Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
J Hazard Mater ; 469: 133760, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38522206

ABSTRACT

This study aimed to assess the global spatiotemporal variations of trihalomethanes (THMs) in drinking water, evaluate their cancer and non-cancer risks, and THM-attributable bladder cancer burden. THM concentrations in drinking water around fifty years on a global scale were integrated. Health risks were assessed using Monte Carlo simulations and attributable bladder cancer burden was estimated by comparative risk assessment methodology. The results showed that global mean THM concentrations in drinking water significantly decreased from 78.37 µg/L (1973-1983) to 51.99 µg/L (1984-2004) and to 21.90 µg/L (after 2004). The lifestage-integrative cancer risk and hazard index of THMs through all exposure pathways were acceptable with the average level of 6.45 × 10-5 and 7.63 × 10-2, respectively. The global attributable disability adjusted of life years (DALYs) and the age-standardized DALYs rate (ASDR) dropped by 16% and 56% from 1990-1994 to 2015-2019, respectively. A big decline in the attributable ASDR was observed in the United Kingdom (62%) and the United States (27%), while China experienced a nearly 3-fold increase due to the expanded water supply coverage and increased life expectancy. However, China also benefited from the spread of chlorination, which helped reduce nearly 90% of unsafe-water-caused mortality from 1998 to 2018.


Subject(s)
Drinking Water , Urinary Bladder Neoplasms , Water Pollutants, Chemical , Humans , Trihalomethanes/toxicity , Trihalomethanes/analysis , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/epidemiology , Cost of Illness , Risk Assessment , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
2.
Ecotoxicol Environ Saf ; 270: 115925, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38183752

ABSTRACT

Disinfection by-products (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs), have attracted attention due to their carcinogenic properties, leading to varying conclusions. This meta-analysis aimed to evaluate the dose-response relationship and the dose-dependent effect of DBPs on cancer risk. We performed a selective search in PubMed, Web of Science, and Embase databases for articles published up to September 15th, 2023. Our meta-analysis eventually included 25 articles, encompassing 8 cohort studies with 6038,525 participants and 10,668 cases, and 17 case-control studies with 10,847 cases and 20,702 controls. We observed a positive correlation between increased cancer risk and higher concentrations of total trihalomethanes (TTHM) in water, longer exposure durations, and higher cumulative TTHM intake. These associations showed a linear trend, with relative risks (RRs) and 95 % confidence intervals (CIs) being 1.02 (1.01-1.03), 1.04 (1.02-1.06), and 1.02 (1.00-1.03), respectively. Gender-specific analyses revealed slightly U-shaped relationships in both males and females, with males exhibiting higher risks. The threshold dose for TTHM in relation to cancer risk was determined to be 55 µg/L for females and 40 µg/L for males. A linear association was also identified between bladder cancer risk and TTHM exposure, with an RR and 95 % CI of 1.08 (1.05-1.11). Positive linear associations were observed between cancer risk and exposure to chloroform, bromodichloromethane (BDCM), and HAA5, with RRs and 95 % CIs of 1.02 (1.01-1.03), 1.33 (1.18-1.50), and 1.07 (1.03-1.12), respectively. Positive dose-dependent effects were noted for brominated THMs above 35 µg/L and chloroform above 75 µg/L. While heterogeneity was observed in the studies for quantitative synthesis, no publication bias was detected. Exposure to TTHM, chloroform, BDCM, or HAA5 may contribute to carcinogenesis, and the risk of cancer appears to be dose-dependent on DBP exposure levels. A cumulative effect is suggested by the positive correlation between TTHM exposure and cancer risk. Bladder cancer and endocrine-related cancers show dose-dependent and positive associations with TTHM exposure. Males may be more susceptible to TTHM compared to females.


Subject(s)
Disinfectants , Urinary Bladder Neoplasms , Water Pollutants, Chemical , Male , Female , Humans , Disinfection , Chloroform/analysis , Trihalomethanes/toxicity , Trihalomethanes/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Disinfectants/toxicity
3.
J Expo Sci Environ Epidemiol ; 34(1): 34-46, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37700034

ABSTRACT

BACKGROUND: Some disinfection byproducts (DBPs) are teratogens based on toxicological evidence. Conventional use of predominant DBPs as proxies for complex mixtures may result in decreased ability to detect associations in epidemiological studies. OBJECTIVE: We assessed risks of obstructive genitourinary birth defects (OGDs) in relation to 12 DBP mixtures and 13 individual component DBPs. METHODS: We designed a nested registry-based case-control study (210 OGD cases; 2100 controls) in Massachusetts towns with complete quarterly 1999-2004 data on four trihalomethanes (THMs) and five haloacetic acids (HAAs). We estimated temporally-weighted average DBP exposures for the first trimester of pregnancy. We estimated adjusted odds ratios (aORs) and 95% confidence intervals (CIs) for OGD in relation to individual DBPs, unweighted mixtures, and weighted mixtures based on THM/HAA relative potency factors (RPF) from animal toxicology data for full-litter resorption, eye defects, and neural tube defects. RESULTS: We detected elevated aORs for OGDs for the highest of bromodichloromethane (aOR = 1.75; 95% CI: 1.15-2.65), dibromochloromethane (aOR = 1.71; 95% CI: 1.15-2.54), bromodichloroacetic acid (aOR = 1.56; 95%CI: 0.97-2.51), chlorodibromoacetic acid (aOR = 1.97, 95% CI: 1.23-3.15), and tribromoacetic acid (aOR = 1.90; 95%CI: 1.20-3.03). Across unweighted mixture sums, the highest aORs were for the sum of three brominated THMs (aOR = 1.74; 95% CI: 1.15-2.64), the sum of six brominated HAAs (aOR = 1.43; 95% CI: 0.89-2.31), and the sum of nine brominated DBPs (aOR = 1.80; 95% CI: 1.05-3.10). Comparing eight RPF-weighted to unweighted mixtures, the largest aOR differences were for two HAA metrics, which both were higher with RPF weighting; other metrics had reduced or minimally changed ORs in RPF-weighted models.


Subject(s)
Disinfectants , Disinfection , Pregnancy , Female , Animals , Case-Control Studies , Disinfectants/adverse effects , Trihalomethanes/toxicity , Epidemiologic Studies
4.
Environ Sci Pollut Res Int ; 31(4): 5100-5115, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110686

ABSTRACT

Disinfection by-products (DBPs) are a concern due to their presence in chlorinated wastewater, sewage treatment plant discharge, and surface water, and their potential for environmental toxicity. Despite some attention to their ecotoxicity, little is known about the phytotoxicity of DBPs. This study aimed to evaluate the individual and combined phytotoxicity of four trihalomethanes (THMs: trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM) and their mixture (THM4)), and trichloroacetic acid (TCAA) using genotoxic and cytotoxic assays. The analysis included seed germination tests using Vigna radiata and root growth tests, mitosis studies, oxidative stress response, chromosomal aberrations (CA), and DNA laddering using Allium cepa. The results showed a progressive increase in root growth inhibition for both plant species as the concentration of DBPs increased. High concentrations of mixtures of four THMs resulted in significant (p < 0.05) antagonistic interactions. The effective concentration (EC50) value for V. radiata was 5655, 3145, 2690, 1465, 3570, and 725 mg/L for TCM, BDCM, DBCM, TBM, THM4, and TCAA, respectively. For A. cepa, the EC50 for the same contaminants was 700, 400, 350, 250, 450, and 105 mg/L, respectively. DBP cytotoxicity was observed through CAs, including C-metaphase, unseparated anaphase, lagging chromosome, sticky metaphase, and bridging. Mitotic depression (MD) increased with dose, reaching up to 54.4% for TCAA (50-500 mg/L). The electrophoresis assay showed DNA fragmentation and shearing, suggesting genotoxicity for some DBPs. The order of phytotoxicity for the tested DBPs was TCAA > TBM > DBCM > BDCM > THM4 > TCM. These findings underscore the need for further research on the phytotoxicity of DBPs, especially given their common use in agricultural practices such as irrigation and the use of sludge as manure.


Subject(s)
Vigna , Water Pollutants, Chemical , Trichloroacetic Acid/toxicity , Onions , Trihalomethanes/toxicity , Disinfection/methods , Chloroform , Water Pollutants, Chemical/toxicity
5.
Environ Pollut ; 337: 122601, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37742858

ABSTRACT

Numerous disinfection by-products (DBPs) are formed from reactions between disinfectants and organic/inorganic matter during water disinfection. More than seven hundred DBPs that have been identified in disinfected water, only a fraction of which are regulated by drinking water guidelines, including trihalomethanes, haloacetic acids, bromate, and chlorite. Toxicity assessments have demonstrated that the identified DBPs cannot fully explain the overall toxicity of disinfected water; therefore, the identification of unknown DBPs is an important prerequisite to obtain insights for understanding the adverse effects of drinking water disinfection. Herein, we review the progress in identification of unknown DBPs in the recent five years with classifications of halogenated or nonhalogenated, aliphatic or aromatic, followed by specific halogen groups. The concentration and toxicity data of newly identified DBPs are also included. According to the current advances and existing shortcomings, we envisioned future perspectives in this field.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfection , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Disinfectants/toxicity , Disinfectants/analysis , Trihalomethanes/toxicity , Trihalomethanes/analysis , Halogenation
6.
J Natl Cancer Inst ; 115(12): 1597-1604, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37551954

ABSTRACT

BACKGROUND: Colorectal cancer is the third most common malignancy worldwide and is strongly linked to lifestyle and environmental risk factors. Although several drinking-water disinfection by-products are confirmed rodent carcinogens, the evidence in humans for carcinogenicity associated with these by-products, including colorectal cancer, is still inconclusive. METHODS: We assessed the association of long-term exposure to trihalomethanes (THMs), the most prevalent disinfection by-products in chlorinated drinking water, with incidence of colorectal cancer in 58 672 men and women in 2 population-based cohorts. Exposure was assessed by combining long-term information of residential history with drinking water-monitoring data. Participants were categorized according to no exposure, low exposure (<15 µg/L), and high exposure (≥15 µg/L). Incident cases of colorectal cancer were ascertained by use of the Swedish National Cancer Register. RESULTS: During an average follow-up of 16.8 years (988 144 person-years), 1913 cases of colorectal cancer were ascertained (1176 cases in men and 746 in women, respectively). High THM concentrations in drinking water (≥15 µg/L) were associated with increased risk of colorectal cancer in men (hazard ratio = 1.26, 95% confidence interval = 1.05-1.51) compared with no exposure. When subsites were assessed, the association was statistically significant for proximal colon cancer (hazard ratio = 1.59, 95% confidence interval = 1.11 to 2.27) but not for distal colon cancer or rectal cancer. In women, we observed overall no association of THMs with colorectal cancer. CONCLUSION: These results add further evidence that disinfection by-products in drinking water may be a possible risk factor for proximal colon cancer in men. This observation was made at THM concentrations lower than those in most previous studies.


Subject(s)
Colonic Neoplasms , Drinking Water , Water Purification , Male , Humans , Female , Drinking Water/adverse effects , Disinfection/methods , Cohort Studies , Environmental Exposure/adverse effects , Water Purification/methods , Colonic Neoplasms/epidemiology , Trihalomethanes/toxicity , Trihalomethanes/analysis
7.
Chemosphere ; 335: 139085, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37263514

ABSTRACT

Chlorination is widely used to disinfect drinking water to keep humans safe from microorganisms. During chlorination, chlorine and its compounds react with contaminants to form disinfection by-products (DBPs). Toxicological and epidemiological studies have demonstrated that trihalomethanes (THMs) are the most widely investigated DBPs in drinking water, and their exposure has been associated with some adverse health effects. However, studies about risk characteristics in this field are limited. We estimated the health risks of THMs exposure in drinking water through multi-pathways, and systematically analyzed the factors influencing health risks of THMs in Wuxi, China. A total of 488 drinking water samples were collected and analyzed for THMs from four water treatment utilities from 2008 to 2016 in Wuxi. And water exposure parameters were obtained from 602 participants by structured questionnaires. The median concentration of THMs ranged from 6.71 µg/L to 9.18 µg/L. The cumulative cancer risk of THMs exposure through multi-pathways was 1.26 × 10-4, and CHBr2Cl made the largest contribution to the total cancer risk (48.25%). The non-cancer risk of THMs exposure was 2.02 × 10-1. Health risks of the exposure to THMs in drinking water in summer were significantly higher than that in winter (P = 0.0003 for cancer risk, and P = 5.95 × 10-7 for non-cancer risk). In our study, the average individual disability-adjusted life years (DALYs) lost was 1.27 × 10-4 per person-year (ppy). This study attempted to use DALYs for risk assessment of THMs, which will provide useful information for risk comparison and prioritization of hazards in drinking water. This suggested that potential higher risk might exist, and possible measures could be considered to decrease the health risks.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Humans , Trihalomethanes/toxicity , Trihalomethanes/analysis , Disinfection , Chlorides , Risk Assessment , China , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Disinfectants/analysis
8.
Chemosphere ; 335: 139061, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37247674

ABSTRACT

Trichloroisocyanuric acid (TCCA) is a popular disinfectant for swimming pools in China. However, the occurrence and importance of regulated disinfection byproducts (DBPs) in TCCA-disinfected swimming pools are less understood. This study analyzed 12 regulated DBPs (4 trihalomethanes (THMs), 5 haloacetic acid (HAAs), bromate, chlorate, and chlorite) in 85 swimming pool water samples and 17 input tap water samples from one swimming pool for 17 days continuously. Considering water temperature, pH, free chlorine, total chlorine, and urea, most of swimming pool water samples were within the water quality limits for China. Total concentrations of THMs, HAAs, and inorganic DBPs of 20.4-42.2, 82.0-229, and 100-729 µg/L in the swimming pool, and 16.6-28.3, 8.2-12.8, and 64.4-95.6 µg/L in the tap water, indicating inorganic DBPs are the dominant swimming pool and drinking water pollutants. Cancer risk values of regulated DBPs in swimming pools and input tap water are 2.7E-05 and 8.1E-05, respectively, and exceed the US EPA's threshold (1.0E-06). The non-cancer risk is below the US EPA's threshold. Following TCCA disinfection, the concentration and calculated cytotoxicity of regulated DBPs had a 3.6-fold and 1.9-fold increase, respectively. Inorganic DBPs contribute to the calculated concentration and cancer risks of DBPs in swimming pools and tap water at sufficient concentrations warranting regulation. This study provides data on 12 regulated DBPs in TCCA-disinfected indoor swimming pools, highlighting the importance of inorganic DBPs from evidences of concentration, cytotoxicity, and cancer risk for the first time.


Subject(s)
Swimming Pools , Water Pollutants, Chemical , Humans , Disinfection , Chlorine , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Trihalomethanes/toxicity , Trihalomethanes/analysis
9.
Chemosphere ; 329: 138696, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37062392

ABSTRACT

The formation characteristics of trihalomethanes (THMs) and haloacetamides (HAcAms) from dissolved organic matter and its fractions were investigated during chlorine-based disinfection processes. The relationships between water quality parameters, fluorescence parameters, and the formation levels of THMs and HAcAms were analyzed. The fractions contributing most to the acute toxicity were identified. The trichloromethane (TCM) generation level (72 h) generally followed the order of Cl2 > NH2Cl > NHCl2 process. The NHCl2 process was superior to the NH2Cl process in controlling TCM formation. Hydrophobic acidic substance (HOA), hydrophobic neutral substance (HON), and hydrophilic substance (HIS) were identified as primary precursors of 2,2-dichloroacetamide and trichloroacetamide during chlorination and chloramination. The formation of TCM mainly resulted from HOA, HON and HIS fractions relatively uniformly, while HOA and HIS fractions contributed more to the formation of bromodichloromethane and dibromomonochloromethane. UV254 could be used as an alternative indicator for the amount of ΣTHMs formed during chlorination and chloramination processes. Dissolved organic nitrogen was a potential precursor of 2,2-dichloroacetamide during chlorination process. The fractions with the highest potential acute toxicity after the chlorination were water-dependent.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfectants/toxicity , Disinfectants/chemistry , Chloramines/chemistry , Halogenation , Water Purification/methods , Disinfection/methods , Trihalomethanes/toxicity , Trihalomethanes/chemistry , Chlorine/chemistry , Chloroform , Water Pollutants, Chemical/analysis
10.
Environ Health Perspect ; 131(3): 37004, 2023 03.
Article in English | MEDLINE | ID: mdl-36883836

ABSTRACT

BACKGROUND: Nitrate and trihalomethanes (THMs) in drinking water are widespread and are potential human carcinogens. OBJECTIVE: We evaluated the association between drinking-water exposure to nitrate and THMs and prostate cancer. METHODS: During the period 2008-2013, 697 hospital-based incident prostate cancer cases (97 aggressive tumors) and 927 population-based controls were recruited in Spain, providing information on residential histories and type of water consumed. Average nitrate and THMs levels in drinking water were linked with lifetime water consumption to calculate waterborne ingestion. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using mixed models with recruitment area as random effect. Effect modification by tumor grade (Gleason score), age, education, lifestyle, and dietary factors was explored. RESULTS: Mean (±standard deviation) adult lifetime waterborne ingested nitrate (milligrams per day), brominated (Br)-THMs (micrograms per day), and chloroform (micrograms per day) were 11.5 (±9.0), 20.7 (±32.4), and 15.1 (±14.7) in controls. Waterborne ingested nitrate >13.8 vs. <5.5mg/d was associated with an OR of 1.74 (95% CI: 1.19, 2.54) overall, and 2.78 (95% CI: 1.23, 6.27) for tumors with Gleason scores ≥8. Associations were higher in the youngest and those with lower intakes of fiber, fruit/vegetables, and vitamin C. Waterborne ingested THMs were not associated with prostate cancer. Residential tap water levels of Br-THMs and chloroform showed, respectively, inverse and positive associations with prostate cancer. CONCLUSIONS: Findings suggest long-term waterborne ingested nitrate could be a risk factor of prostate cancer, particularly for aggressive tumors. High intakes of fiber, fruit/vegetables and vitamin C may lower this risk. Association with residential levels but not ingested chloroform/Br-THM may suggest inhalation and dermal routes could be relevant for prostate cancer. https://doi.org/10.1289/EHP11391.


Subject(s)
Drinking Water , Prostatic Neoplasms , Water Pollutants, Chemical , Adult , Male , Humans , Drinking Water/analysis , Nitrates/analysis , Environmental Exposure/analysis , Trihalomethanes/toxicity , Chloroform , Spain/epidemiology , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/epidemiology , Water Pollutants, Chemical/analysis , Ascorbic Acid
11.
J Environ Sci (China) ; 126: 378-386, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36503764

ABSTRACT

Quantification of regulated and emerging disinfection byproducts (DBPs) in swimming pool water, as well as the assessment of their lifetime health risk are limited in China. In this study, the occurrence of regulated DBPs (e.g., trihalomethanes, haloacetic acids) and emerging DBPs (e.g., haloacetonitriles, haloacetaldehydes) in indoor swimming pool water and the corresponding source water at a city in Eastern China were determined. The concentrations of DBPs in swimming pool water were 1-2 orders of magnitude higher than that in source water. Lifetime cancer and non-cancer risks of DBPs stemming from swimming pool water were also estimated. Inhalation and dermal exposure were the most significant exposure routes related to swimming pool DBP cancer and non-cancer risks. For the first time, buccal and aural exposure were considered, and were proven to be important routes of DBP exposure (accounting for 17.9%-38.9% of total risk). The cancer risks of DBPs for all swimmers were higher than 10-6 of lifetime exposure risk recommended by United States Environmental Protection Agency, and the competitive adult swimmers experienced the highest cancer risk (7.82 × 10-5). These findings provide important information and perspectives for future efforts to lower the health risks associated with exposure to DBPs in swimming pool water.


Subject(s)
Disinfection , Swimming Pools , United States , Adult , Humans , Risk Assessment , Water , Trihalomethanes/toxicity
12.
Environ Res ; 216(Pt 4): 114737, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36372149

ABSTRACT

BACKGROUND: In animal and human studies, exposure to trihalomethanes (THMs) has been associated with reduced semen quality. However, the underlying mechanisms remain poorly understood. OBJECTIVE: To investigate the associations of blood THM concentrations with sperm mitochondrial DNA copy number (mtDNAcn) and telomere length (TL) among healthy men. METHODS: We recruited 958 men who volunteered as potential sperm donors. A single blood sample was collected from each participant at recruitment and measured for chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM) concentrations. Within a 90-day follow-up, the last semen sample provided by each participant was quantified for sperm mtDNAcn and TL. We used multivariable linear regression models to assess the associations between blood THM concentrations and sperm mtDNAcn and TL. We also performed stratified analyses according to the time intervals between baseline blood THM determinations and semen collection (i.e., 0-9, 10-14, 15-69, or >69 days) to explore potential windows of susceptibility. RESULTS: After adjusting for potential confounders, we found inverse associations between quartiles (or categories) of blood TBM, brominated THM (Br-THM, the sum of BDCM, DBCM, and TBM), and total THM (TTHM, the sum of all four THMs) concentrations and sperm mtDNAcn (all P for trend≤0.03). Besides, we found inverse associations between quartiles of blood TCM, Br-THM, chlorinated THM (Cl-THM, the sum of TCM, BDCM, and DBCM), and TTHM concentrations and sperm TL (all P for trend<0.10). Stratified analyses showed stronger associations between Br-THM concentrations and sperm mtDNAcn determined 15-69 days since baseline exposure determinations, and between blood TCM and TTHM concentrations and sperm TL determined >69 days since baseline exposure determinations. CONCLUSION: Exposure to THMs may be associated with sperm mitochondrial and telomeric dysfunction.


Subject(s)
Semen Analysis , Water Pollutants, Chemical , Humans , Male , Semen/chemistry , DNA, Mitochondrial , DNA Copy Number Variations , Trihalomethanes/toxicity , Spermatozoa , Telomere , Water Pollutants, Chemical/analysis
13.
Chemosphere ; 309(Pt 1): 136577, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36155016

ABSTRACT

Boiling is a widely adopted household tap water treatment method because of its ability to inactivate chlorine-resistant pathogenic bacteria, and to reduce certain groups of disinfection byproducts (DBPs). From a more comprehensive point of view, this study revisited the effect of boiling on four groups of 17 aliphatic DBPs and six groups of 44 aromatic DBPs in both simulated chlorinated and chloraminated tap water samples, with a special focus on the changes of total organic halogen (TOX) and cytotoxicity. Results showed that the concentrations of aliphatic DBPs substantially decreased during boiling via volatilization (trihalomethanes and chloral hydrate) and hydrolysis (haloacetamides) in chlorinated and chloraminated tap water samples. The concentrations of aromatic DBPs during boiling generally followed an increasing trend due to decarboxylation of polycarboxylic precursors in chlorinated tap water samples, and showed a first increasing and then decreasing trend in chloraminated tap water samples. A sharp decreasing of TOX occurred in the heating process of tap water samples from room temperature to 100 °C, and a relatively gentle decreasing was kept in the prolonged boiling process till 5 min. The most abundant DBP group in the tap water samples without boiling was trihalomethanes, and was replaced by haloacetic acids with boiling for 5 min. Continuous boiling for 5 min substantially reduced the cytotoxicity of chlorinated and chloraminated water samples by 52.6% and 21.3%, respectively. Reduction of cytotoxicity matched well with the reduction of TOCl (r = 0.907, P < 0.01), TOBr (r = 0.885, P < 0.01) and TOX (r = 0.905, P < 0.01), suggesting that the cytotoxicity reduction during boiling was mainly ascribed to the reduction of halogenated DBPs. Therefore, boiling of tap water to 100 °C was strongly recommended to reduce the potential health risks induced by tap water ingestion.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Halogens/analysis , Chlorine , Halogenation , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Water Purification/methods , Trihalomethanes/toxicity , Trihalomethanes/analysis , Chloral Hydrate , Disinfectants/toxicity
14.
Environ Health Perspect ; 130(8): 87002, 2022 08.
Article in English | MEDLINE | ID: mdl-35913906

ABSTRACT

BACKGROUND: Disinfection byproducts (DBPs) in public water systems (PWS) are an unintended consequence resulting from reactions between mostly chlorine-based disinfectants and organic and inorganic compounds in source waters. Epidemiology studies have shown that exposure to DBP (specifically trihalomethanes) was associated with an increased risk of bladder cancer. OBJECTIVE: Our goal was to characterize the relative differences in exposures and estimated potential bladder cancer risks for people served by different strata of PWS in the United States and to evaluate uncertainties associated with these estimates. METHODS: We stratified PWS by source water type (surface vs. groundwater) and population served (large, medium, and small) and calculated population-weighted mean trihalomethane-4 (THM4) concentrations for each stratum. For each stratum, we calculated a population attributable risk (PAR) for bladder cancer using odds ratios derived from published pooled epidemiology estimates as a function of the mean THM4 concentration and the fraction of the total U.S. population served by each stratum of systems. We then applied the stratum-specific PARs to the total annual number of new bladder cancer cases in the U.S. population to estimate bladder cancer incidence in each stratum. RESULTS: Our results show that approximately 8,000 of the 79,000 annual bladder cancer cases in the United States were potentially attributable to DBPs in drinking water systems. The estimated attributable cases vary based on source water type and system size. Approximately 74% of the estimated attributable cases were from surface water systems serving populations of >10,000 people. We also identified several uncertainties that may affect the results from this study, primarily related to the use of THM4 as a surrogate measure for DBPs relevant to bladder cancer. DISCUSSION: Despite significant reductions in exposure over the past several decades, our study suggests that ∼10% of the bladder cancer cases in the United States may still be attributed to exposure to DBPs found in drinking water systems. https://doi.org/10.1289/EHP9985.


Subject(s)
Disinfectants , Drinking Water , Urinary Bladder Neoplasms , Water Pollutants, Chemical , Water Purification , Disinfectants/analysis , Disinfection , Halogenation , Humans , Trihalomethanes/analysis , Trihalomethanes/toxicity , United States/epidemiology , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/epidemiology , Water Pollutants, Chemical/analysis
15.
J Water Health ; 20(6): 946-961, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35768969

ABSTRACT

In this study, we report the formation and cancer risk estimation of trihalomethanes (THMs) emanating from 'ex-situ' chlorination of shallow hand-dug well water obtained from a peri-urban area of Mufulira District, Zambia. The aim of the study was to evaluate the potential cancer risks for people in this area where chlorine water disinfection at the household level is commonly practiced. Water samples from 13 randomly selected hand-dug wells (4-8 m deep) were collected and analyzed for pH, turbidity, and dissolved organic carbon before chlorination. Then another set of water samples from the same 13 wells was chlorinated using the methods commonly practiced in this area, consistent with WHO recommended doses. The chlorination degradation products, THMs, trichloromethane, bromodichloromethane (CHCl2Br), dibromochloromethane (CHClBr2), and tribromomethane, were determined at three different times of 60, 180, and 300 min after chlorination, while residual chlorine was determined immediately after chlorination and at 60 and 1,440 min after chlorination. THMs were determined using gas chromatography (GC), while residual chlorine was determined colorimetrically. Then cancer risk estimation from ingestion, inhalation, and dermal routes was carried out. All water samples from the 13 wells showed elevated amounts of THMs, which also increased with increasing contact time. For instance, the concentrations of THMs at 60 min after chlorination ranged from 24.3 ± 2.0 to 61.3 ± 1.0 µg/L, while at 180 and 300 min, ranged between 85.6 ± 4.3-146.9 ± 2.5 µg/L and 188.1 ± 7.1-250.1 ± 7.1 µg/L, respectively. It was observed that tribromomethane was not detected at all in all samples, while CHCl2Br and CHClBr2 were only detected at 180 and 300 min post chlorination. The lifetime cancer risk estimation results showed negligible risk at 60 min post chlorination. However, at 180 and 300 min post chlorination, the results were far above negligible, but within the regulatory US EPA limits. The overall risk, however, could not be ignored, given a multiplicity of exposure to various other contaminants, raising concerns over additivity and synergistic interactive effects, particularly for non-cancer hazard indices.


Subject(s)
Neoplasms , Water Pollutants, Chemical , Water Purification , Chlorine/analysis , Disinfection/methods , Halogenation , Humans , Neoplasms/chemically induced , Neoplasms/epidemiology , Trihalomethanes/analysis , Trihalomethanes/toxicity , Water/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Zambia/epidemiology
16.
Environ Health Perspect ; 130(5): 57012, 2022 05.
Article in English | MEDLINE | ID: mdl-35622390

ABSTRACT

BACKGROUND: Disinfection byproducts (DBPs) and N-nitroso compounds (NOC), formed endogenously after nitrate ingestion, are suspected endometrial carcinogens, but epidemiological studies are limited. OBJECTIVES: We investigated the relationship of these exposures with endometrial cancer risk in a large prospective cohort. METHODS: Among postmenopausal women in the Iowa Women's Health Study cohort, we evaluated two major classes of DBPs, total trihalomethanes (TTHM) and five haloacetic acids (HAA5), and nitrate-nitrogen (NO3-N) in public water supplies (PWS) in relation to incident primary endometrial cancer (1986-2014). For women using their PWS >10y at enrollment (n=10,501; cases=261), we computed historical averages of annual concentrations; exposures were categorized into quantiles and when possible ≥95th percentile. We also computed years of PWS use above one-half the U.S. maximum contaminant level (>½ MCL; 40µg/L TTHM; 30µg/L HAA5; 5mg/L NO3-N). Dietary nitrate/nitrite intakes were estimated from a food frequency questionnaire. We estimated hazard ratios (HR) and 95% confidence intervals (CI) via Cox models adjusted for age, endometrial cancer risk factors [e.g., body mass index, hormone replacement therapy (HRT)], and mutually adjusted for DBPs or NO3-N. We evaluated associations for low-grade (cases=99) vs. high-grade (cases=114) type I tumors. We assessed interactions between exposures and endometrial cancer risk factors and dietary factors influencing NOC formation. RESULTS: Higher average concentrations of DBPs (95th percentile: TTHM ≥93µg/L, HAA5 ≥49µg/L) were associated with endometrial cancer risk (TTHM: HR95vsQ1=2.19, 95% CI: 1.41, 3.40; HAA5: HR95vsQ1=1.84, 95% CI: 1.19, 2.83; ptrend<0.01). Associations were similarly observed for women greater than median years of PWS use with levels >½ MCL, in comparison with zero years (TTHM: HR36+vs0y=1.61, 95% CI: 1.18, 2.21; HAA5: HR38+vs0y=1.85, 95% CI: 1.31, 2.62). Associations with DBPs appeared stronger for low-grade tumors (TTHM: HRQ4vsQ1=2.12, 95% CI: 1.17, 3.83; p-trend=0.008) than for high-grade tumors (TTHM: HRQ4vsQ1=1.40, 95% CI: 0.80, 2.44; p-trend=0.339), but differences were not statistically significant (p-heterogeneity=0.43). Associations with TTHM were stronger among ever HRT users than non-HRT users (p-interaction<0.01). We observed no associations with NO3-N in drinking water or diet. DISCUSSION: We report novel associations between the highest DBP levels and endometrial cancer for our Iowa cohort that warrant future evaluation. https://doi.org/10.1289/EHP10207.


Subject(s)
Drinking Water , Endometrial Neoplasms , Disinfection , Endometrial Neoplasms/chemically induced , Endometrial Neoplasms/epidemiology , Female , Humans , Nitrates/analysis , Nitrogen Oxides , Postmenopause , Prospective Studies , Risk Factors , Trihalomethanes/toxicity
17.
Se Pu ; 40(6): 584-589, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35616204

ABSTRACT

Ship ballast water can control the roll, trim, and draft of the ship, and thus ensuring the balance and stability of the ship in the course of sailing, and playing a vital role in the safe navigation of ships. The annual discharge of ship ballast water is very large in China. About three to five billion cubic meters of ship ballast water is discharged into offshore or inland waters every year. This water contains plankton, pathogens, and their larvae or spores. If not be handled appropriately, this will have a serious impact on the ecological environment of the discharge waters. Ballast water is usually treated by electrolysis before being discharged. Sodium hypochlorite can be generated, which can kill microorganisms; however, the by-products trihalomethanes (THMs) are cytotoxic and biotoxic. Studies have shown that THMs may cause fetal growth retardation, spontaneous abortion, or death. The concentration of THMs in drinking water is closely related to the risk of bladder cancer death. Hence, it is important to establish a method for the determination of THMs in ship ballast water. The four kinds of THMs are chloroform, dichlorobromomethane, chlorodibromomethane, and tribromomethane. At present, ship ballast water is mostly analyzed by gas chromatography (GC) using an electron capture detector (ECD) or by gas chromatography-mass spectrometry (GC-MS). Given the low boiling point of THMs, headspace injection and purge-and-trap can be used. Gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS), was adopted. NCI is a soft ionization technique that shows special response to compounds bearing electronegative elements or groups. THMs contain electronegative chlorine atoms and bromine atoms. Therefore, NCI is a good choice for their analysis. The samples were processed by the headspace injection technique. The NaCl content in 10 mL sample was optimized in headspace injection. The results showed that 3.0 g NaCl was the most suitable dosage. The analytes were separated on a DB-5MS UI capillary-column (30 m×0.25 mm×1.0 µm). The target compounds were quantified by using the external standard method in selected ion monitoring (SIM) mode. The four THMs were not only well separated but also showed a high response at 0.2 µg/L. The four THMs showed good linear relationships in the range of 0.2-50 µg/L, with correlation coefficients≥0.995. The limits of quantification (LOQs, S/N=10) were 0.1-0.2 µg/L, and the average recoveries of the four THMs were 90.3%-106.8% at the three spike levels of 0.2, 0.5, and 2.0 µg/L. The relative standard deviations were 1.4%-6.2%. The LOQs of the THMs in the GB/T 5750.8-2006 Standard Test Method of Drinking Water Organic Matter Index are 0.3-6.0 µg/L. It can be seen that the LOQs of the THMs are greatly reduced in this study. The proposed method is accurate, stable, and reliable, and it can be used for monitoring the four THMs in ship ballast water. The method was applied for the detection of 36 ship ballast water samples. In all cases, the detection rates of tribromomethane, chlorodibromomethane, dichlorobromomethane, and chloroform were 83.3%, 69.4%, 22.2%, and 19.4%, respectively. The detection values of tribromomethane, chlorodibromomethane, dichlorobromomethane, and chloroform were 34.25-221.5 µg/L, 3.52-41.87 µg/L, 1.52-8.56 µg/L, and 0.02-5.46 µg/L, respectively. Based on the analysis of several ship ballast water samples (electrolytic water), it was concluded that the greater the number of bromine atoms in the THMs, the higher are the detection rate and detection value in ship ballast water. Compared to chloroform, tribromomethane is more harmful to living beings. China has acceded to the International Convention on Ship Ballast Water and Sediment Control and Management. There is an urgent need to establish analysis methods with high sensitivity, good stability, and high accuracy in addition to determining standards and regulations for ship ballast water.


Subject(s)
Drinking Water , Ships , Bromine/analysis , Chloroform/analysis , Drinking Water/analysis , Gas Chromatography-Mass Spectrometry/methods , Sodium Chloride/analysis , Trihalomethanes/analysis , Trihalomethanes/toxicity
18.
Environ Health Perspect ; 130(5): 57006, 2022 05.
Article in English | MEDLINE | ID: mdl-35536285

ABSTRACT

BACKGROUND: By-products are formed when disinfectants react with organic matter in source water. The most common class of disinfection by-products, trihalomethanes (THMs), have been linked to bladder cancer. Several studies have shown exposure-response associations with THMs in drinking water and bladder cancer risk. Few epidemiologic studies have evaluated gene-environment interactions for total THMs (TTHMs) with known bladder cancer susceptibility variants. OBJECTIVES: In this study, we investigated the combined effect on bladder cancer risk contributed by TTHMs, bladder cancer susceptibility variants identified through genome-wide association studies, and variants in several candidate genes. METHODS: We analyzed data from two large case-control studies-the New England Bladder Cancer Study (n/n=989 cases/1,162 controls), a population-based study, and the Spanish Bladder Cancer Study (n/n=706 cases/772 controls), a hospital-based study. Because of differences in exposure distributions and metrics, we estimated effects of THMs and genetic variants within each study separately using adjusted logistic regression models to calculate odds ratios (ORs) and 95% confidence intervals (CI) with and without interaction terms, and then combined the results using meta-analysis. RESULTS: Of the 16 loci showing strong evidence of association with bladder cancer, rs907611 at 11p15.5 [leukocyte-specific protein 1 (LSP1 region)] showed the strongest associations in the highest exposure category in each study, with evidence of interaction in both studies and in meta-analysis. In the highest exposure category, we observed OR=1.66 (95% CI: 1.17, 2.34, p-trend=0.005) for those with the rs907611-GG genotype and p-interaction=0.02. No other genetic variants tested showed consistent evidence of interaction. DISCUSSION: We found novel suggestive evidence for a multiplicative interaction between a putative bladder carcinogen, TTHMs, and genotypes of rs907611. Given the ubiquitous exposure to THMs, further work is needed to replicate and extend this finding and to understand potential molecular mechanisms. https://doi.org/10.1289/EHP9895.


Subject(s)
Disinfectants , Drinking Water , Urinary Bladder Neoplasms , Water Pollutants, Chemical , Case-Control Studies , Disinfectants/analysis , Disinfection , Female , Genome-Wide Association Study , Humans , Logistic Models , Male , Polymorphism, Genetic , Trihalomethanes/analysis , Trihalomethanes/toxicity , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/genetics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
J Water Health ; 20(3): 560-574, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35350008

ABSTRACT

In developing countries, the evaluation of disinfection by-products in drinking water has been neglected because most water utility companies focus on microbial elimination. As a result, this study aimed at evaluating trihalomethane formation, the relation between water quality parameters and trihalomethane formation, and the estimation of the associated potential health risks in drinking water. The headspace purge and trap coupled with a gas chromatography-mass spectrometry technique was used to quantify trihalomethane. The concentrations of trihalomethane found in the water were within the National Water and Sewerage Corporation, World Health Organization guidelines, and the United States Environmental Protection Agency standards. Total organic carbon, ultraviolet absorbance at 254 nm, bromide concentration, and the temperature had a positive and significant correlation, pH had a positive but non-significant correlation, while the residual chlorine had a negative but significant correlation with trihalomethane formation. The potential health risk using the WHO index was 0.4, indicating no noncarcinogenic risk to human health in the study area. The lifetime carcinogenic risks of trihalomethane due to oral ingestion, dermal, and inhalation were 2.5×10-5, 9.1×10-6, and 8.3×10-6 for females and 2.4×10-5, 1×10-5, and 7.9×10-6 for males, and the values were within the USEPA acceptable low-risk range of 1×10-6

Subject(s)
Disinfection , Drinking Water , Disinfection/methods , Female , Humans , Male , Trihalomethanes/toxicity , Uganda , United States , Water Supply
20.
Sci Total Environ ; 822: 153323, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35066044

ABSTRACT

Water contamination through anthropogenic and industrial activities has led to the emergence and necessity of disinfection methods. Chlorine and bromine gases, often used to disinfect water, resulted in the by-product formation by reacting with organic matter. The Disinfectant by-products (DBP) led to the formation of Trihaloaceticacid (TAA), Trihalomethane (THM), and other minor components. The release of chemicals has also led to the outbreak of diseases like infertility, asthma, stillbirth, and types of cancer. There are new approaches that are found to be useful to compensate for the generation of toxic by-products and involve membrane technologies, namely reverse osmosis, ultrafiltration, and nanofiltration. This review mainly focuses on the toxicology effects of DBPs and various approaches to mitigate the same. The health hazards caused by different DBPs and the various treatment techniques available for the removal are discussed. In addition, a critical comparison of the different removal techniques was discussed.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Chlorine/analysis , Disinfectants/toxicity , Disinfection/methods , Halogenation , Trihalomethanes/analysis , Trihalomethanes/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...