Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 393
Filter
1.
Int J Oral Sci ; 16(1): 46, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886342

ABSTRACT

Oral squamous cell carcinoma (OSCC) associated pain commonly predicts adverse events among patients. This clinical feature indicates the engagement of nociceptors on sensory neurons during the development of malignancy. However, it is yet to be determined if targeting oncometabolite-associated nociception processes can hinder OSCC progression. In this study, we reported that nociceptive endings infiltrating both clinical samples and mouse tumor xenografts were associated with poorer clinical outcomes and drove tumor progression in vivo, as evidenced by clinical tissue microarray analysis and murine lingual denervation. We observed that the OSCC microenvironment was characteristic of excessive adenosine due to CD73 upregulation which negatively predicted clinical outcomes in the TCGA-HNSC patient cohort. Notably, such adenosine concentrative OSCC niche was associated with the stimulation of adenosine A2A receptor (A2AR) on trigeminal ganglia. Antagonism of trigeminal A2AR with a selective A2AR inhibitor SCH58261 resulted in impeded OSCC growth in vivo. We showed that trigeminal A2AR overstimulation in OSCC xenograft did not entail any changes in the transcription level of CGRP in trigeminal ganglia but significantly triggered the release of CGRP, an effect counteracted by SCH58261. We further demonstrated the pro-tumor effect of CGRP by feeding mice with the clinically approved CGRP receptor antagonist rimegepant which inhibited the activation of ERK and YAP. Finally, we diminished the impact of CGRP on OSCC with istradefylline, a clinically available drug that targets neuronal A2AR. Therefore, we established trigeminal A2AR-mediated CGRP release as a promising druggable circuit in OSCC treatment.


Subject(s)
Calcitonin Gene-Related Peptide , Carcinoma, Squamous Cell , Disease Progression , Mouth Neoplasms , Receptor, Adenosine A2A , Animals , Humans , Mice , Adenosine A2 Receptor Antagonists/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Mouth Neoplasms/metabolism , Pyrimidines/pharmacology , Receptor, Adenosine A2A/metabolism , Triazoles , Trigeminal Nerve/metabolism
2.
Aging (Albany NY) ; 16(9): 7946-7960, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38713160

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a significant contributor to global mortality and disability, and emerging evidence indicates that trigeminal nerve electrical stimulation (TNS) is a promising therapeutic intervention for neurological impairment following TBI. However, the precise mechanisms underlying the neuroprotective effects of TNS in TBI are poorly understood. Thus, the objective of this study was to investigate the potential involvement of the orexin-A (OX-A)/orexin receptor 1 (OX1R) mediated TLR4/NF-κB/NLRP3 signaling pathway in the neuroprotective effects of TNS in rats with TBI. METHODS: Sprague-Dawley rats were randomly assigned to four groups: sham, TBI, TBI+TNS+SB334867, and TBI+TNS. TBI was induced using a modified Feeney's method, and subsequent behavioral assessments were conducted to evaluate neurological function. The trigeminal nerve trunk was isolated, and TNS was administered following the establishment of the TBI model. The levels of neuroinflammation, brain tissue damage, and proteins associated with the OX1R/TLR4/NF-κB/NLRP3 signaling pathway were assessed using hematoxylin-eosin staining, Nissl staining, western blot analysis, quantitative real-time polymerase chain reaction, and immunofluorescence techniques. RESULTS: The findings of our study indicate that TNS effectively mitigated tissue damage, reduced brain edema, and alleviated neurological deficits in rats with TBI. Furthermore, TNS demonstrated the ability to attenuate neuroinflammation levels and inhibit the expression of proteins associated with the TLR4/NF-κB/NLRP3 signaling pathway. However, it is important to note that the aforementioned effects of TNS were reversible upon intracerebroventricular injection of an OX1R antagonist. CONCLUSION: TNS may prevent brain damage and relieve neurological deficits after a TBI by inhibiting inflammation, possibly via the TLR4/NF-κB/NLRP3 signaling pathway mediated by OX-A/OX1R.


Subject(s)
Brain Injuries, Traumatic , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Orexin Receptors , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4 , Trigeminal Nerve , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/therapy , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Orexin Receptors/metabolism , Orexin Receptors/genetics , Rats , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Trigeminal Nerve/metabolism , Orexins/metabolism , Electric Stimulation Therapy/methods , Disease Models, Animal
3.
Cells ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667268

ABSTRACT

Subarachnoid hemorrhage (SAH) remains a major cause of cerebrovascular morbidity, eliciting severe headaches and vasospasms that have been shown to inversely correlate with vasodilator calcitonin gene-related peptide (CGRP) levels. Although dura mater trigeminal afferents are an important source of intracranial CGRP, little is known about the effects of SAH on these neurons in preclinical models. The present study evaluated changes in CGRP levels and expression in trigeminal primary afferents innervating the dura mater 72 h after experimentally induced SAH in adult rats. SAH, eliciting marked damage revealed by neurological examination, significantly reduced the density of CGRP-immunoreactive nerve fibers both in the dura mater and the trigeminal caudal nucleus in the medulla but did not affect the total dural nerve fiber density. SAH attenuated ex vivo dural CGRP release by ~40% and in the trigeminal ganglion, reduced both CGRP mRNA levels and the number of highly CGRP-immunoreactive cell bodies. In summary, we provide novel complementary evidence that SAH negatively affects the integrity of the CGRP-expressing rat trigeminal neurons. Reduced CGRP levels suggest likely impaired meningeal neurovascular functions contributing to SAH complications. Further studies are to be performed to reveal the importance of impaired CGRP synthesis and its consequences in central sensory processing.


Subject(s)
Calcitonin Gene-Related Peptide , Dura Mater , Neurons , Rats, Sprague-Dawley , Subarachnoid Hemorrhage , Trigeminal Ganglion , Animals , Calcitonin Gene-Related Peptide/metabolism , Dura Mater/metabolism , Male , Rats , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/pathology , Neurons/metabolism , Trigeminal Ganglion/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Trigeminal Nerve/metabolism
4.
J Oral Biosci ; 65(4): 356-364, 2023 12.
Article in English | MEDLINE | ID: mdl-37838226

ABSTRACT

OBJECTIVE: This study aimed to clarify the interactions between the tongue and primary afferent fibers in tongue cancer pain. METHODS: A pharmacological analysis was conducted to evaluate mechanical hypersensitivity of the tongues of rats with squamous cell carcinoma (SCC). Changes in trigeminal ganglion (TG) neurons projecting to the tongue were analyzed using immunohistochemistry and western blotting. RESULTS: SCC inoculation of the tongue caused persistent mechanical sensitization and tumor formation. Trypsin expression was significantly upregulated in cancer lesions. Continuous trypsin inhibition or protease-activated receptor 2 (PAR2) antagonism in the tongue significantly inhibited SCC-induced mechanical sensitization. No changes were observed in PAR2 and transient receptor potential vanilloid 4 (TRPV4) levels in the TG or the number of PAR2-and TRPV4-expressing TG neurons after SCC inoculation. In contrast, the relative amount of phosphorylated TRPV4 in the TG was significantly increased after SCC inoculation and abrogated by PAR2 antagonism in the tongue. TRPV4 antagonism in the tongue significantly ameliorated the mechanical sensitization caused by SCC inoculation. CONCLUSIONS: Our findings indicate that tumor-derived trypsin sensitizes primary afferent fibers by PAR2 stimulation and subsequent TRPV4 phosphorylation, resulting in severe tongue pain.


Subject(s)
Cancer Pain , Carcinoma, Squamous Cell , Glossalgia , Tongue Neoplasms , Animals , Rats , Cancer Pain/metabolism , Glossalgia/metabolism , Pain/metabolism , Phosphorylation , Receptor, PAR-2/metabolism , Tongue/metabolism , Tongue Neoplasms/metabolism , Trigeminal Nerve/metabolism , TRPV Cation Channels/metabolism , Trypsin/metabolism , Trypsin/pharmacology
5.
Prog Neurobiol ; 227: 102477, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37270025

ABSTRACT

Cognitive impairment (CI) is a common neurological disease resulting from traumatic brain injury (TBI). Trigeminal nerve stimulation (TNS) is an emerging, non-invasive, and effective neuromodulation therapy especially for patients suffering from brain function disorders. However, the treatment and recovery mechanisms of TNS remain poorly understood. By using combined advanced technologies, we revealed here that the neuroprotective potential of TNS to improve CI caused by TBI. The study results found that 40 Hz TNS treatment has the ability to improve CI in TBI mice and communicates with central nervous system via the trigeminal ganglion (TG). Transsynaptic virus experiments revealed that TG is connected to the hippocampus (HPC) through the corticotropin-releasing hormone (CRH) neurons of paraventricular hypothalamic nucleus (PVN) and the dopamine transporter (DAT) neurons of substantia nigra pars compacta/ventral tegmental area (SNc/VTA). Mechanistically, the data showed that TNS can increase the release of dopamine in the HPC by activating the following neural circuit: TG→CRH+ PVN→DAT+ SNc/VTA → HPC. Bulk RNA sequencing confirmed changes in the expression of dopamine-related genes in the HPC. This work preliminarily explains the efficacy and mechanism of TNS and adds to the increasing evidence demonstrating that nerve stimulation is an effective method to treat neurological diseases.


Subject(s)
Brain Injuries, Traumatic , Dopamine , Mice , Animals , Dopamine/metabolism , Substantia Nigra/metabolism , Dopaminergic Neurons/metabolism , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/metabolism , Trigeminal Nerve/metabolism , Hippocampus/metabolism , Cognition
6.
J Adv Res ; 54: 293-303, 2023 12.
Article in English | MEDLINE | ID: mdl-36796586

ABSTRACT

INTRODUCTION: Porphyromonas gingivalis (PG)-infected periodontitis is in close connection with the development of Alzheimer's disease (AD). PG-derived extracellular vesicles (pEVs) contain inflammation-inducing virulence factors, including gingipains (GPs) and lipopolysaccharide (LPS). OBJECTIVES: To understand how PG could cause cognitive decline, we investigated the effects of PG and pEVs on the etiology of periodontitis and cognitive impairment in mice. METHODS: Cognitive behaviors were measured in the Y-maze and novel object recognition tasks. Biomarkers were measured using ELISA, qPCR, immunofluorescence assay, and pyrosequencing. RESULTS: pEVs contained neurotoxic GPs and inflammation-inducible fimbria protein and LPS. Gingivally exposed, but not orally gavaged, PG or pEVs caused periodontitis and induced memory impairment-like behaviors. Gingival exposure to PG or pEVs increased TNF-α expression in the periodontal and hippocampus tissues. They also increased hippocampal GP+Iba1+, LPS+Iba1+, and NF-κB+Iba1+ cell numbers. Gingivally exposed PG or pEVs decreased BDNF, claudin-5, and N-methyl-D-aspartate receptor expression and BDNF+NeuN+ cell number. Gingivally exposed fluorescein-5-isothiocyanate-labeled pEVs (F-pEVs) were detected in the trigeminal ganglia and hippocampus. However, right trigeminal neurectomy inhibited the translocation of gingivally injected F-EVs into the right trigeminal ganglia. Gingivally exposed PG or pEVs increased blood LPS and TNF-α levels. Furthermore, they caused colitis and gut dysbiosis. CONCLUSION: Gingivally infected PG, particularly pEVs, may cause cognitive decline with periodontitis. PG products pEVs and LPS may be translocated into the brain through the trigeminal nerve and periodontal blood pathways, respectively, resulting in the cognitive decline, which may cause colitis and gut dysbiosis. Therefore, pEVs may be a remarkable risk factor for dementia.


Subject(s)
Cognitive Dysfunction , Colitis , Periodontitis , Mice , Animals , Porphyromonas gingivalis/metabolism , Lipopolysaccharides/metabolism , Dysbiosis , Tumor Necrosis Factor-alpha , Brain-Derived Neurotrophic Factor , Periodontitis/metabolism , Inflammation , Trigeminal Nerve/metabolism , Cognitive Dysfunction/metabolism
7.
J Chem Neuroanat ; 122: 102104, 2022 07.
Article in English | MEDLINE | ID: mdl-35561876

ABSTRACT

Transient receptor potential melastatin 8 (TRPM8), a cold-mediated ion channel, is well known to be expressed in primary sensory neurons; however, limited information is currently available on the distribution of TRPM8-expressing trigeminal nerve fibers in the brainstem. The present study showed the distribution of TRPM8-expressing fibers in the pons and medulla oblongata of the TRPM8 KO mice engineered by knocking in EGFP at the frame of the start codon of TRPM8. In addition, TRPM8-expressing fibers were also observed in the brachium pontis, middle cerebellar peduncle, the sensory root of the trigeminal nerve, and spinal trigeminal tract (sp5). Furthermore, TRPM8-expressing nerve fibers surrounded the somata of HuC/D-positive neurons in the sp5. Moreover, the distribution of TRPM8-expressing fibers from rostral to caudal was visualized in sagittal sections of the mouse brain. The present results also revealed that a high number of TRPM8-expressing fibers colocalized with CTB-labeled fibers in the sp5 following an injection of CTB into the whisker compared to mice's eye and ear. These results show the distribution pathway of TRPM8-expressing fibers in the pons and medulla oblongata and possible involvement in peripheral signaling from the trigeminal nerve.


Subject(s)
TRPM Cation Channels , Animals , Medulla Oblongata/metabolism , Mice , Neurons/metabolism , Pons/metabolism , TRPM Cation Channels/metabolism , Trigeminal Nerve/metabolism
8.
Int J Mol Sci ; 23(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408959

ABSTRACT

Trigeminal neuralgia (TN) is a complex orofacial pain syndrome characterized by the paroxysmal onset of pain attacks in the trigeminal distribution. The underlying mechanism for this debilitating condition is still not clearly understood. Decades of basic and clinical evidence support the demyelination hypothesis, where demyelination along the trigeminal afferent pathway is a major driver for TN pathogenesis and pathophysiology. Such pathological demyelination can be triggered by physical compression of the trigeminal ganglion or another primary demyelinating disease, such as multiple sclerosis. Further examination of TN patients and animal models has revealed significant molecular changes, channelopathies, and electrophysiological abnormalities in the affected trigeminal nerve. Interestingly, recent electrophysiological recordings and advanced functional neuroimaging data have shed new light on the global structural changes and the altered connectivity in the central pain-related circuits in TN patients. The current article aims to review the latest findings on the pathophysiology of TN and cross-examining them with the current surgical and pharmacologic management for TN patients. Understanding the underlying biology of TN could help scientists and clinicians to identify novel targets and improve treatments for this complex, debilitating disease.


Subject(s)
Multiple Sclerosis , Neuralgia , Trigeminal Neuralgia , Animals , Facial Pain/pathology , Humans , Multiple Sclerosis/pathology , Neuralgia/pathology , Trigeminal Nerve/metabolism , Trigeminal Neuralgia/metabolism
9.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163293

ABSTRACT

Mechanosensitive ion channels, Piezo1 and 2, are activated by pressure and involved in diverse physiological functions, including senses of touch and pain, proprioception and many more. Understanding their function is important for elucidating the mechanosensitive mechanisms of a range of human diseases. Recently, Piezo channels were suggested to be contributors to migraine pain generation. Migraine is typically characterized by allodynia and mechanical hyperalgesia associated with the activation and sensitization of trigeminal ganglion (TG) nerve fibers. Notably, migraine specific medicines are ineffective for other types of pain, suggesting a distinct underlying mechanism. To address, in a straightforward manner, the specificity of the mechanosensitivity of trigeminal vs. somatic nerves, we compared the activity of Piezo1 channels in mouse TG neurons vs. dorsal root ganglia (DRG) neurons. We assessed the functional expression of Piezo1 receptors using a conventional live calcium imaging setup equipped with a multibarrel application system and utilizing a microfluidic chip-based setup. Surprisingly, the TG neurons, despite higher expression of the Piezo1 gene, were less responsive to Piezo1 agonist Yoda1 than the DRG neurons. This difference was more prominent in the chip-based setup, suggesting that certain limitations of the conventional approach, such as turbulence, can be overcome by utilizing microfluidic devices with laminar solution flow.


Subject(s)
Ion Channels/metabolism , Trigeminal Nerve/metabolism , Animals , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Ion Channels/physiology , Lab-On-A-Chip Devices , Male , Mechanotransduction, Cellular/physiology , Mice , Mice, Inbred C57BL , Nerve Tissue/metabolism , Neurons/metabolism , Pain/metabolism , Peripheral Nervous System/metabolism , Pyrazines/pharmacology , Thiadiazoles/pharmacology , Touch/physiology
10.
Sci Rep ; 12(1): 2759, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177758

ABSTRACT

Chlamydia pneumoniae is a respiratory tract pathogen but can also infect the central nervous system (CNS). Recently, the link between C. pneumoniae CNS infection and late-onset dementia has become increasingly evident. In mice, CNS infection has been shown to occur weeks to months after intranasal inoculation. By isolating live C. pneumoniae from tissues and using immunohistochemistry, we show that C. pneumoniae can infect the olfactory and trigeminal nerves, olfactory bulb and brain within 72 h in mice. C. pneumoniae infection also resulted in dysregulation of key pathways involved in Alzheimer's disease pathogenesis at 7 and 28 days after inoculation. Interestingly, amyloid beta accumulations were also detected adjacent to the C. pneumoniae inclusions in the olfactory system. Furthermore, injury to the nasal epithelium resulted in increased peripheral nerve and olfactory bulb infection, but did not alter general CNS infection. In vitro, C. pneumoniae was able to infect peripheral nerve and CNS glia. In summary, the nerves extending between the nasal cavity and the brain constitute invasion paths by which C. pneumoniae can rapidly invade the CNS likely by surviving in glia and leading to Aß deposition.


Subject(s)
Alzheimer Disease , Chlamydophila Infections , Chlamydophila pneumoniae/metabolism , Olfactory Nerve , Trigeminal Nerve , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Alzheimer Disease/microbiology , Animals , Chlamydophila Infections/complications , Chlamydophila Infections/metabolism , Chlamydophila Infections/microbiology , Female , Mice , Mice, Inbred BALB C , Olfactory Nerve/metabolism , Olfactory Nerve/microbiology , Trigeminal Nerve/metabolism , Trigeminal Nerve/microbiology
11.
Invest Ophthalmol Vis Sci ; 63(1): 7, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34989761

ABSTRACT

Purpose: Dry eye-induced chronic ocular pain is also called ocular neuropathic pain. However, details of the pathogenic mechanism remain unknown. The purpose of this study was to elucidate the pathogenic mechanism of dry eye-induced chronic pain in the anterior eye area and develop a pathophysiology-based therapeutic strategy. Methods: We used a rat dry eye model with lacrimal gland excision (LGE) to elucidate the pathogenic mechanism of ocular neuropathic pain. Corneal epithelial damage, hypersensitivity, and hyperalgesia were evaluated on the LGE side and compared with the sham surgery side. We analyzed neuronal activity, microglial and astrocytic activity, α2δ-1 subunit expression, and inhibitory interneurons in the trigeminal nucleus. We also evaluated the therapeutic effects of ophthalmic treatment and chronic pregabalin administration on dry eye-induced ocular neuropathic pain. Results: Dry eye caused hypersensitivity and hyperalgesia on the LGE side. In the trigeminal nucleus of the LGE side, neuronal hyperactivation, transient activation of microglia, persistent activation of astrocytes, α2δ-1 subunit upregulation, and reduced numbers of inhibitory interneurons were observed. Ophthalmic treatment alone did not improve hyperalgesia. In contrast, continuous treatment with pregabalin effectively ameliorated hypersensitivity and hyperalgesia and normalized neural activity, α2δ-1 subunit upregulation, and astrocyte activation. Conclusions: These results suggest that dry eye-induced hypersensitivity and hyperalgesia are caused by central sensitization in the trigeminal nucleus with upregulation of the α2δ-1 subunit. Here, we showed that pregabalin is effective for treating dry eye-induced ocular neuropathic pain even after chronic pain has been established.


Subject(s)
Analgesics/administration & dosage , Disease Models, Animal , Dry Eye Syndromes/physiopathology , Eye Pain/physiopathology , Pregabalin/administration & dosage , Administration, Ophthalmic , Animals , Astrocytes/pathology , Calcium Channels, L-Type/metabolism , Chronic Disease , Cornea/innervation , Dry Eye Syndromes/drug therapy , Eye Pain/drug therapy , Hyaluronic Acid/administration & dosage , Hyperalgesia/drug therapy , Hyperalgesia/physiopathology , Male , Microglia/pathology , Neuralgia/drug therapy , Neuralgia/physiopathology , Neurons/metabolism , Neurons/pathology , Ophthalmic Solutions , Rats , Rats, Sprague-Dawley , Trigeminal Nerve/metabolism , Trigeminal Nerve/pathology
12.
Sci Rep ; 11(1): 23569, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876649

ABSTRACT

Microvascular compression of the trigeminal root entry zone (TREZ) is the main cause of most primary trigeminal neuralgia (TN), change of glial plasticity was previously studied in the TREZ of TN rat model induced by chronic compression. To better understand the role of astrocytes and immune cells in the TREZ, different cell markers including glial fibrillary acidic protein (GFAP), complement C3, S100A10, CD45, CD11b, glutamate-aspartate transporter (GLAST), Iba-1 and TMEM119 were used in the TN rat model by immunohistochemistry and flow cytometry. On the post operation day 28, GFAP/C3-positive A1 astrocytes and GFAP/S100A10-positive A2 astrocytes were activated in the TREZ after compression injury, there were no statistical differences in the ratios of A1/A2 astrocytes between the sham and TN groups. There was no significant difference in Iba-1-positive cells between the two groups. The ratios of infiltrating lymphocytes (CD45+CD11b-) (p = 0.0075) and infiltrating macrophages (CD45highCD11b+) (p = 0.0388) were significantly higher than those of the sham group. In conclusion, different subtypes A1/A2 astrocytes in the TREZ were activated after compression injury, infiltrating macrophages and lymphocytes increased, these neuroimmune cells in the TREZ may participate in the pathogenesis of TN rat model.


Subject(s)
Trigeminal Neuralgia/immunology , Trigeminal Neuralgia/pathology , Animals , Annexin A2/metabolism , Astrocytes/immunology , Astrocytes/metabolism , Astrocytes/pathology , Complement C3/metabolism , Disease Models, Animal , Flow Cytometry , Glial Fibrillary Acidic Protein/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Male , Neuroglia/immunology , Neuroglia/metabolism , Neuroglia/pathology , Rats , Rats, Sprague-Dawley , S100 Proteins/metabolism , Trigeminal Nerve/immunology , Trigeminal Nerve/metabolism , Trigeminal Nerve/pathology
13.
Microvasc Res ; 138: 104214, 2021 11.
Article in English | MEDLINE | ID: mdl-34217740

ABSTRACT

Skeletal muscle hemodynamics, including that in jaw muscles, is an important in their functions and is modulated by aging. Marked blood flow increases mediated by parasympathetic vasodilation may be important for blood flow in the masseter muscle (MBF); however, the relationship between parasympathetic vasodilation and aging is unclear. We examined the effect of aging on parasympathetic vasodilation evoked by trigeminal afferent inputs and their mechanisms by investigating the MBF during stimulation of the lingual nerve (LN) in young and old urethane-anesthetized and vago-sympathectomized rats. Electrical stimulation of the central cut end of the LN elicited intensity- and frequency-dependent increases in MBF in young rats, while these increases were significantly reduced in old rats. Increases in the MBF evoked by LN stimulation in the young rats were greatly reduced by hexamethonium and atropine administration. Increases in MBF in young rats were produced by exogenous acetylcholine in a dose-dependent manner, whereas acetylcholine did not influence the MBF in old rats. Significant levels of muscarinic acetylcholine receptor type 1 (MR1) and type 3 (MR3) mRNA were observed in the masseter muscle in young rats, but not in old rats. Our results indicate that cholinergic parasympathetic reflex vasodilation evoked by trigeminal afferent inputs to the masseter muscle is reduced by aging and that this reduction may be mediated by suppression of the expression of MR1 and MR3 in the masseter muscle with age.


Subject(s)
Aging/physiology , Arteries/innervation , Cholinergic Fibers/physiology , Masseter Muscle/blood supply , Parasympathetic Nervous System/physiology , Reflex , Trigeminal Nerve/physiology , Vasodilation , Acetylcholine/metabolism , Age Factors , Aging/metabolism , Animals , Cholinergic Fibers/metabolism , Electric Stimulation , Male , Masseter Muscle/metabolism , Parasympathetic Nervous System/metabolism , Rats, Wistar , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M3/metabolism , Regional Blood Flow , Sympathectomy , Trigeminal Nerve/metabolism , Vagotomy
14.
Sci Rep ; 11(1): 13019, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155284

ABSTRACT

Semaphorin3A is considered a classical repellent molecule for developing neurons and a potent inhibitor of regeneration after nervous system trauma. Vinaxanthone and other Sema3A inhibitors are currently being tested as possible therapeutics to promote nervous system regeneration from injury. Our previous study on Sema3A demonstrated a switch in Sema3A's function toward induction of nerve regeneration in adult murine corneas and in culture of adult peripheral neurons. The aim of the current study is to determine the direct effects of Vinaxanthone on the Sema3A induced adult neuronal growth. We first demonstrate that Vinaxanthone maintains its anti-Sema3A activity in embryonic dorsal root ganglia neurons by inhibiting Sema3A-induced growth cone collapse. However, at concentrations approximating its IC50 Vinaxanthone treatment does not significantly inhibit neurite formation of adult peripheral neurons induced by Sema3A treatment. Furthermore, Vinaxanthone has off target effects when used at concentrations above its IC50, and inhibits neurite growth of adult neurons treated with either Sema3A or NGF. Our results suggest that Vinaxanthone's pro-regenerative effects seen in multiple in vivo models of neuronal injury in adult animals need further investigation due to the pleiotropic effect of Sema3A on various non-neuronal cell types and the possible effect of Vinaxanthone on other neuroregenerative signals.


Subject(s)
Growth Cones/drug effects , Growth Cones/metabolism , Neurons/drug effects , Neurons/metabolism , Semaphorin-3A/metabolism , Xanthones/pharmacology , Animals , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Mice , Neurogenesis/drug effects , Signal Transduction/drug effects , Trigeminal Nerve/drug effects , Trigeminal Nerve/metabolism
15.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806052

ABSTRACT

In addition to the sense of taste and olfaction, chemesthesis, the sensation of irritation, pungency, cooling, warmth, or burning elicited by spices and herbs, plays a central role in food consumption. Many plant-derived molecules demonstrate their chemesthetic properties via the opening of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels. TRPA1 and TRPV1 are structurally related thermosensitive cation channels and are often co-expressed in sensory nerve endings. TRPA1 and TRPV1 can also indirectly influence some, but not all, primary taste qualities via the release of substance P and calcitonin gene-related peptide (CGRP) from trigeminal neurons and their subsequent effects on CGRP receptor expressed in Type III taste receptor cells. Here, we will review the effect of some chemesthetic agonists of TRPA1 and TRPV1 and their influence on bitter, sour, and salt taste qualities.


Subject(s)
TRPA1 Cation Channel/physiology , TRPV Cation Channels/physiology , Taste , Animals , Calcitonin Gene-Related Peptide/chemistry , Capsaicin/pharmacology , Cations , Humans , Mice , Neurons/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Polymorphism, Single Nucleotide , Rats , Republic of Korea , Sensory Receptor Cells/metabolism , Spices , Substance P/metabolism , TRPA1 Cation Channel/chemistry , TRPV Cation Channels/chemistry , Taste Buds/metabolism , Trigeminal Nerve/metabolism
16.
PLoS One ; 16(4): e0251013, 2021.
Article in English | MEDLINE | ID: mdl-33914819

ABSTRACT

Neuropathic pain refers to pain caused by lesions or diseases of the somatosensory nervous system that is characteristically different from nociceptive pain. Moreover, neuropathic pain occurs in the maxillofacial region due to various factors and is treated using tricyclic antidepressants and nerve block therapy; however, some cases do not fully recover. Netrin is a secreted protein crucially involved in neural circuit formation during development, including cell migration, cell death, neurite formation, and synapse formation. Recent studies show Netrin-4 expressed in the dorsal horn of the spinal cord is associated with chronic pain. Here we found involvement of Netrin-4 in neuropathic pain in the maxillofacial region. Netrin-4, along with one of its receptors, Unc5B, are expressed in the caudal subnucleus of the trigeminal spinal tract nucleus. Inhibition of its binding by anti-Netrin-4 antibodies not only shows a behavioral analgesic effect but also neuronal activity suppression. There was increased Netrin-4 expression at 14 days after infraorbital nerve injury. Our findings suggest that Netrin-4 induced by peripheral nerve injury causes neuropathic pain via Unc5B.


Subject(s)
Hyperalgesia/metabolism , Netrins/metabolism , Peripheral Nerve Injuries/metabolism , Receptors, Cell Surface/metabolism , Trigeminal Neuralgia/metabolism , Up-Regulation , Animals , Disease Models, Animal , Hyperalgesia/etiology , Male , Pain Measurement , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/etiology , Rats , Trigeminal Nerve/metabolism , Trigeminal Neuralgia/etiology
17.
Chem Senses ; 462021 01 01.
Article in English | MEDLINE | ID: mdl-33835144

ABSTRACT

Olfactory dysfunction (OD) is a highly frequent early non-motor symptom of Parkinson's disease (PD). An important step to potentially use OD for the development of early diagnostic tools of PD is to differentiate PD-related OD from other forms of non-parkinsonian OD (NPOD: postviral, sinunasal, post-traumatic, and idiopathic OD). Measuring non-olfactory chemosensory modalities, especially the trigeminal system, may allow to characterize a PD-specific olfactory profile. We here review the literature on PD-specific chemosensory alteration patterns compared with NPOD. Specifically, we focused on the impact of PD on the trigeminal system and particularly on the interaction between olfactory and trigeminal systems. As this interaction is seemingly affected in a disease-specific manner, we propose a model of interaction between both chemosensory systems that is distinct for PD-related OD and NPOD. These patterns of chemosensory impairment still need to be confirmed in prodromal PD; nevertheless, appropriate chemosensory tests may eventually help to develop diagnostic tools to identify individuals at risks for PD.


Subject(s)
Olfaction Disorders/metabolism , Parkinson Disease/metabolism , Trigeminal Nerve/metabolism , Humans , Parkinson Disease/diagnosis
18.
Invest Ophthalmol Vis Sci ; 62(3): 26, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33729475

ABSTRACT

Purpose: The purpose of this study was to test the role of substance P (SP) and its receptor neurokinin 1 (NK1R) on ocular surface pain. Methods: Eight-week-old C57BL6/N (wild type [WT]) and B6.Cg-Tac1tm1Bbm/J (TAC1-KO) male mice were used. 5 M NaCl was topically applied on the cornea, followed by topical fosaprepitant 2, 10, and 50 mg/mL; 4 mg/mL oxybuprocaine chloride, or 0.1% diclofenac. Th eye wiping test was used to quantify ocular surface pain. SP content was quantified in the tear fluid and trigeminal ganglia (TG), and TAC1 mRNA was assessed in the cornea. Corneas were immunostained for ß3-tubulin and NK1R, or CD45, to quantify leukocyte infiltration. Results: TAC1-KO mice displayed a significant reduction of ocular pain (P < 0.001). Similarly, a single dose of 10 or 50 mg/mL fosaprepitant applied topically to WT mice reduced ocular pain as compared to vehicle (P < 0.001). Fosaprepitant 2 mg/mL, instead, induced corneal analgesia only when it was administered for 10 days, 6 times/day (P < 0.05). Diclofenac or oxybuprocaine reduced corneal nociception when compared to vehicle or fosaprepitant (P < 0.05). Fosaprepitant or oxybuprocaine groups showed lower SP content in tear secretions and TG (P < 0.05), and reduction in TAC1 mRNA (P < 0.05), and leukocyte infiltration (P < 0.05) in the cornea. Colocalization of NK1R and ß3-tubulin was detected in mouse corneas. Conclusions: Topical administration of the NK1R antagonist fosaprepitant effectively reduces ocular surface nociception by decreasing SP release in the tear fluid and TG, and corneal leukocyte infiltration. Fosaprepitant repurposing shows promise for the treatment of ocular pain.


Subject(s)
Corneal Diseases/prevention & control , Eye Pain/prevention & control , Morpholines/therapeutic use , Neurokinin-1 Receptor Antagonists/therapeutic use , Administration, Ophthalmic , Animals , Cornea/innervation , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurokinin-1 Receptor Antagonists/metabolism , Nociception/drug effects , Ophthalmic Solutions , Substance P/metabolism , Tears/metabolism , Trigeminal Nerve/metabolism
19.
Am J Med Genet A ; 185(4): 1047-1058, 2021 04.
Article in English | MEDLINE | ID: mdl-33381921

ABSTRACT

We aim to characterize patients with Gomez-López-Hernández syndrome (GLHS) clinically and to investigate them molecularly. A clinical protocol, including a morphological and neuropsychological assessment, was applied to 13 patients with GLHS. Single-nucleotide polymorphism (SNP) array and whole-exome sequencing were undertaken; magnetic resonance imaging was performed in 12 patients, including high-resolution, heavily T2-weighted sequences (HRT2) in 6 patients to analyze the trigeminal nerves. All patients presented alopecia; two did not present rhombencephalosynapsis (RES); trigeminal anesthesia was present in 5 of the 11 patients (45.4%); brachycephaly/brachyturricephaly and mid-face retrusion were found in 84.6 and 92.3% of the patients, respectively. One patient had intellectual disability. HRT2 sequences showed trigeminal nerve hypoplasia in four of the six patients; all four had clinical signs of trigeminal anesthesia. No common candidate gene was found to explain GLHS phenotype. RES does not seem to be an obligatory finding in respect of GLHS diagnosis. We propose that a diagnosis of GLHS should be considered in patients with at least two of the following criteria: focal non-scarring alopecia, rhombencephalosynapsis, craniofacial anomalies (brachyturrycephaly, brachycephaly or mid-face retrusion), trigeminal anesthesia or anatomic abnormalities of the trigeminal nerve. Studies focusing on germline whole genome sequencing or DNA and/or RNA sequencing of the alopecia tissue may be the next step for the better understanding of GLHS etiology.


Subject(s)
Abnormalities, Multiple/genetics , Acid Phosphatase/genetics , Alopecia/genetics , Cerebellum/abnormalities , Craniofacial Abnormalities/genetics , Exome Sequencing , Growth Disorders/genetics , Neurocutaneous Syndromes/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/pathology , Adolescent , Adult , Alopecia/diagnosis , Alopecia/diagnostic imaging , Alopecia/pathology , Brazil/epidemiology , Cerebellum/diagnostic imaging , Cerebellum/pathology , Child , Child, Preschool , Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/diagnostic imaging , Craniofacial Abnormalities/pathology , Female , Growth Disorders/diagnosis , Growth Disorders/diagnostic imaging , Growth Disorders/pathology , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Neurocutaneous Syndromes/diagnosis , Neurocutaneous Syndromes/diagnostic imaging , Neurocutaneous Syndromes/pathology , Phenotype , Polymorphism, Single Nucleotide/genetics , Rhombencephalon/diagnostic imaging , Rhombencephalon/pathology , Trigeminal Nerve/diagnostic imaging , Trigeminal Nerve/metabolism , Trigeminal Nerve/pathology , Young Adult
20.
Prog Brain Res ; 255: 123-142, 2020.
Article in English | MEDLINE | ID: mdl-33008504

ABSTRACT

There is a huge improvement in our understanding of migraine pathophysiology in the past decades. The activation of the trigeminovascular system has been proved to play a key role in migraine. Calcitonin gene-related peptide (CGRP) and CGRP receptors are widely distributed in the trigeminovascular system. The CGRP is expressed on the C-fibers, and the CGRP receptors are distributed on the A-δ fibers of the trigeminal ganglion and nerves. Further studies found elevated serum CGRP level during migraine attacks, and infusion of CGRP can trigger migraine-like attacks, provide more direct evidence of the link between CGRP and migraine attack. Based on these findings, several treatment options have been designed for migraine treatment, including CGRP receptor antagonists (gepants) and monoclonal antibodies targeting CGRP or CGRP receptors. The clinical trials show both gepants and monoclonal antibodies are effective for migraine treatment. In this section, we describe the roles of the trigeminovascular system in migraine, the discovery of CGRP, and the CGRP signaling pathway.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Calcitonin Gene-Related Peptide/immunology , Calcitonin Gene-Related Peptide/metabolism , Migraine Disorders/drug therapy , Migraine Disorders/metabolism , Nerve Fibers/metabolism , Trigeminal Nerve/metabolism , Calcitonin Gene-Related Peptide/blood , Humans , Nerve Fibers/drug effects , Trigeminal Nerve/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...