Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 7, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168645

ABSTRACT

Familial cardiomyopathy in pediatric stages is a poorly understood presentation of heart disease in children that is attributed to pathogenic mutations. Through exome sequencing, we report a homozygous variant in tropomodulin 1 (TMOD1; c.565C>T, p.R189W) in three individuals from two unrelated families with childhood-onset dilated and restrictive cardiomyopathy. To decipher the mechanism of pathogenicity of the R189W mutation in TMOD1, we utilized a wide array of methods, including protein analyses, biochemistry and cultured cardiomyocytes. Structural modeling revealed potential defects in the local folding of TMOD1R189W and its affinity for actin. Cardiomyocytes expressing GFP-TMOD1R189W demonstrated longer thin filaments than GFP-TMOD1wt-expressing cells, resulting in compromised filament length regulation. Furthermore, TMOD1R189W showed weakened activity in capping actin filament pointed ends, providing direct evidence for the variant's effect on actin filament length regulation. Our data indicate that the p.R189W variant in TMOD1 has altered biochemical properties and reveals a unique mechanism for childhood-onset cardiomyopathy.


Subject(s)
Actin Cytoskeleton , Cardiomyopathies , Child , Humans , Actin Cytoskeleton/metabolism , Actins/metabolism , Myocytes, Cardiac/metabolism , Mutation , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Tropomodulin/genetics , Tropomodulin/chemistry , Tropomodulin/metabolism
2.
Proc Natl Acad Sci U S A ; 120(47): e2315820120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37956287

ABSTRACT

Actin is a highly expressed protein in eukaryotic cells and is essential for numerous cellular processes. In particular, efficient striated muscle contraction is dependent upon the precise regulation of actin-based thin filament structure and function. Alterations in the lengths of actin-thin filaments can lead to the development of myopathies. Leiomodins and tropomodulins are members of an actin-binding protein family that fine-tune thin filament lengths, and their dysfunction is implicated in muscle diseases. An Lmod3 mutation [G326R] was previously identified in patients with nemaline myopathy (NM), a severe skeletal muscle disorder; this residue is conserved among Lmod and Tmod isoforms and resides within their homologous leucine-rich repeat (LRR) domain. We mutated this glycine to arginine in Lmod and Tmod to determine the physiological function of this residue and domain. This G-to-R substitution disrupts Lmod and Tmod's LRR domain structure, altering their binding interface with actin and destroying their abilities to regulate thin filament lengths. Additionally, this mutation renders Lmod3 nonfunctional in vivo. We found that one single amino acid is essential for folding of Lmod and Tmod LRR domains, and thus is essential for the opposing actin-regulatory functions of Lmod (filament elongation) and Tmod (filament shortening), revealing a mechanism underlying the development of NM.


Subject(s)
Actins , Myopathies, Nemaline , Humans , Actins/metabolism , Tropomodulin/genetics , Tropomodulin/metabolism , Myopathies, Nemaline/genetics , Myopathies, Nemaline/metabolism , Muscle Proteins/metabolism , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Sarcomeres/genetics , Sarcomeres/metabolism , Mutation , Muscle, Skeletal/metabolism
3.
PLoS Pathog ; 19(5): e1011419, 2023 05.
Article in English | MEDLINE | ID: mdl-37216400

ABSTRACT

We previously demonstrated that the flagellin of intracellular Vibrio splendidus AJ01 could be specifically identified by tropomodulin (Tmod) and further mediate p53-dependent coelomocyte apoptosis in the sea cucumber Apostichopus japonicus. In higher animals, Tmod serves as a regulator in stabilizing the actin cytoskeleton. However, the mechanism on how AJ01 breaks the AjTmod-stabilized cytoskeleton for internalization remains unclear. Here, we identified a novel AJ01 Type III secretion system (T3SS) effector of leucine-rich repeat-containing serine/threonine-protein kinase (STPKLRR) with five LRR domains and a serine/threonine kinase (STYKc) domain, which could specifically interact with tropomodulin domain of AjTmod. Furthermore, we found that STPKLRR directly phosphorylated AjTmod at serine 52 (S52) to reduce the binding stability between AjTmod and actin. After AjTmod dissociated from actin, the F-actin/G-actin ratio decreased to induce cytoskeletal rearrangement, which in turn promoted the internalization of AJ01. The STPKLRR knocked out strain could not phosphorylated AjTmod and displayed lower internalization capacity and pathogenic effect compared to AJ01. Overall, we demonstrated for the first time that the T3SS effector STPKLRR with kinase activity was a novel virulence factor in Vibrio and mediated self-internalization by targeting host AjTmod phosphorylation dependent cytoskeleton rearrangement, which provided a candidate target to control AJ01 infection in practice.


Subject(s)
Tropomodulin , Vibrio , Animals , Tropomodulin/genetics , Actins , Phosphorylation , Cytoskeleton
4.
Development ; 150(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36806912

ABSTRACT

Proper muscle contraction requires the assembly and maintenance of sarcomeres and myofibrils. Although the protein components of myofibrils are generally known, less is known about the mechanisms by which they individually function and together synergize for myofibril assembly and maintenance. For example, it is unclear how the disruption of actin filament (F-actin) regulatory proteins leads to the muscle weakness observed in myopathies. Here, we show that knockdown of Drosophila Tropomodulin (Tmod), results in several myopathy-related phenotypes, including reduction of muscle cell (myofiber) size, increased sarcomere length, disorganization and misorientation of myofibrils, ectopic F-actin accumulation, loss of tension-mediating proteins at the myotendinous junction, and misshaped and internalized nuclei. Our findings support and extend the tension-driven self-organizing myofibrillogenesis model. We show that, like its mammalian counterpart, Drosophila Tmod caps F-actin pointed-ends, and we propose that this activity is crucial for cellular processes in different locations within the myofiber that directly and indirectly contribute to the maintenance of muscle function. Our findings provide significant insights to the role of Tmod in muscle development, maintenance and disease.


Subject(s)
Actins , Tropomodulin , Animals , Actins/metabolism , Tropomodulin/genetics , Tropomodulin/metabolism , Microfilament Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Myofibrils/metabolism , Actin Cytoskeleton/metabolism , Sarcomeres/metabolism , Mammals/metabolism
5.
BMC Endocr Disord ; 22(1): 263, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36316666

ABSTRACT

BACKGROUND: The purpose of this study was to survey the associations of six single nucleotide polymorphisms (SNPs) in the TMOD1 and PTCSC2 genes with thyroid carcinoma (TC). METHOD: Peripheral blood samples were obtained from 510 patients with TC and 509 normal controls. Six SNPs were genotyped by the Agena MassARRAY platform. Logistic regression was used to evaluate the association between SNPs and TC susceptibility by calculating odds ratios (ORs) and 95% confidence intervals (CIs). SNP-SNP interactions were analyzed by multifactor dimensionality reduction (MDR). RESULTS: Our study showed that rs925489 (OR = 1.45, p = 0.011) and rs965513 (OR = 1.40, p = 0.021) were significantly associated with an increased risk of TC. Rs10982622 decreased TC risk (OR = 0.74, p = 0.025). Further stratification analysis showed that rs10982622 reduced the susceptibility to TC in patients aged ≤ 45 years (OR = 0.69, p = 0.019) and in females (OR = 0.61, p = 0.014). Rs925489 increased TC risk in people aged > 45 years (OR = 1.54, p = 0.044) and in males (OR = 2.34, p = 0.003). In addition, rs965513 was related to an increased risk of TC in males (OR = 2.14, p = 0.007). Additionally, haplotypes in the block (rs925489|rs965513) significantly increased TC risk (p < 0.05). The best predictive model for TC was the combination of rs1052270, rs10982622, rs1475545, rs16924016, and rs925489. CONCLUSION: TMOD1 and PTCSC2 polymorphisms were separately correlated with a remarkable decrease and increase in TC risk based on the analysis.


Subject(s)
Genetic Predisposition to Disease , Thyroid Neoplasms , Tropomodulin , Female , Humans , Male , Alleles , Asian People/genetics , Case-Control Studies , China/epidemiology , Genotype , Haplotypes , Polymorphism, Single Nucleotide , Thyroid Neoplasms/epidemiology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Tropomodulin/genetics
6.
Eur J Cell Biol ; 101(2): 151215, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35306452

ABSTRACT

Tropomodulin and tropomyosin are important components of sarcomeric thin filaments in striated muscles. Tropomyosin decorates the side of actin filaments and enhances tropomodulin capping at the pointed ends of the filaments. Their functional relationship has been extensively characterized in vitro, but in vivo and cellular studies in mammals are often complicated by the presence of functionally redundant isoforms. Here, we used the nematode Caenorhabditis elegans, which has a relatively simple composition of tropomodulin and tropomyosin genes, and demonstrated that tropomodulin (unc-94) and tropomyosin (lev-11) are mutually dependent on each other in their sarcomere localization and regulation of sarcomeric actin assembly. Mutation of tropomodulin caused sarcomere disorganization with formation of actin aggregates. However, the actin aggregation was suppressed when tropomyosin was depleted in the tropomodulin mutant. Tropomyosin was mislocalized to the actin aggregates in the tropomodulin mutants, while sarcomere localization of tropomodulin was lost when tropomyosin was depleted. These results indicate that tropomodulin and tropomyosin are interdependent in the regulation of organized sarcomeric assembly of actin filaments in vivo.


Subject(s)
Muscle, Striated , Tropomodulin , Actin Cytoskeleton , Actins/genetics , Animals , Caenorhabditis elegans/genetics , Mammals , Sarcomeres , Tropomodulin/genetics , Tropomyosin/genetics
7.
FASEB J ; 36(3): e22220, 2022 03.
Article in English | MEDLINE | ID: mdl-35195928

ABSTRACT

Erythroid differentiation (ED) is a complex cellular process entailing morphologically distinct maturation stages of erythroblasts during terminal differentiation. Studies of actin filament (F-actin) assembly and organization during terminal ED have revealed essential roles for the F-actin pointed-end capping proteins, tropomodulins (Tmod1 and Tmod3). Tmods bind tropomyosins (Tpms), which enhance Tmod capping and F-actin stabilization. Tmods can also nucleate F-actin assembly, independent of Tpms. Tmod1 is present in the red blood cell (RBC) membrane skeleton, and deletion of Tmod1 in mice leads to a mild compensated anemia due to mis-regulated F-actin lengths and membrane instability. Tmod3 is not present in RBCs, and global deletion of Tmod3 leads to embryonic lethality in mice with impaired ED. To further decipher Tmod3's function during ED, we generated a Tmod3 knockout in a mouse erythroleukemia cell line (Mel ds19). Tmod3 knockout cells appeared normal prior to ED, but showed defects during progression of ED, characterized by a marked failure to reduce cell and nuclear size, reduced viability, and increased apoptosis. Tmod3 does not assemble with Tmod1 and Tpms into the Triton X-100 insoluble membrane skeleton during ED, and loss of Tmod3 had no effect on α1,ß1-spectrin and protein 4.1R assembly into the membrane skeleton. However, F-actin, Tmod1 and Tpms failed to assemble into the membrane skeleton during ED in absence of Tmod3. We propose that Tmod3 nucleation of F-actin assembly promotes incorporation of Tmod1 and Tpms into membrane skeleton F-actin, and that this is integral to morphological maturation and cell survival during erythroid terminal differentiation.


Subject(s)
Actin Cytoskeleton/metabolism , Erythroblasts/cytology , Erythropoiesis , Leukemia, Erythroblastic, Acute/metabolism , Tropomodulin/metabolism , Animals , Cell Line, Tumor , Erythroblasts/metabolism , Leukemia, Erythroblastic, Acute/blood , Mice , Protein Multimerization , Spectrin/metabolism , Tropomodulin/genetics
8.
PLoS Genet ; 18(2): e1010066, 2022 02.
Article in English | MEDLINE | ID: mdl-35148320

ABSTRACT

Myofibrils within skeletal muscle are composed of sarcomeres that generate force by contraction when their myosin-rich thick filaments slide past actin-based thin filaments. Although mutations in components of the sarcomere are a major cause of human disease, the highly complex process of sarcomere assembly is not fully understood. Current models of thin filament assembly highlight a central role for filament capping proteins, which can be divided into three protein families, each ascribed with separate roles in thin filament assembly. CapZ proteins have been shown to bind the Z-disc protein α-actinin to form an anchoring complex for thin filaments and actin polymerisation. Subsequent thin filaments extension dynamics are thought to be facilitated by Leiomodins (Lmods) and thin filament assembly is concluded by Tropomodulins (Tmods) that specifically cap the pointed end of thin filaments. To study thin filament assembly in vivo, single and compound loss-of-function zebrafish mutants within distinct classes of capping proteins were analysed. The generated lmod3- and capza1b-deficient zebrafish exhibited aspects of the pathology caused by variations in their human orthologs. Although loss of the analysed main capping proteins of the skeletal muscle, capza1b, capza1a, lmod3 and tmod4, resulted in sarcomere defects, residual organised sarcomeres were formed within the assessed mutants, indicating that these proteins are not essential for the initial myofibril assembly. Furthermore, detected similarity and location of myofibril defects, apparent at the peripheral ends of myofibres of both Lmod3- and CapZα-deficient mutants, suggest a function in longitudinal myofibril growth for both proteins, which is molecularly distinct to the function of Tmod4.


Subject(s)
CapZ Actin Capping Protein/metabolism , Muscular Diseases , Myofibrils , Actins/genetics , Actins/metabolism , Animals , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscular Diseases/genetics , Muscular Diseases/metabolism , Myofibrils/genetics , Myofibrils/metabolism , Tropomodulin/genetics , Tropomodulin/metabolism , Zebrafish/genetics , Zebrafish/metabolism
9.
Hum Mol Genet ; 31(7): 1130-1140, 2022 03 31.
Article in English | MEDLINE | ID: mdl-34718575

ABSTRACT

The molecular mechanisms leading to high-altitude pulmonary hypertension (HAPH) remains poorly understood. We previously analyzed the whole genome sequence of Kyrgyz highland population and identified eight genomic intervals having a potential role in HAPH. Tropomodulin 3 gene (TMOD3), which encodes a protein that binds and caps the pointed ends of actin filaments and inhibits cell migration, was one of the top candidates. Here we systematically sought additional evidence to validate the functional role of TMOD3. In-silico analysis reveals that some of the SNPs in HAPH associated genomic intervals were positioned in a regulatory region that could result in alternative splicing of TMOD3. In order to functionally validate the role of TMOD3 in HAPH, we exposed Tmod3-/+ mice to 4 weeks of constant hypoxia, i.e. 10% O2 and analyzed both functional (hemodynamic measurements) and structural (angiography) parameters related to HAPH. The hemodynamic measurements, such as right ventricular systolic pressure, a surrogate measure for pulmonary arterial systolic pressure, and right ventricular contractility (RV- ± dP/dt), increases with hypoxia did not separate between Tmod3-/+ and control mice. Remarkably, there was a significant increase in the number of lung vascular branches and total length of pulmonary vascular branches (P < 0.001) in Tmod3-/+ after 4 weeks of constant hypoxia as compared with controls. Notably, the Tmod3-/+ endothelial cells migration was also significantly higher than that from the wild-type littermates. Our results indicate that, under chronic hypoxia, lower levels of Tmod3 play an important role in the maintenance or neo-vascularization of pulmonary arteries.


Subject(s)
Endothelial Cells , Tropomodulin/metabolism , Actin Cytoskeleton/metabolism , Animals , Endothelial Cells/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Lung/metabolism , Mice , Tropomodulin/chemistry , Tropomodulin/genetics
10.
Biochem Biophys Res Commun ; 558: 36-43, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33895549

ABSTRACT

Down-regulated in renal cell carcinoma 1 (DRR1), a unique stress-induced protein, is highly expressed in the nervous system. This study investigated the roles of DRR1 in the brain by examining its expression pattern at different developmental stages of a rat brain and in cultured primary hippocampal neurons. High expression of DRR1 was observed in all developmental stages of a rat brain and cultured primary hippocampal neurons. We then focused on the role of DRR1 in promoting neurite outgrowth during the early stage of hippocampal neuron development. Results showed that down-regulation of DRR1 suppressed axon outgrowth. Mass spectrometry analysis revealed that tropomodulin-2 (Tmod2) is a novel binding partner of DRR1. Our results showed that both DRR1 and Tmod2 mediate axon formation during the early stage of hippocampal neuron development. Suppression of TMOD2 expression rescued the abnormal axon outgrowth induced by DRR1 knockdown during the early stage of hippocampal neuron development.


Subject(s)
Hippocampus/growth & development , Hippocampus/metabolism , Neuronal Outgrowth/genetics , Neuronal Outgrowth/physiology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Animals , Brain/cytology , Brain/growth & development , Brain/metabolism , Cells, Cultured , Down-Regulation , Female , Gene Expression Regulation, Developmental , Hippocampus/cytology , Neurogenesis/genetics , Neurogenesis/physiology , Neurons/metabolism , Pregnancy , Protein Binding , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley , Tropomodulin/antagonists & inhibitors , Tropomodulin/genetics , Tropomodulin/metabolism , Tumor Suppressor Proteins/antagonists & inhibitors
11.
Eur Rev Med Pharmacol Sci ; 23(14): 6170-6178, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31364131

ABSTRACT

OBJECTIVE: Cardia cancer is a common type of gastric cancer. Most clinical prevention and prognosis focus on surgical resection, but the efficacy is not satisfactory. Studying the molecular mechanism of pathogenesis of cardia cancer helps us intervene in prognosis and treatment. MATERIALS AND METHODS: a total of 134 normal cases related to cardia cancer and 62 cases of cardia cancer samples from the Gene Expression Omnibus (GEO) database were collected. A series of bioinformatics analyses, including differential gene analysis, co-expression analysis, enrichment analysis, regulator prediction, and (Protein-protein interaction) PPI analysis validation were performed. RESULTS: Differential analysis highlighted 10882 differential genes (p<0.05). Weighted gene co-expression network analysis indicated 6 functional disorder modules. TMOD1, JAM2, SPARC, ST18, NOS1 were key genes of each module. Enrichment analysis showed the dysfunctional module genes were mainly related to the proteinaceous extracellular matrix and neuroactive ligand-receptor interaction. Pivotal analysis of ncRNA demonstrated miR-17-5p significantly regulates modular genes including m1, m3, and m5. Target genes were backtracked according to the key regulators. Then, the Module_target gene_ncRNA interaction network diagram was constructed. The network shows m1 has the strongest regulation effect in the network. PPI showed that the core gene TMOD1 (Tropomodulin1) of m1 was at TOP10 in the algorithm. In other words, PPI indicated the importance of TMOD1 in the interaction network. CONCLUSIONS: We believe that targeted regulation of miR-17-5p on TMOD1 gene affects the neuroactive ligand-receptor interaction pathway, and it promotes proliferation and apoptosis of cardia cancer cells.


Subject(s)
Cardia/pathology , MicroRNAs/genetics , Stomach Neoplasms/pathology , Tropomodulin/genetics , Tropomodulin/metabolism , 3' Untranslated Regions , Algorithms , Case-Control Studies , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Prognosis , Protein Interaction Maps , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
12.
Mol Carcinog ; 58(10): 1897-1907, 2019 10.
Article in English | MEDLINE | ID: mdl-31313392

ABSTRACT

The mechanism of hepatocellular carcinoma (HCC) metastasis remains poorly understood. Tropomodulin 3 (TMOD3) is a member of the pointed end capping protein family that contributes to invasion and metastasis in several types of malignancies. It has been found to be crucial for the membranous skeleton and embryonic development, although, its role in HCC progression remains largely unclear. We observed increased levels of Tmod3 in HCCs, especially in extrahepatic metastasis. High Tmod3 expression correlated with aggressive carcinoma and poor patient with HCC survival. Loss-of-function studies conducted by us determined Tmod3 as an oncogene that promoted HCC growth and metastasis. Mechanistically, Tmod3 increases transcription of matrix metalloproteinase-2, -7, and -9 which required PI3K-AKT. Interaction between Tmod3 and epidermal growth factor receptor (EGFR) that supports the activation of EGFR phosphorylation, is essential for signaling activation of PI3K-AKT viral oncogene homolog. These findings reveal that Tmod3 enhances aggressive behavior of HCC both in vitro and in vivo by interacting with EFGR and by activating the PI3K-AKT signaling pathway.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Proliferation/genetics , Liver Neoplasms/genetics , Tropomodulin/genetics , Animals , Carcinoma, Hepatocellular/pathology , Disease Progression , Disease-Free Survival , Epithelial-Mesenchymal Transition/genetics , ErbB Receptors/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Liver Neoplasms/pathology , Male , Mice , Middle Aged , Neoplasm Metastasis , Oncogene Protein v-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction/genetics
13.
PLoS One ; 14(7): e0219932, 2019.
Article in English | MEDLINE | ID: mdl-31339916

ABSTRACT

The distal tubule and collecting duct in kidney regulate water homeostasis. TMOD1 is an actin capping protein that plays an important role in controlling the organization of actin filaments. In this study, we found TMOD1 was specifically expressed in distal tubules and collecting ducts. To investigate the role of TMOD1, we created Tmod1flox/flox mice and bred them with Ksp-Cre mice to generate tubule-specific Tmod1 knockout mice, Tmod1flox/flox/Ksp-Cre+ (designated as TFK). As compared with control mice, TFK mice showed oliguria, hyperosmolality urine, and high blood pressure. To determine the mechanisms underlying this phenotype, we performed label-free quantitative proteomics on kidneys of TFK and control mice. Total of 83 proteins were found differentially expressed. Bioinformatic analysis indicated that biological processes, including protein phosphorylation and metabolic process, were involved in TMOD1 regulatory network. Gene set enrichment analysis showed that multiple pathways, such as phosphatidylinositol signaling system and GnRH signaling pathway, were strongly associated with Tmod1 knockout. Western blot validated the down-regulation of three proteins, TGFBR2, SLC25A11, and MTFP1, in kidneys of TFK mice. Our study provides valuable information on the molecular functions and the regulatory network of Tmod1 gene in kidney, as well as the new mechanisms for the regulation of water balance.


Subject(s)
Gene Regulatory Networks , Proteome/genetics , Tropomodulin/genetics , Water-Electrolyte Balance , Animals , Kidney/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Proteome/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Tropomodulin/deficiency
14.
Oncol Rep ; 41(5): 3060-3068, 2019 May.
Article in English | MEDLINE | ID: mdl-30864730

ABSTRACT

Tropomodulin 3 (TMOD3) is a member of the pointed­end capping protein family that contributes to invasion and metastasis in several types of malignancies. TMOD3 has been found to be crucial for membranous skeleton and embryonic development; however, little is known regarding the role of TMOD3 in liver cancer progression. In addition, to the best of our knowledge, no previous studies have investigated the mechanism underlying the TMOD3­regulated promotion of liver cancer. The aim of the present study was to determine whether TMOD3 is associated with liver cancer progression. TMOD3 expression was found to be elevated in liver cancer cells and tissues. In the in vitro experiments, liver cancer cell proliferation, invasion and migration were inhibited by TMOD3 knockdown and promoted by ectopic expression of TMOD3. Furthermore, mechanistic analysis indicated that TMOD3 overexpression activated mitogen­activated protein kinase (MAPK)/extracellular signal­regulated kinase (ERK) signaling and increased the levels of other targets of this pathway, including matrix metalloproteinase (MMP)2, MMP9 and cyclin D1. TMOD3 overexpression was associated with changes in liver cancer cell morphology and altered expression of epithelial and mesenchymal markers. High TMOD3 expression was hypothesized to promote epithelial­to­mesenchymal transition in liver cancer cells. In conclusion, TMOD3 was shown to promote liver cancer cell growth, invasion and migration through the MAPK/ERK signaling pathway, and it may serve as a candidate biomarker and therapeutic target in liver cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Liver Neoplasms/pathology , MAP Kinase Signaling System , Tropomodulin/metabolism , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Female , Gene Knockdown Techniques , Humans , Liver/pathology , Male , Middle Aged , Neoplasm Invasiveness/pathology , Tropomodulin/genetics
15.
J Cell Sci ; 132(4)2019 02 04.
Article in English | MEDLINE | ID: mdl-30659118

ABSTRACT

The actin cytoskeleton is subjected to dynamic mechanical forces over time and the history of force loading may serve as mechanical preconditioning. While the actin cytoskeleton is known to be mechanosensitive, the mechanisms underlying force regulation of actin dynamics still need to be elucidated. Here, we investigated actin depolymerization under a range of dynamic tensile forces using atomic force microscopy. Mechanical loading by cyclic tensile forces induced significantly enhanced bond lifetimes and different force-loading histories resulted in different dissociation kinetics in G-actin-G-actin and G-actin-F-actin interactions. Actin subunits at the two ends of filaments formed bonds with distinct kinetics under dynamic force, with cyclic mechanical reinforcement more effective at the pointed end compared to that at the barbed end. Our data demonstrate force-history dependent reinforcement in actin-actin bonds and polarity of the actin depolymerization kinetics under cyclic tensile forces. These properties of actin may be important clues to understanding regulatory mechanisms underlying actin-dependent mechanotransduction and mechanosensitive cytoskeletal dynamics.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Actins/chemistry , Avian Proteins/chemistry , CapZ Actin Capping Protein/chemistry , Mechanotransduction, Cellular , Single Molecule Imaging/methods , Tropomodulin/chemistry , Actin Cytoskeleton , Actins/genetics , Actins/metabolism , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , CapZ Actin Capping Protein/genetics , CapZ Actin Capping Protein/metabolism , Chickens , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Microscopy, Atomic Force , Protein Binding , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Single Molecule Imaging/instrumentation , Stress, Mechanical , Tropomodulin/genetics , Tropomodulin/metabolism
16.
Eur J Hum Genet ; 27(1): 150-159, 2019 01.
Article in English | MEDLINE | ID: mdl-30254217

ABSTRACT

The Central Asian Kyrgyz highland population provides a unique opportunity to address genetic diversity and understand the genetic mechanisms underlying high-altitude pulmonary hypertension (HAPH). Although a significant fraction of the population is unaffected, there are susceptible individuals who display HAPH in the absence of any lung, cardiac or hematologic disease. We report herein the analysis of the whole-genome sequencing of healthy individuals compared with HAPH patients and other controls (total n = 33). Genome scans reveal selection signals in various regions, encompassing multiple genes from the first whole-genome sequences focusing on HAPH. We show here evidence of three candidate genes MTMR4, TMOD3 and VCAM1 that are functionally associated with well-known molecular and pathophysiological processes and which likely lead to HAPH in this population. These processes are (a) dysfunctional BMP signaling, (b) disrupted tissue repair processes and (c) abnormal endothelial cell function. Whole-genome sequence of well-characterized patients and controls and using multiple statistical tools uncovered novel candidate genes that belong to pathways central to the pathogenesis of HAPH. These studies on high-altitude human populations are pertinent to the understanding of sea level diseases involving hypoxia as a main element of their pathophysiology.


Subject(s)
Hypertension, Pulmonary/genetics , Polymorphism, Genetic , Altitude , Genome-Wide Association Study , Humans , Kyrgyzstan , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Tropomodulin/genetics , Vascular Cell Adhesion Molecule-1/genetics
17.
Arch Biochem Biophys ; 630: 18-26, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28732641

ABSTRACT

Correct assembly of thin filaments composed of actin and actin-binding proteins is of crucial importance for properly functioning muscle cells. Tropomyosin (Tpm) mediates the binding of tropomodulin (Tmod) and leiomodin (Lmod) at the slow-growing, or pointed, ends of the thin filaments. Together these proteins regulate thin filament lengths and actin dynamics in cardiac muscle. The K15N mutation in the TPM1 gene is associated with familial dilated cardiomyopathy (DCM) but the effect of this mutation on Tpm's function is unknown. In this study, we introduced the K15N mutation in striated muscle α-Tpm (Tpm1.1) and investigated its interaction with actin, Tmod and Lmod. The mutation caused a ∼3-fold decrease in the affinity of Tpm1.1 for actin. The binding of Lmod and Tmod to Tpm1.1-covered actin filaments also decreased in the presence of the K15N mutation. Furthermore, the K15N mutation in Tpm1.1 disrupted the inhibition of actin polymerization and affected the competition between Tmod1 and Lmod2 for binding at the pointed ends. Our data demonstrate that the K15N mutation alters pointed end dynamics by affecting molecular interactions between Tpm1.1, Lmod2 and Tmod1.


Subject(s)
Cardiomyopathy, Dilated/genetics , Mutation, Missense , Tropomyosin/chemistry , Tropomyosin/genetics , Amino Acid Substitution , Cardiomyopathy, Dilated/metabolism , Tropomodulin/chemistry , Tropomodulin/genetics , Tropomodulin/metabolism , Tropomyosin/metabolism
18.
Biophys J ; 112(9): 1742-1760, 2017 May 09.
Article in English | MEDLINE | ID: mdl-28494946

ABSTRACT

Cytoskeletal structures characterized by actin filaments with uniform lengths, including the thin filaments of striated muscles and the spectrin-based membrane skeleton, use barbed and pointed-end capping proteins to control subunit addition/dissociation at filament ends. While several proteins cap the barbed end, tropomodulins (Tmods), a family of four closely related isoforms in vertebrates, are the only proteins known to specifically cap the pointed end. Tmods are ∼350 amino acids in length, and comprise alternating tropomyosin- and actin-binding sites (TMBS1, ABS1, TMBS2, and ABS2). Leiomodins (Lmods) are related in sequence to Tmods, but display important differences, including most notably the lack of TMBS2 and the presence of a C-terminal extension featuring a proline-rich domain and an actin-binding WASP-Homology 2 domain. The Lmod subfamily comprises three somewhat divergent isoforms expressed predominantly in muscle cells. Biochemically, Lmods differ from Tmods, acting as powerful nucleators of actin polymerization, not capping proteins. Structurally, Lmods and Tmods display crucial differences that correlate well with their different biochemical activities. Physiologically, loss of Lmods in striated muscle results in cardiomyopathy or nemaline myopathy, whereas complete loss of Tmods leads to failure of myofibril assembly and developmental defects. Yet, interpretation of some of the in vivo data has led to the idea that Tmods and Lmods are interchangeable or, at best, different variants of two subfamilies of pointed-end capping proteins. Here, we review and contrast the existing literature on Tmods and Lmods, and propose a model of Lmod function that attempts to reconcile the in vitro and in vivo data, whereby Lmods nucleate actin filaments that are subsequently capped by Tmods during sarcomere assembly, turnover, and repair.


Subject(s)
Muscle Proteins/metabolism , Tropomodulin/metabolism , Animals , Humans , Muscle Proteins/chemistry , Muscle Proteins/genetics , Muscles/metabolism , Tropomodulin/chemistry , Tropomodulin/genetics
19.
Invest Ophthalmol Vis Sci ; 57(10): 4084-99, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27537257

ABSTRACT

PURPOSE: To elucidate the proteins required for specialized small interlocking protrusions and large paddle domains at lens fiber cell tricellular junctions (vertices), we developed a novel method to immunostain single lens fibers and studied changes in cell morphology due to loss of tropomodulin 1 (Tmod1), an F-actin pointed end-capping protein. METHODS: We investigated F-actin and F-actin-binding protein localization in interdigitations of Tmod1+/+ and Tmod1-/- single mature lens fibers. RESULTS: F-actin-rich small protrusions and large paddles were present along cell vertices of Tmod1+/+ mature fibers. In contrast, Tmod1-/- mature fiber cells lack normal paddle domains, while small protrusions were unaffected. In Tmod1+/+ mature fibers, Tmod1, ß2-spectrin, and α-actinin are localized in large puncta in valleys between paddles; but in Tmod1-/- mature fibers, ß2-spectrin was dispersed while α-actinin was redistributed at the base of small protrusions and rudimentary paddles. Fimbrin and Arp3 (actin-related protein 3) were located in puncta at the base of small protrusions, while N-cadherin and ezrin outlined the cell membrane in both Tmod1+/+ and Tmod1-/- mature fibers. CONCLUSIONS: These results suggest that distinct F-actin organizations are present in small protrusions versus large paddles. Formation and/or maintenance of large paddle domains depends on a ß2-spectrin-actin network stabilized by Tmod1. α-Actinin-crosslinked F-actin bundles are enhanced in absence of Tmod1, indicating altered cytoskeleton organization. Formation of small protrusions is likely facilitated by Arp3-branched and fimbrin-bundled F-actin networks, which do not depend on Tmod1. This is the first work to reveal the F-actin-associated proteins required for the formation of paddles between lens fibers.


Subject(s)
Actins/genetics , DNA/genetics , Lens, Crystalline/ultrastructure , Mutation , Tropomodulin/genetics , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Cataract/genetics , Cataract/metabolism , Cataract/pathology , Cell Differentiation , Cells, Cultured , DNA Mutational Analysis , Disease Models, Animal , Lens, Crystalline/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Scanning , Tropomodulin/metabolism
20.
Mol Biol Cell ; 27(16): 2565-75, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27307584

ABSTRACT

Leiomodin is a potent actin nucleator related to tropomodulin, a capping protein localized at the pointed end of the thin filaments. Mutations in leiomodin-3 are associated with lethal nemaline myopathy in humans, and leiomodin-2-knockout mice present with dilated cardiomyopathy. The arrangement of the N-terminal actin- and tropomyosin-binding sites in leiomodin is contradictory and functionally not well understood. Using one-dimensional nuclear magnetic resonance and the pointed-end actin polymerization assay, we find that leiomodin-2, a major cardiac isoform, has an N-terminal actin-binding site located within residues 43-90. Moreover, for the first time, we obtain evidence that there are additional interactions with actin within residues 124-201. Here we establish that leiomodin interacts with only one tropomyosin molecule, and this is the only site of interaction between leiomodin and tropomyosin. Introduction of mutations in both actin- and tropomyosin-binding sites of leiomodin affected its localization at the pointed ends of the thin filaments in cardiomyocytes. On the basis of our new findings, we propose a model in which leiomodin regulates actin poly-merization dynamics in myocytes by acting as a leaky cap at thin filament pointed ends.


Subject(s)
Cytoskeletal Proteins/metabolism , Muscle Proteins/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Amino Acid Sequence , Animals , Binding Sites , Carrier Proteins/metabolism , Chickens , Cytoskeletal Proteins/genetics , Mice , Microfilament Proteins/metabolism , Muscle Proteins/genetics , Myocytes, Cardiac/metabolism , Protein Binding , Protein Domains , Sarcomeres/metabolism , Tropomodulin/genetics , Tropomodulin/metabolism , Tropomyosin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...