artemisinin biosynthesis. In summary, the identified trichome-specific genes, modules, pathways and hub genes provide clues and shed light on the potential regulatory mechanisms of artemisinin biosynthesis in trichomes in A. annua.


Subject(s)
Artemisia annua , Artemisinins , Artemisia annua/genetics , Trichomes/genetics , Trichomes/metabolism , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
19.
J Vis Exp ; (195)2023 05 12.
Article in English | MEDLINE | ID: mdl-37246866

ABSTRACT

This paper presents a protocol for the convenient and high-throughput isolation and enrichment of glandular capitate stalked and sessile trichomes from Cannabis sativa. The biosynthetic pathways for cannabinoid and volatile terpene metabolism are localized primarily in the Cannabis trichomes, and isolated trichomes are beneficial for transcriptome analysis. The existing protocols for isolating glandular trichomes for transcriptomic characterization are inconvenient and deliver compromised trichome heads and a relatively low amount of isolated trichomes. Furthermore, they rely on expensive apparatus and isolation media containing protein inhibitors to avoid RNA degradation. The present protocol suggests combining three individual modifications to obtain a large amount of isolated glandular capitate stalked and sessile trichomes from C. sativa mature female inflorescences and fan leaves, respectively. The first modification involves substituting liquid nitrogen for the conventional isolation medium to facilitate the passage of trichomes through the micro-sieves. The second modification involves using dry ice to detach the trichomes from the plant source. The third modification involves passing the plant material consecutively through five micro-sieves of diminishing pore sizes. Microscopic imaging demonstrated the effectiveness of the isolation technique for both trichome types. In addition, the quality of RNA extracted from the isolated trichomes was appropriate for downstream transcriptomic analysis.


Subject(s)
Cannabinoids , Cannabis , Cannabis/genetics , Cannabis/metabolism , Trichomes/genetics , Trichomes/metabolism , Cannabinoids/metabolism , Plant Leaves/metabolism , Upper Extremity
20.
Int J Mol Sci ; 24(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176130

ABSTRACT

Central American and Mexican Pinguicula species are characterized by enormous divergence in size and color of flowers and are pollinated by butterflies, flies, bees, and hummingbirds. It is known that floral trichomes are key characters in plant-pollinator interaction. The main aim of our study was to verify our hypothesis that the distribution and diversity of non-glandular and glandular trichomes are related to the pollinator syndromes rather than the phylogenetic relationships. The studied sample consisted of Central American and Mexican species. In our study, we relied on light microscopy and scanning electron microscopy with a phylogenetic perspective based on ITS DNA sequences. The flower morphology of species pollinated by butterflies and hummingbirds was similar in contrast to species pollinated by flies and bees. Species pollinated by butterflies and hummingbirds contained low diversity of non-glandular trichomes, which occurred mostly in the tube and basal part of the spur. Surprisingly, in P. esseriana and P. mesophytica, non-glandular trichomes also occurred at the base of lower lip petals. In the case of species pollinated by flies/bees, we observed a high variety of non-glandular trichomes, which occurred on the surface of corolla petals, in the tube, and at the entrance to the spur. Furthermore, we did not identify any non-glandular trichomes in the spur. The capitate glandular trichomes were of similar morphology in all examined species. There were minor differences in the shape of the trichome head, as well as the length and the number of stalk cells. The distribution and the diversity of non-glandular and glandular trichomes and pollinator syndromes were mapped onto a phylogenetic reconstruction of the genus. Most micromorphological characters appear to be associated more with floral adaptation to pollinators and less with phylogeny.


Subject(s)
Butterflies , Lamiales , Bees/genetics , Animals , Pollination , Trichomes/genetics , Phylogeny , Flowers/genetics , Flowers/anatomy & histology , Central America
SELECTION OF CITATIONS
SEARCH DETAIL
...