Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 986
Filter
1.
Invest Ophthalmol Vis Sci ; 65(5): 4, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691089

ABSTRACT

Purpose: To investigate the adhesion of Acanthamoeba to scleral contact lens (ScCL) surface according to lens shape. Methods: Two strains of A. polyphaga (CDC:V062 and ATCC 30461) and one clinical Acanthamoeba isolate, were inoculated onto five contact lens (CL): one first-generation silicone hydrogel (SHCL; lotrafilcon B; adhesion control) containing plasma surface treatment; two ScCL (fluorosilicone acrylate) one containing surface treatment composed of plasma and the other containing plasma with Hydra-PEG, and two CL designed with a flat shape having the same material and surface treatments of the ScCL. Trophozoites that adhered to the lens's surfaces were counted by inverted optical light microscopy. Possible alterations of the lens surface that could predispose amoeba adhesion and Acanthamoeba attached to these lens surfaces were evaluated by scanning electron microscopy (SEM). Results: All strains revealed greater adhesion to the ScCL when compared with the flat lenses (P < 0.001). The clinical isolate and the ATCC 30461 had a higher adhesion (P < 0.001) when compared with the CDC:V062. A rough texture was observed on the surface of the lenses that have been examined by SEM. Also, SEM revealed that the isolates had a rounded appearance on the surface of the ScCL in contrast with an elongated appearance on the surface of the silicone hydrogel. Conclusions: The findings revealed that the curved shape of the ScCL favors amoeba adhesion.


Subject(s)
Acanthamoeba , Microscopy, Electron, Scanning , Acanthamoeba/physiology , Acanthamoeba/ultrastructure , Sclera , Humans , Contact Lenses, Hydrophilic/parasitology , Cell Adhesion/physiology , Contact Lenses/parasitology , Trophozoites/ultrastructure , Trophozoites/physiology , Hydrogels , Animals
2.
Parasitol Res ; 123(3): 153, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446221

ABSTRACT

This study describes dehydration of agar containing cysts as a novel and inexpensive method for long-term storage of Acanthamoeba spp. collections at room temperature. Five hundred microliters of axenically cultured Acanthamoeba spp. trophozoites (106 cells/mL) in PYG media or 150 µl of amoeba suspension (106 cells or cysts/mL) from monoxenic plate culture was spread onto the surface of non-nutritive agar (NNA, 2-3-mm thick) without or with a layer of heat-inactivated Escherichia coli, respectively. The plates were sealed and incubated at 30 °C. After the encystment, the Parafilm® was removed, and the plates were kept at the same temperature until the NNA was completely dehydrated. The dehydrated cyst-containing NNA was cut in rectangles and stored in airtight tubes at room temperature for up to 3 years. Cyst viability was assessed by inoculating them in fresh NNA with a layer of E. coli and in PYG followed by incubation at 30 °C. One hundred percent of samples from all specimens (19) stored over the 3 years allowed new cultures to be re-established; however, two strains showed reduced viability, at 66.7% and 62.5%, after 2 years of room temperature storage. One hundred percent of the cyst samples produced axenically and maintained in dry NNA allowed the re-establishment of axenic cultures through direct incubation in PYG, with excystment occurring within 24 or 48 h. For the first time, we report the dehydration of cyst-containing agar as an economical and effective method for the long-term storage of Acanthamoeba spp. collections at room temperature. It enables the creation of large collections using reduced space and economical transport of Acanthamoeba strains, in addition to allowing better organization of the collection.


Subject(s)
Acanthamoeba , Cysts , Animals , Agar , Dehydration , Escherichia coli , Temperature , Trophozoites
3.
Nanoscale ; 16(14): 7145-7153, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38502112

ABSTRACT

The unicellular parasite Giardia duodenalis is the causative agent of giardiasis, a gastrointestinal disease with global spread. In its trophozoite form, G. duodenalis can adhere to the human intestinal epithelium and a variety of other, artificial surfaces. Its attachment is facilitated by a unique microtubule-based attachment organelle, the so-called ventral disc. The mechanical function of the ventral disc, however, is still debated. Earlier studies postulated that a dynamic negative pressure under the ventral disc, generated by persistently beating flagella, mediates the attachment. Later studies suggested a suction model based on structural changes of the ventral discs, substrate clutching or grasping, or unspecific contact forces. In this study, we aim to contribute to the understanding of G. duodenalis attachment by investigating detachment characteristics and determining adhesion forces of single trophozoites on a smooth glass surface (RMS = 1.1 ± 0.2 nm) by fluidic force microscopy (FluidFM)-based single-cell force spectroscopy (SCFS). Briefly, viable adherent trophozoites were approached with a FluidFM micropipette, immobilized to the micropipette aperture by negative pressure, and detached from the surface by micropipette retraction while retract force curves were recorded. These force curves displayed novel and so far undescribed characteristics for a microorganism, namely, gradual force increase on the pulled trophozoite, with localization of adhesion force shortly before cell detachment length. Respective adhesion forces reached 7.7 ± 4.2 nN at 1 µm s-1 pulling speed. Importantly, this unique force pattern was different from that of other eukaryotic cells such as Candida albicans or oral keratinocytes, considered for comparison in this study. The latter both displayed a force pattern with force peaks of different values or force plateaus (for keratinocytes) indicative of breakage of molecular bonds of cell-anchored classes of adhesion molecules or membrane components. Furthermore, the attachment mode of G. duodenalis trophozoites was mechanically resilient to tensile forces, when the pulling speeds were raised up to 10 µm s-1 and adhesion forces increased to 28.7 ± 10.5 nN. Taken together, comparative SCSF revealed novel and unique retract force curve characteristics for attached G. duodenalis, suggesting a ligand-independent suction mechanism, that differ from those of other well described eukaryotes.


Subject(s)
Giardia lamblia , Giardiasis , Animals , Humans , Giardia lamblia/metabolism , Trophozoites/metabolism , Giardiasis/metabolism , Organelles , Spectrum Analysis
4.
Phytomedicine ; 125: 155389, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306720

ABSTRACT

BACKGROUND: Acanthamoeba is an opportunistic pathogen that can cause human infections such as granulomatous amebic encephalitis and acanthamoeba keratitis. However, no specific drug to treat the diseases has been developed. Therefore, the discovery or development of novel drugs for treating Acanthamoeba infections is urgently needed. The anti-protozoan activity of (‒)-epicatechin (EC) has been reported, suggesting it is an attractive anti-protozoal drug candidate. In this study, the amoebicidal activity of EC against A. castellanii was assessed and its mechanism of action was unveiled. METHODS: The amoebicidal activity of EC against A. castellanii trophozoites and the cytotoxicity of EC in HCE-2 and C6 cells were determined with cell viability assay. The underlying amoebicidal mechanism of EC against A. castellanii was analyzed by the apoptosis/necrosis assay, TUNEL assay, mitochondrial dysfunction assay, caspase-3 assay, and quantitative reverse transcription polymerase chain reaction. The cysticidal activity of EC was also investigated. RESULTS: EC revealed amoebicidal activity against A. castellanii trophozoites with an IC50 of 37.01 ± 3.96 µM, but was not cytotoxic to HCE-2 or C6 cells. EC induced apoptotic events such as increases in DNA fragmentation and intracellular reactive oxygen species production in A. castellanii. EC also caused mitochondrial dysfunction in the amoebae, as evidenced by the loss of mitochondrial membrane potential and reductions in ATP production. Caspase-3 activity, autophagosome formation, and the expression levels of autophagy-related genes were also increased in EC-treated amoebae. EC led to the partial death of cysts and the inhibition of excystation. CONCLUSION: EC revealed promising amoebicidal activity against A. castellanii trophozoites via programmed cell death events. EC could be a candidate drug or supplemental compound for treating Acanthamoeba infections.


Subject(s)
Acanthamoeba castellanii , Amebiasis , Amebicides , Catechin , Dieldrin/analogs & derivatives , Mitochondrial Diseases , Animals , Humans , Amebicides/pharmacology , Amebicides/therapeutic use , Caspase 3 , Catechin/pharmacology , Amebiasis/drug therapy , Trophozoites , Apoptosis , Mitochondrial Diseases/drug therapy
5.
Acta Vet Hung ; 72(1): 21-23, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38367048

ABSTRACT

There are no recommended drugs to treat cattle infected with the protozoan Tritrichomonas foetus (TF). Ivermectin, widely used in the treatment of intestinal parasites, was found effective against some protozoa growing in vitro. Here, its effectiveness against a TF line was investigated. Trophozoites were incubated in media with increasing concentrations of ivermectin and mortality was determined after 24 h. Ivermectin killed cells with a mean maximum effective concentration (EC50) of 2.47 µg mL-1. The effective concentration of ivermectin was rather high for a formulation suitable for systemic treatment. However, topical treatment of animals against TF could still be considered and tested.


Subject(s)
Cattle Diseases , Protozoan Infections, Animal , Tritrichomonas foetus , Animals , Cattle , Protozoan Infections, Animal/drug therapy , Protozoan Infections, Animal/parasitology , Ivermectin/pharmacology , Trophozoites , Cattle Diseases/parasitology
6.
J Eukaryot Microbiol ; 71(3): e13023, 2024.
Article in English | MEDLINE | ID: mdl-38402546

ABSTRACT

The cytoskeletal organization of a squirmid, namely Platyproteum vivax, was investigated with confocal laser scanning microscopy (CLSM) to refine inferences about convergent evolution among intestinal parasites of marine invertebrates. Platyproteum inhabits Pacific peanut worms (Phascolosoma agassizii) and has traits that are similar to other lineages of myzozoan parasites, namely gregarine apicomplexans within Selenidium, such as conspicuous feeding stages, called "trophozoites," capable of dynamic undulations. SEM and CLSM of P. vivax revealed an inconspicuous flagellar apparatus and a uniform array of longitudinal microtubules organized in bundles (LMBs). Extreme flattening of the trophozoites and a consistently oblique morphology of the anterior end provided a reliable way to distinguish dorsal and ventral surfaces. CLSM revealed a novel system of microtubules oriented in the flattened dorsoventral plane. Most of these dorsoventral microtubule bundles (DVMBs) had a punctate distribution and were evenly spaced along a curved line spanning the longitudinal axis of the trophozoites. This configuration of microtubules is inferred to function in maintaining the flattened shape of the trophozoites and facilitate dynamic undulations. The novel traits in Platyproteum are consistent with phylogenomic data showing that this lineage is only distantly related to Selenidium and other marine gregarine apicomplexans with dynamic intestinal trophozoites.


Subject(s)
Cytoskeleton , Microtubules , Animals , Apicomplexa/classification , Apicomplexa/genetics , Apicomplexa/physiology , Microscopy, Confocal , Intestines/parasitology , Trophozoites , Phylogeny
7.
Parasitology ; 151(3): 337-345, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38250789

ABSTRACT

Little is known about the life cycle and mode of transmission of Dientamoeba fragilis. Recently it was suggested that fecal­oral transmission of cysts may play a role in the transmission of D. fragilis. In order to establish an infection, D. fragilis is required to remain viable when exposed to the pH of the stomach. In this study, we investigated the ability of cultured trophozoites to withstand the extremes of pH. We provide evidence that trophozoites of D. fragilis are vulnerable to highly acidic conditions. We also investigated further the ultrastructure of D. fragilis cysts obtained from mice and rats by transmission electron microscopy. These studies of cysts showed a clear cyst wall surrounding an encysted parasite. The cyst wall was double layered with an outer fibrillar layer and an inner layer enclosing the parasite. Hydrogenosomes, endoplasmic reticulum and nuclei were present in the cysts. Pelta-axostyle structures, costa and axonemes were identifiable and internal flagellar axonemes were present. This study therefore provides additional novel details and knowledge of the ultrastructure of the cyst stage of D. fragilis.


Subject(s)
Cysts , Dientamoebiasis , Animals , Rats , Mice , Dientamoebiasis/parasitology , Dientamoeba , Life Cycle Stages , Trophozoites , Endoplasmic Reticulum , Feces/parasitology
8.
Acta Parasitol ; 69(1): 505-513, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38206477

ABSTRACT

BACKGROUND: Giardia lamblia (syn. G. intestinalis, G. duodenalis) is a primitive opportunistic protozoon, and one of the earliest differentiated eukaryotes. Despite its primitive nature, G. lamblia has a sophisticated cytoskeleton system, which is closely related to its proliferation and pathogenicity. Meanwhile, α giardin is a G. lamblia-specific cytoskeleton protein, which belongs to the annexin superfamily. Interestingly, G. lamblia has 21 annexin-like α giardins, i.e., more than higher eukaryotes. The functional differences among α giardin members are not fully understood. METHODS: We took α-4 giardin, a member of α giardin family, as a research object. A morpholino-mediated knockdown experiment was performed to identify the effect of α-4 giardin on G. lamblia trophozoites biological traits. A yeast two-hybrid cDNA library of G. lamblia strain C2 trophozoites was screened for interaction partners of α-4 giardin. Co-immunoprecipitation and fluorescent colocalization confirmed the relationship between G. lamblia EB1 (gEB1) and α-4 giardin. RESULTS: α-4 Giardin could inhibit the proliferation and adhesion of G. lamblia trophozoites. In addition, it interacted with G. lamblia EB1 (gEB1). CONCLUSIONS: α-4 Giardin was involved in proliferation and adhesion in G. lamblia trophozoites, and EB1, a crucial roles in mitosis, was an interacting partner of α-4 giardin.


Subject(s)
Cytoskeletal Proteins , Giardia lamblia , Protozoan Proteins , Trophozoites , Giardia lamblia/metabolism , Giardia lamblia/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Trophozoites/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Protein Binding , Two-Hybrid System Techniques
9.
PLoS Pathog ; 19(12): e1011818, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048362

ABSTRACT

During asexual growth and replication cycles inside red blood cells, the malaria parasite Plasmodium falciparum primarily relies on glycolysis for energy supply, as its single mitochondrion performs little or no oxidative phosphorylation. Post merozoite invasion of a host red blood cell, the ring stage lasts approximately 20 hours and was traditionally thought to be metabolically quiescent. However, recent studies have shown that the ring stage is active in several energy-costly processes, including gene transcription, protein translation, protein export, and movement inside the host cell. It has remained unclear whether a low glycolytic flux alone can meet the energy demand of the ring stage over a long period post invasion. Here, we demonstrate that the metabolic by-product pyrophosphate (PPi) is a critical energy source for the development of the ring stage and its transition to the trophozoite stage. During early phases of the asexual development, the parasite utilizes Plasmodium falciparum vacuolar pyrophosphatase 1 (PfVP1), an ancient pyrophosphate-driven proton pump, to export protons across the parasite plasma membrane. Conditional deletion of PfVP1 leads to a delayed ring stage that lasts nearly 48 hours and a complete blockage of the ring-to-trophozoite transition before the onset of parasite death. This developmental arrest can be partially rescued by an orthologous vacuolar pyrophosphatase from Arabidopsis thaliana, but not by the soluble pyrophosphatase from Saccharomyces cerevisiae, which lacks proton pumping activities. Since proton-pumping pyrophosphatases have been evolutionarily lost in human hosts, the essentiality of PfVP1 suggests its potential as an antimalarial drug target. A drug target of the ring stage is highly desired, as current antimalarials have limited efficacy against this stage.


Subject(s)
Antimalarials , Malaria, Falciparum , Animals , Humans , Plasmodium falciparum/metabolism , Proton Pumps/metabolism , Trophozoites/metabolism , Diphosphates/metabolism , Protons , Erythrocytes/parasitology , Pyrophosphatases/metabolism , Malaria, Falciparum/parasitology , Antimalarials/metabolism
10.
Eur J Protistol ; 91: 126032, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37948889

ABSTRACT

Acanthamoeba castellanii is a free-living amoeba that acts as an opportunistic pathogen for humans and is the pathogenic agent of Acanthamoeba keratitis (AK). A. castellanii may present as proliferative and infective trophozoites or as resistant cysts during their life cycle. The immune response against AK is still poorly explored; however, it is well established that macrophages and neutrophils play essential roles in controlling corneal infection during the disease outcome. The release of NETs is one of the innate immune strategies to prevent parasite infection, especially when neutrophils interact with microorganisms that are too large to be phagocytosed, which is the case for amoeba species. The present work demonstrated that A. castellanii trophozoites can trigger NET formation upon in vitro interaction with neutrophils. Using DNase as a control, we observed increased parasite survival after coinciding with neutrophils, which may be correlated with NET degradation. Indeed, A. castellanii trophozoites degrade the NET DNA scaffold. Molecular analysis confirmed the occurrence of a 3'-nucleotidase/nuclease (3'-NT/NU) in the A. castellanii genome. We also demonstrated that trophozoites exhibit significantly higher 3'-NT/NU activity than cysts, which cannot trigger NET release. Considering that previous studies indicated the pathological role of 3'-NT-/NU in parasite infection, we suggest that this enzyme may act as the mechanism of escape of A. castellanii trophozoites from NETs.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Extracellular Traps , Animals , Humans , Trophozoites/physiology , Acanthamoeba Keratitis/parasitology
11.
Acta Trop ; 248: 107033, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783284

ABSTRACT

Acanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 ± 4.62 µg/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 ± 17.41 µM) and Malabaricone C (IC50 of 49.95 ± 6.33 µM) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Amebiasis , Amebicides , Myristica , Animals , Humans , Amebicides/pharmacology , Fruit , Amebiasis/drug therapy , Trophozoites
12.
Eur J Protistol ; 91: 126026, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37871554

ABSTRACT

Acanthamoeba castellanii is a free-living amoeba and an opportunistic pathogen for humans that can cause encephalitis and, more commonly, Acanthamoeba keratitis. During its life cycle, A. castellanii may present as proliferative and infective trophozoites or resistant cysts. The adhesion of trophozoites to host cells is a key first step in the pathogenesis of infection. A major virulence protein of Acanthamoeba is a mannose-binding protein (MBP) that mediates the adhesion of amoebae to cell surfaces. Ectophosphatases are ecto-enzymes that can dephosphorylate extracellular substrates and have already been described in several microorganisms. Regarding their physiological roles, there is consistent evidence that ectophosphatase activities play an important role in parasite-host interactions. In the present work, we identified and biochemically characterized the ectophosphatase activity of A. castellanii. The ectophosphatase activity is acidic, stimulated by magnesium, cobalt and nickel, and presents the following apparent kinetic parameters: Km = 2.12 ± 0.54 mM p-NPP and Vmax = 26.12 ± 2.53 nmol p-NP × h-1 × 10-6 cells. We observed that sodium orthovanadate, ammonium molybdate, sodium fluoride, and inorganic phosphate are able to inhibit ectophosphatase activity. Comparing the two stages of the A. castellanii lifecycle, ectophosphatase activity is significantly higher in trophozoites than in cysts. The ectophosphatase activity is stimulated by mannose residues and is significantly increased when trophozoites interact with LLC-MK2 cells. The inhibition of ectophosphatase by pretreatment with sodium orthovanadate also inhibits the adhesion of trophozoites to epithelial cells. These results allow us to conclude that the ectophosphatase activity of A. castellanii is somehow important for the adhesion of trophozoites to their host cells. According to our data, we believe that the activation of MBP by mannose residues triggers the stimulation of ectophosphatase activity to facilitate the adhesion process.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Humans , Animals , Mannose/metabolism , Vanadates , Cell Adhesion/physiology , Sodium , Trophozoites
13.
Acta Trop ; 248: 107026, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37722447

ABSTRACT

Giardia lamblia is a globally distributed protozoan parasite that causes intestinal disease. Recently, there is an increase in refractory cases of giardiasis to chemotherapeutic agents, and drugs available cause side effects that may limit its use or cause therapeutic non-compliance. Therefore, search for alternative and less harmful drugs to treat giardiasis is an important task. In this sense, resveratrol (RSV) is a polyphenol with a wide range of pharmacological effects such as antimicrobial, anticarcinogenic and antioxidant. The aim of this study was to evaluate the effects of RSV on Giardia lamblia trophozoites in vitro and in silico, focusing on tubulin affectation, a major protein of the Giardia cytoskeleton which participates in relevant processes for cell survival. In vitro determinations showed that RSV inhibits parasite growth and adherence, causes morphological changes, and induces apoptosis-like cell death through tubulin alterations demonstrated by immunolocalization and Western blot assays. Bioinformatic analysis by molecular docking suggested that RSV binds to Giardia tubulin interface heterodimer, sharing binding residues to those reported with depolymerization inhibitors. These findings suggest that RSV affects microtubular dynamics and make it an interesting compound to study for its safety and antigiardiasic potential.


Subject(s)
Giardia lamblia , Giardiasis , Animals , Humans , Giardiasis/drug therapy , Giardiasis/parasitology , Tubulin/metabolism , Tubulin/pharmacology , Tubulin/therapeutic use , Resveratrol/pharmacology , Trophozoites , Molecular Docking Simulation
14.
Parasitology ; 150(10): 939-949, 2023 09.
Article in English | MEDLINE | ID: mdl-37565486

ABSTRACT

Perkinsus olseni is an industrially significant protozoan parasite of Manila clam, Ruditapes philippinarum. So far, various media, based on Dulbecco's Modified Eagle Medium and Ham's F-12 nutrient mixture with supplementation of fetal bovine serum (FBS), have been developed to proliferate the parasitizing trophozoite stage of P. olseni. The present study showed that P. olseni did not proliferate in FBS-deficient Perkinsus broth medium (PBMΔF), but proliferated well in PBMΔF supplemented with tissue extract of host Manila clams, indicating that FBS and Manila clam tissue contained molecule(s) required for P. olseni proliferation. Preliminary characterization suggested that the host-derived molecule(s) was a heat-stable molecule(s) with a molecular weight of less than 3 kDa, and finally a single molecule required for the proliferation was purified by high-performance liquid chromatography processes. High-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance analyses identified this molecule as glycine betaine (=trimethylglycine), and the requirement of this molecule for P. olsseni proliferation was confirmed by an assay using chemically synthesized, standard glycine betaine. Although glycine betaine was required for the proliferation of all examined Perkinsus species, supplementation of glycine betaine precursors, such as choline and betaine aldehyde, enhanced the proliferation of 4 Perkinsus species (P. marinus, P. chesapeaki, P. mediterraneus and P. honshuensis), but not of 2 others (P. olseni and P. beihaiensis). Thus, it was concluded that the ability to biosynthesise glycine betaine from its precursors varied among Perkinsus species, and that P. olseni and P. beihaiensis lack the ability required to biosynthesize glycine betaine for proliferation.


Subject(s)
Alveolata , Bivalvia , Parasites , Animals , Betaine/pharmacology , Bivalvia/parasitology , Trophozoites , Cell Proliferation
15.
Acta Trop ; 246: 106996, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536435

ABSTRACT

Trichomonas vaginalis (T. vaginalis) is a widespread and important sexually transmitted pathogen. Adherence to the surface of the host cell is the precondition forthis parasite's parasitism and pathogenicity. Adhesion protein 65 (TvAP65) plays a key role in the process of adhesion. However, how TvAP65 mediates the adhesion and pathogenicity of T. vaginalis to host cellsis unclear. In this study, we knocked down the expression of TvAP65 in trophozoites by small RNA interference. The number of T. vaginalis trophozoites adhering to VK2/E6E7 cells was decreased significantly, and the inhibition of VK2/E6E7 cells proliferation and VK2/E6E7 cells apoptosis and death induced by T. vaginalis were reduced, after the expression of TvAP65 was knocked down. Animal challenge experiments showed that the pathogenicity of trophozoites was decreased by passive immunization with anti-rTvAP65 PcAbs or blocking the TvAP65 protein. Immunofluorescence analysis showed that TvAP65 could bind to VK2/E6E7 cells. In order to screen the molecules interacting with TvAP65 on the host cells, we successfully constructed the cDNA library of VK2/E6E7 cells, and thirteen protein molecules interacting with TvAP65 were screened by yeast two-hybrid system. The interaction between TvAP65 and BNIP3 was further confirmed by coimmunoprecipitation and colocalization. When both TvAP65 and BNIP3 were knocked down by small RNA interference, the number of T. vaginalis adhering to VK2/E6E7 cells and the inhibition of VK2/E6E7 cells proliferation were significantly lower than those of the group with knockdown of TvAP65 or BNIP3 alone. Therefore, the interaction of TvAP65 and BNIP3 in the pathogenesis of T. vaginalis infecting host cells is not unique and involves other molecules. Our study elucidated that the interaction between TvAP65 and BNIP3 mediated the adhesion and pathogenicity of T. vaginalis to host cells, provided a basis for searching for the drug targets of anti-T. vaginalis, and afforded new ideas for the prevention and treatment of trichomoniasis.


Subject(s)
Parasites , Trichomonas Infections , Trichomonas vaginalis , Animals , Trichomonas vaginalis/genetics , Parasites/metabolism , Virulence , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trophozoites , Cell Adhesion , Trichomonas Infections/parasitology
16.
Mol Biochem Parasitol ; 256: 111582, 2023 12.
Article in English | MEDLINE | ID: mdl-37562558

ABSTRACT

Acanthamoeba are known to cause a vision threatening eye infection typically due to contact lens wear, and an infection of the central nervous system. The ability of these amoebae to switch phenotypes, from an active trophozoite to a resistant cyst form is not well understood; the cyst stage is often resistant to chemotherapy, which is of concern given the rise of contact lens use and the ineffective disinfectants available, versus the cyst stage. Herein, for the first time, a range of raloxifene sulfonate/sulfamate derivatives which target nucleotide pyrophosphatase/phosphodiesterase enzymes, were assessed using amoebicidal and excystation tests versus the trophozoite and cyst stage of Acanthamoeba. Moreover, the potential for cytopathogenicity inhibition in amoebae was assessed. Each of the derivatives showed considerable anti-amoebic activity as well as the ability to suppress phenotypic switching (except for compound 1a). Selected raloxifene derivatives reduced Acanthamoeba-mediated host cell damage using lactate dehydrogenase assay. These findings suggest that pyrophosphatase/phosphodiesterase enzymes may be valuable targets against Acanthamoeba infections.


Subject(s)
Acanthamoeba castellanii , Animals , Raloxifene Hydrochloride/pharmacology , Sulfonic Acids/pharmacology , Trophozoites , Alkanesulfonates/pharmacology , Phosphoric Diester Hydrolases/pharmacology
17.
Acta Trop ; 247: 107009, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37643658

ABSTRACT

Acanthamoeba keratitis (AK) is an eye disease often occurring in contact lens wearers. AK treatment is prolonged and requires multiple drugs, which can lead to adverse effects. Our study aimed to compare the in vitro activities and safety of Miltefosine with that of conventional antimicrobial agents used to treat AK. Acanthamoeba castellanii genotype T4 was obtained from a patient with keratitis and subjected to in vitro susceptibility testing with various antimicrobial agents, including Chlorhexidine (CHX), Pentamidine isethionate (PI)Polyhexamethylene biguanide (PHMB), and Miltefosine to assess their efficacy against Acanthamoeba trophozoites and cyst. The cytotoxicity of the agents was evaluated in Vero cells, and their selectivity indexes (SI) were calculated. Chlorhexidine exhibited the highest amoebicidal activity with the highest selectivity index against the trophozoite and cyst, ranging from 1.17 to 8.35. The selectivity index of PHMB is slightly comparable to Chlorhexidine, exhibiting significant anti-Acanthamoeba activity. On the other hand, Pentamidine isethionate and Miltefosine displayed low SI among the compounds. Pentamidine isethionate was effective at high concentrations, which was toxic. Miltefosine exhibited the lowest cytotoxicity; nevertheless, due to the lowest anti-Acanthamoeba activity presented a low selectivity against the parasite. Further studies on more clinical samples and prolonged incubation time should be done to investigate the effectiveness and toxicity of drugs in both in vitro and in vivo conditions.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba , Anti-Infective Agents , Cysts , Chlorocebus aethiops , Animals , Humans , Chlorhexidine/pharmacology , Trophozoites , Pentamidine , Vero Cells , Acanthamoeba Keratitis/drug therapy
18.
Exp Parasitol ; 253: 108601, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37625643

ABSTRACT

Trichomoniasis is a sexually transmitted infection caused by the protozoan Trichomonas vaginalis. Currently, trichomoniasis is treated with the class of nitroimidazoles, namely, metronidazole; however, resistant isolates and strains have been reported. The compounds derived from benzofuroxan are biologically active heterocycles. This study evaluated the in vitro antiparasitic activity of these compounds in trophozoites of T. vaginalis and determined the mean inhibitory concentration (IC50), minimum inhibitory concentration (MIC), mortality curve, and cytotoxicity. The compounds were named EH1, EH2, EH3, and EA2 and tested in various concentrations: 100 to 15 µM (EH1 and EH2); 100 to 5 µM (EH3); and 100 to 25 µM (EA2), respectively. The greatest efficacy was observed in the highest concentrations in 24 h, with inhibition of approximately 100% of trophozoites. Compounds EH2 and EH3 had the lowest MIC: EH2 (35 µM) and EH3 (45 µM), with IC50 of 11.33 µM and 6.83 µM, respectively. Compound EA2 was effective at the highest concentrations. The activity of the compounds in T. vaginalis started in the first hour of incubation with 90% inhibition; after 12 h, inhibition >95% was observed. Compound EH1 showed the lowest activity, with the highest activity between 12 and 24 h after incubation. These results demonstrate that benzofuroxan derivatives are promising compounds for the in vitro treatment of T. vaginalis.


Subject(s)
Nitroimidazoles , Trichomonas Infections , Animals , Antiparasitic Agents , Microbial Sensitivity Tests , Trophozoites
19.
J Biol Chem ; 299(9): 105111, 2023 09.
Article in English | MEDLINE | ID: mdl-37517694

ABSTRACT

Upon infection by the malaria parasite Plasmodium falciparum, the glycolytic rate of a red blood cell increases up to 100-fold, possibly contributing to lactic acidosis and hypoglycemia in patients with severe malaria. This dramatic increase in glucose uptake and metabolism was correctly predicted by a newly constructed detailed enzyme kinetic model of glucose metabolism in the trophozoite-infected red blood cell. Subsequently, we expanded the model to simulate an infected red blood cell culture, including the different asexual blood-stage forms of the malaria parasite. The model simulations were in good agreement with experimental data, for which the measured parasitic volume was an important parameter. Upon further analysis of the model, we identified glucose transport as a drug target that would specifically affect infected red blood cells, which was confirmed experimentally with inhibitor titrations. This model can be a first step in constructing a whole-body model for glucose metabolism in malaria patients to evaluate the contribution of the parasite's metabolism to the disease state.


Subject(s)
Antimalarials , Erythrocytes , Glycolysis , Malaria, Falciparum , Models, Biological , Molecular Targeted Therapy , Plasmodium falciparum , Humans , Acidosis, Lactic , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antimalarials/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Erythrocytes/parasitology , Glucose/metabolism , Glycolysis/drug effects , Hypoglycemia , Kinetics , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/metabolism , Plasmodium falciparum/pathogenicity , Plasmodium falciparum/physiology , Trophozoites/pathogenicity , Trophozoites/physiology , Molecular Targeted Therapy/methods , Parasite Load
20.
Int J Mol Sci ; 24(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37446394

ABSTRACT

Entamoeba histolytica (E. histolytica) is a parasite in humans that provokes amoebiasis. The most employed drug is metronidazole (MTZ); however, some studies have reported that this drug induces genotoxic effects. Therefore, it is necessary to explore new compounds without toxicity that can eliminate E. histolytica. Flavonoids are polyphenolic compounds that have demonstrated inhibition of growth and dysregulation of amoebic proteins. Despite the knowledge acquired to date, action mechanisms are not completely understood. The present work evaluates the effect of kaempferol against E. histolytica trophozoites and in the interactions with neutrophils from hamster, which is a susceptibility model. Our study demonstrated a significant reduction in the amoebic viability of trophozoites incubated with kaempferol at 150 µM for 90 min. The gene expression analysis showed a significant downregulation of Pr (peroxiredoxin), Rr (rubrerythrin), and TrxR (thioredoxin reductase). In interactions with amoebae and neutrophils for short times, we observed a reduction in ROS (reactive oxygen species), NO (nitric oxide), and MPO (myeloperoxidase) neutrophil activities. In conclusion, we confirmed that kaempferol is an effective drug against E. histolytica through the decrease in E. histolytica antioxidant enzyme expression and a regulator of several neutrophil mechanisms, such as MPO activity and the regulation of ROS and NO.


Subject(s)
Amoeba , Entamoeba histolytica , Humans , Animals , Cricetinae , Neutrophils/metabolism , Trophozoites , Reactive Oxygen Species/metabolism , Kaempferols/pharmacology , Kaempferols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...