Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.913
Filter
1.
Anim Biotechnol ; 35(1): 2345238, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38775564

ABSTRACT

Tropomyosin 3 (TPM3) plays a significant role as a regulatory protein in muscle contraction, affecting the growth and development of skeletal muscles. Despite its importance, limited research has been conducted to investigate the influence of TPM3 on bovine skeletal muscle development. Therefore, this study revealed the role of TPM3 in bovine myoblast growth and development. This research involved conducting a thorough examination of the Qinchuan cattle TPM3 gene using bioinformatics tools to examine its sequence and structural characteristics. Furthermore, TPM3 expression was evaluated in various bovine tissues and cells using quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that the coding region of TPM3 spans 855 bp, with the 161st base being the T base, encoding a protein with 284 amino acids and 19 phosphorylation sites. This protein demonstrated high conservation across species while displaying a predominant α-helix secondary structure despite being an unstable acidic protein. Notably, a noticeable increase in TPM3 expression was observed in the longissimus dorsi muscle and myocardium of calves and adult cattle. Expression patterns varied during different stages of myoblast differentiation. Functional studies that involved interference with TPM3 in Qinchuan cattle myoblasts revealed a very significantly decrease in S-phase cell numbers and EdU-positive staining (P < 0.01), and disrupted myotube morphology. Moreover, interference with TPM3 resulted in significantly (P < 0.05) or highly significantly (P < 0.01) decreased mRNA and protein levels of key proliferation and differentiation markers, indicating its role in the modulation of myoblast behavior. These findings suggest that TPM3 plays an essential role in bovine skeletal muscle growth by influencing myoblast proliferation and differentiation. This study provides a foundation for further exploration into the mechanisms underlying TPM3-mediated regulation of bovine muscle development and provides valuable insights that could guide future research directions as well as potential applications for livestock breeding and addressing muscle-related disorders.


Subject(s)
Cell Differentiation , Cell Proliferation , Cloning, Molecular , Myoblasts , Tropomyosin , Animals , Cattle/genetics , Tropomyosin/genetics , Tropomyosin/metabolism , Tropomyosin/chemistry , Cell Differentiation/genetics , Myoblasts/metabolism , Myoblasts/cytology , Muscle, Skeletal , Amino Acid Sequence , Muscle Development/genetics
2.
Discov Med ; 36(183): 778-787, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665026

ABSTRACT

BACKGROUND: Tropomyosin 2 (TPM2) has been linked to the advancement of various tumor types, exhibiting distinct impacts on tumor progression. In our investigation, the primary objective was to identify the potential involvement of TPM2 in the development of colitis-associated cancer (CAC) using a mice model. METHODS: This study used lentiviral vector complex for TPM2 knockdown (sh-TPM2) and the corresponding negative control lentiviral vector complex (sh-NC) for genetic interference in mice. CAC was induced in mice using azoxymethane (AOM) and dextran sulfate sodium salt (DSS). This study included 6 groups of mice models: Control, Control+sh-NC, Control+sh-TPM2, CAC, CAC+sh-NC, and CAC+sh-TPM2. Subsequently, colon tissues were collected and assessed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for TPM2 mRNA levels and flow cytometry for infiltrating immune cells. Tumor number, size, and weight within colon tissues from CAC mice were measured and recorded. The hematoxylin-eosin staining was used for observing tissue pathology changes. The intestinal epithelial cells (IECs) were isolated and analyzed for cell proliferation. This analysis included examining the levels of 5-bromo-2-deoxyuridine (BrdU) and Ki-67 using immunohistochemistry. Additionally, the mRNA levels of proliferating cell nuclear antigen (PCNA) and Ki-67 were detected by qRT-PCR. This study also investigated the activation of the c-Jun N-terminal kinase (JNK) pathway using western blot analysis. Immunogenicity analyses were conducted using immunohistochemistry for F4/80 and flow cytometry. RESULTS: In 8-week-old mice, AOM injections and three cycles of DSS treatment induced TPM2 upregulation in tumor tissues compared to normal tissues (p < 0.05). Fluorescence-activated cell sorting (FACS)-isolated lamina CAC adenomas revealed macrophages and dendritic cells as primary TPM2 contributors (p < 0.001). Lentiviral TPM2 gene knockdown significantly reduced tumor numbers and sizes in CAC mice (p < 0.01, and p < 0.001), without invasive cancer cells. TPM2 suppression resulted in decreased IEC proliferation (p < 0.001) and reduced PCNA and Ki-67 expression (p < 0.05). Western blot analysis indicated reduced JNK pathway activation in TPM2-knockdown CAC mice (p < 0.05, p < 0.001). TPM2 knockdown decreased tumor-associated macrophage infiltration (p < 0.01) and increased CD3+ and CD8+ T cells (p < 0.01, and p < 0.001), with increased levels of regulator of inflammatory cytokines (CD44+, CD107a+) (p < 0.01, and p < 0.001), decreased levels of PD-1+ and anti-inflammatory factor (IL10+) (p < 0.01, and p < 0.001). CONCLUSIONS: Our results demonstrated that TPM2 knockdown suppressed the proliferation of CAC IECs, enhanced immune suppression on CAC IECs, and inhibited the JNK signaling pathway within the framework of CAC. These findings suggest TPM2 can serve as a potential therapeutic target for CAC treatment.


Subject(s)
Cell Proliferation , Colitis-Associated Neoplasms , MAP Kinase Signaling System , Tropomyosin , Animals , Humans , Male , Mice , Azoxymethane/toxicity , Colitis/chemically induced , Colitis/pathology , Colitis/complications , Colitis/immunology , Colitis-Associated Neoplasms/pathology , Colitis-Associated Neoplasms/immunology , Colitis-Associated Neoplasms/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , MAP Kinase Signaling System/immunology , Mice, Inbred C57BL , Tropomyosin/metabolism , Tropomyosin/immunology , Tropomyosin/genetics
3.
Langmuir ; 40(16): 8373-8392, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38606767

ABSTRACT

Amorphous calcium carbonate (ACC) is an important precursor phase for the formation of aragonite crystals in the shells of Pinctada fucata. To identify the ACC-binding protein in the inner aragonite layer of the shell, extracts from the shell were used in the ACC-binding experiments. Semiquantitative analyses using liquid chromatography-mass spectrometry revealed that paramyosin was strongly associated with ACC in the shell. We discovered that paramyosin, a major component of the adductor muscle, was included in the myostracum, which is the microstructure of the shell attached to the adductor muscle. Purified paramyosin accumulates calcium carbonate and induces the prism structure of aragonite crystals, which is related to the morphology of prism aragonite crystals in the myostracum. Nuclear magnetic resonance measurements revealed that the Glu-rich region was bound to ACC. Activity of the Glu-rich region was stronger than that of the Asp-rich region. These results suggest that paramyosin in the adductor muscle is involved in the formation of aragonite prisms in the myostracum.


Subject(s)
Animal Shells , Calcium Carbonate , Pinctada , Tropomyosin , Animals , Pinctada/chemistry , Pinctada/metabolism , Calcium Carbonate/chemistry , Calcium Carbonate/metabolism , Animal Shells/chemistry , Animal Shells/metabolism , Tropomyosin/chemistry , Tropomyosin/metabolism
4.
J Nanobiotechnology ; 22(1): 208, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664789

ABSTRACT

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can undergo inadequate osteogenesis or excessive adipogenesis as they age due to changes in the bone microenvironment, ultimately resulting in decreased bone density and elevated risk of fractures in senile osteoporosis. This study aims to investigate the effects of osteocyte senescence on the bone microenvironment and its influence on BMSCs during aging. RESULTS: Primary osteocytes were isolated from 2-month-old and 16-month-old mice to obtain young osteocyte-derived extracellular vesicles (YO-EVs) and senescent osteocyte-derived EVs (SO-EVs), respectively. YO-EVs were found to significantly increase alkaline phosphatase activity, mineralization deposition, and the expression of osteogenesis-related genes in BMSCs, while SO-EVs promoted BMSC adipogenesis. Neither YO-EVs nor SO-EVs exerted an effect on the osteoclastogenesis of primary macrophages/monocytes. Our constructed transgenic mice, designed to trace osteocyte-derived EV distribution, revealed abundant osteocyte-derived EVs embedded in the bone matrix. Moreover, mature osteoclasts were found to release osteocyte-derived EVs from bone slices, playing a pivotal role in regulating the functions of the surrounding culture medium. Following intravenous injection into young and elderly mouse models, YO-EVs demonstrated a significant enhancement of bone mass and biomechanical strength compared to SO-EVs. Immunostaining of bone sections revealed that YO-EV treatment augmented the number of osteoblasts on the bone surface, while SO-EV treatment promoted adipocyte formation in the bone marrow. Proteomics analysis of YO-EVs and SO-EVs showed that tropomyosin-1 (TPM1) was enriched in YO-EVs, which increased the matrix stiffness of BMSCs, consequently promoting osteogenesis. Specifically, the siRNA-mediated depletion of Tpm1 eliminated pro-osteogenic activity of YO-EVs both in vitro and in vivo. CONCLUSIONS: Our findings suggested that YO-EVs played a crucial role in maintaining the balance between bone resorption and formation, and their pro-osteogenic activity declining with aging. Therefore, YO-EVs and the delivered TPM1 hold potential as therapeutic targets for senile osteoporosis.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Osteocytes , Osteogenesis , Tropomyosin , Animals , Male , Mice , Adipogenesis , Cell Differentiation , Cells, Cultured , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL , Mice, Transgenic , Osteoclasts/metabolism , Osteocytes/metabolism , Osteoporosis/metabolism , Tropomyosin/metabolism , Tropomyosin/genetics
5.
Food Chem ; 443: 138614, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38301561

ABSTRACT

Studies have shown that high hydrostatic pressure (HHP) processing and chlorogenic acid (CA) treatment can effectively reduce food allergenicity. We hypothesize that these novel processing techniques can help tackle crayfish allergy and examined the impact and mechanism of HHP (300 MPa, 15 min) and CA (CA:tropomyosin = 1:4000, 15 min) on the allergenicity of crayfish tropomyosin. Our results revealed that CA, rather than HHP, effectively reduced tropomyosin's allergenicity, as evident in the alleviation of allergic symptoms in a food allergy mouse model. Spectroscopy and molecular docking analyses demonstrated that CA could reduce the allergenicity of tropomyosin by covalent or non-covalent binding, altering its secondary structure (2.1 % decrease in α-helix; 1.9 % increase in ß-fold) and masking tropomyosin's linear epitopes. Moreover, CA-treated tropomyosin potentially induced milder allergic reactions by up-regulating TLR8. While our results supported the efficacy of CA in alleviating crayfish allergy, further exploration is needed to determine clinical effectiveness.


Subject(s)
Food Hypersensitivity , Tropomyosin , Animals , Mice , Tropomyosin/metabolism , Astacoidea/metabolism , Chlorogenic Acid , Toll-Like Receptor 8 , Molecular Docking Simulation , Allergens/chemistry
6.
Nat Struct Mol Biol ; 31(3): 476-488, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38297086

ABSTRACT

Dynein and kinesin motors mediate long-range intracellular transport, translocating towards microtubule minus and plus ends, respectively. Cargoes often undergo bidirectional transport by binding to both motors simultaneously. However, it is not known how motor activities are coordinated in such circumstances. In the Drosophila female germline, sequential activities of the dynein-dynactin-BicD-Egalitarian (DDBE) complex and of kinesin-1 deliver oskar messenger RNA from nurse cells to the oocyte, and within the oocyte to the posterior pole. We show through in vitro reconstitution that Tm1-I/C, a tropomyosin-1 isoform, links kinesin-1 in a strongly inhibited state to DDBE-associated oskar mRNA. Nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and structural modeling indicate that Tm1-I/C suppresses kinesin-1 activity by stabilizing its autoinhibited conformation, thus preventing competition with dynein until kinesin-1 is activated in the oocyte. Our work reveals a new strategy for ensuring sequential activity of microtubule motors.


Subject(s)
Drosophila Proteins , Kinesins , Animals , Kinesins/genetics , Kinesins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Dyneins/metabolism , Tropomyosin/metabolism , Drosophila/genetics , Microtubules/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Neuromodulation ; 27(2): 273-283, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36801128

ABSTRACT

OBJECTIVE: Functional dyspepsia (FD), which has a complicated pathophysiologic process, is a common functional gastrointestinal disease. Gastric hypersensitivity is the key pathophysiological factor in patients with FD with chronic visceral pain. Auricular vagal nerve stimulation (AVNS) has the therapeutic effect of reducing gastric hypersensitivity by regulating the activity of the vagus nerve. However, the potential molecular mechanism is still unclear. Therefore, we investigated the effects of AVNS on the brain-gut axis through the central nerve growth factor (NGF)/ tropomyosin receptor kinase A (TrkA)/phospholipase C-gamma (PLC-γ) signaling pathway in FD model rats with gastric hypersensitivity. MATERIALS AND METHODS: We established the FD model rats with gastric hypersensitivity by means of colon administration of trinitrobenzenesulfonic acid on ten-day-old rat pups, whereas the control rats were given normal saline. AVNS, sham AVNS, K252a (an inhibitor of TrkA, intraperitoneally), and K252a + AVNS were performed on eight-week-old model rats for five consecutive days. The therapeutic effect of AVNS on gastric hypersensitivity was determined by the measurement of abdominal withdrawal reflex response to gastric distention. NGF in gastric fundus and NGF, TrkA, PLC-γ, and transient receptor potential vanilloid 1 (TRPV1) in the nucleus tractus solitaries (NTS) were detected separately by polymerase chain reaction, Western blot, and immunofluorescence tests. RESULTS: It was found that a high level of NGF in gastric fundus and an upregulation of the NGF/TrkA/PLC-γ signaling pathway in NTS were manifested in model rats. Meanwhile, both AVNS treatment and the administration of K252a not only decreased NGF messenger ribonucleic acid (mRNA) and protein expressions in gastric fundus but also reduced the mRNA expressions of NGF, TrkA, PLC-γ, and TRPV1 and inhibited the protein levels and hyperactive phosphorylation of TrkA/PLC-γ in NTS. In addition, the expressions of NGF and TrkA proteins in NTS were decreased significantly after the immunofluorescence assay. The K252a + AVNS treatment exerted a more sensitive effect on regulating the molecular expressions of the signal pathway than did the K252a treatment. CONCLUSION: AVNS can regulate the brain-gut axis effectively through the central NGF/TrkA/PLC-γ signaling pathway in the NTS, which suggests a potential molecular mechanism of AVNS in ameliorating visceral hypersensitivity in FD model rats.


Subject(s)
Dyspepsia , Vagus Nerve Stimulation , Animals , Rats , Dyspepsia/therapy , Nerve Growth Factor/metabolism , Phospholipase C gamma/metabolism , Receptor, trkA/genetics , Receptor, trkA/metabolism , RNA, Messenger , Signal Transduction , Tropomyosin/metabolism
8.
Behav Brain Res ; 460: 114817, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38122904

ABSTRACT

Environmental factors such as undernutrition and environmental enrichment can promote changes in the molecular and behavioural mechanisms related to cognition. Herein, we investigated the effect of enriched environment stimulation in rats that were malnourished in the pre- and postnatal periods on changes in the gene expression of brain-derived neurotrophic factor and its receptor in the hippocampus, as well as on anxiety traits and memory. Early undernutrition promoted weight reduction, increased the risk analysis, reduced permanence in the open arm of the elevated plus-maze and induced a reduction in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B. However, exposure to an enriched environment from 30 to 90 days' old maintained the malnourished phenotype, leading to weight reduction in the control group. In addition, the enriched environment did not alter the risk assessment in the undernourished group, but it did increase the frequency of labyrinth entries. Sixty-day exposure to the enriched environment resulted in a reversal in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus of malnourished rats and favoured of long-term memory in the object recognition test in the open-field. These results suggest that an enriched environment may have a protective effect in adult life by inducing changes in long-term memory and anxiety traits in animals that were undernourished in early life. Furthermore, reversing these effects of undernutrition involves mechanisms linked to the molecular signalling of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus.


Subject(s)
Brain-Derived Neurotrophic Factor , Malnutrition , Pregnancy , Female , Rats , Animals , Male , Brain-Derived Neurotrophic Factor/metabolism , Tropomyosin/metabolism , Environment , Anxiety , Vitamins , Malnutrition/complications , Malnutrition/metabolism , Hippocampus/metabolism , Weight Loss , Receptor, trkB/metabolism
9.
Methods Mol Biol ; 2735: 169-189, 2024.
Article in English | MEDLINE | ID: mdl-38038849

ABSTRACT

Calcium-dependent activation of the thin filament mediated by the troponin-tropomyosin complex is key in the regulation of actin-myosin based muscle contraction. Perturbations to this system, either physiological (e.g., phosphorylation of myosin light chains) or pathological (e.g., mutations that cause familial cardiomyopathies), can alter calcium sensitivity and thus have important implications in human health and disease. The in vitro motility assay provides a quantitative and precise method to study the calcium sensitivity of the reconstituted myosin-thin filament motile system. Here we present a simple and robust protocol to perform calcium-dependent motility of ß-cardiac myosin and regulated thin filaments. The experiment is done on a multichannel microfluidic slide requiring minimal amounts of proteins. A complete velocity vs. calcium concentration curve is produced from one experiment in under 1 h.


Subject(s)
Calcium , Myosins , Humans , Calcium/metabolism , Myosins/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Tropomyosin/metabolism , Muscle Contraction/physiology
10.
Skelet Muscle ; 13(1): 18, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37936227

ABSTRACT

The tropomyosin genes (TPM1-4) contribute to the functional diversity of skeletal muscle fibers. Since its discovery in 1988, the TPM3 gene has been recognized as an indispensable regulator of muscle contraction in slow muscle fibers. Recent advances suggest that TPM3 isoforms hold more extensive functions during skeletal muscle development and in postnatal muscle. Additionally, mutations in the TPM3 gene have been associated with the features of congenital myopathies. The use of different in vitro and in vivo model systems has leveraged the discovery of several disease mechanisms associated with TPM3-related myopathy. Yet, the precise mechanisms by which TPM3 mutations lead to muscle dysfunction remain unclear. This review consolidates over three decades of research about the role of TPM3 in skeletal muscle. Overall, the progress made has led to a better understanding of the phenotypic spectrum in patients affected by mutations in this gene. The comprehensive body of work generated over these decades has also laid robust groundwork for capturing the multiple functions this protein plays in muscle fibers.


Subject(s)
Muscular Diseases , Tropomyosin , Humans , Tropomyosin/genetics , Tropomyosin/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/genetics , Muscle Fibers, Skeletal/metabolism , Mutation
11.
Brain Res Bull ; 204: 110796, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37863440

ABSTRACT

Lonicera japonica flos (LJF) is a common clinical herb with outstanding medicinal and nutritional value. This study aimed to evaluate the antidepressant effects of LJF's active extract and compound chlorogenic acid (CGA) around brain-derived neurotrophic factor(BDNF)-tropomyosin receptor kinase B (TrkB) pathway. The results showed that LJF's extracts and CGA had significant antidepressant effects, and the antidepressant effects of different extracts of LJF were highly positively correlated with the content of CGA (forced swimming test, r = 0.998; tail suspension test, r = 0.934). Moreover, LJF-70% ethanolic extract and CGA improved chronic unpredictable mild stress-induced depressive behavior, upregulated protein expression levels of BDNF and p-TrkB in the hippocampus, restored the damage of hippocampal neurons, and protected liver from damage. In summary, this study demonstrated for the first time that LJF-70% ethanolic extract was the active extract of LJF in antidepressant and CGA was its active compound, and the antidepressant mechanisms mainly involved the upregulation of BDNF-TrkB signaling pathway in the hippocampus of mice.


Subject(s)
Chlorogenic Acid , Tropomyosin , Animals , Mice , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor , Chlorogenic Acid/pharmacology , Hippocampus , Plant Extracts/pharmacology , Receptor, trkB , Tropomyosin/metabolism , Up-Regulation
12.
Behav Brain Res ; 453: 114615, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37558167

ABSTRACT

Aspartame (ASP) is a common sweetener, but studies show it can harm the nervous system, causing learning and memory deficits. ß-caryophyllene (BCP), a natural compound found in foods, including bread, coffee, alcoholic beverages, and spices, has already described as a neuroprotector agent. Remarkably, ASP and BCP are commonly consumed, including in the same meal. Therefore, considering that (a) the BCP displays plenty of beneficial effects; (b) the ASP toxicity; and (c) that they can be consumed in the same meal, this study sought to investigate if the BCP would mitigate the memory impairment induced by ASP in rats and investigate the involvement of the brain-derived neurotrophic factor (BDNF)/ tropomyosin receptor kinase B (TrKB) signaling pathway and acetylcholinesterase (AChE) activity. Young male Wistar rats received ASP (75 mg/kg; i.g.) and/or BCP (100 mg/kg; i.p.) once daily, for 14 days. At the end of the treatment, the animals were evaluated in the open field and object recognition tests. The cerebral cortex and hippocampus samples were collected for biochemical and molecular analyses. Results showed that the BCP effectively protected against the cognitive damage caused by ASP in short and long-term memories. In addition, BCP mitigated the increase in AChE activity caused by ASP. Molecular insights revealed augmented BDNF and TrKB levels in the hippocampus of rats treated with BCP, indicating greater activation of this pathway. In conclusion, BCP protected against ASP-induced memory impairment. AChE activity and the BDNF/TrkB signaling pathway seem to be potential targets of BCP modulatory role in this study.


Subject(s)
Acetylcholinesterase , Cognitive Dysfunction , Animals , Male , Rats , Acetylcholinesterase/metabolism , Aspartame/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/prevention & control , Rats, Wistar , Receptor, trkB/metabolism , Signal Transduction , Tropomyosin/metabolism
13.
Int J Mol Sci ; 24(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37569730

ABSTRACT

We characterized a novel genetic variant c.292G > A (p.E98K) in the TPM1 gene encoding cardiac tropomyosin 1.1 isoform (Tpm1.1), found in a proband with a phenotype of complex cardiomyopathy with conduction dysfunction and slow progressive neuromuscular involvement. To understand the molecular mechanism by which this mutation impairs cardiac function, we produced recombinant Tpm1.1 carrying an E98K substitution and studied how this substitution affects the structure of the Tpm1.1 molecule and its functional properties. The results showed that the E98K substitution in the N-terminal part of the Tpm molecule significantly destabilizes the C-terminal part of Tpm, thus indicating a long-distance destabilizing effect of the substitution on the Tpm coiled-coil structure. The E98K substitution did not noticeably affect Tpm's affinity for F-actin but significantly impaired Tpm's regulatory properties. It increased the Ca2+ sensitivity of the sliding velocity of regulated thin filaments over cardiac myosin in an in vitro motility assay and caused an incomplete block of the thin filament sliding at low Ca2+ concentrations. The incomplete motility block in the absence of Ca2+ can be explained by the loosening of the Tpm interaction with troponin I (TnI), thus increasing Tpm mobility on the surface of an actin filament that partially unlocks the myosin binding sites. This hypothesis is supported by the molecular dynamics (MD) simulation that showed that the E98 Tpm residue is involved in hydrogen bonding with the C-terminal part of TnI. Thus, the results allowed us to explain the mechanism by which the E98K Tpm mutation impairs sarcomeric function and myocardial relaxation.


Subject(s)
Cardiomyopathies , Tropomyosin , Humans , Tropomyosin/metabolism , Myocardium/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Mutation , Calcium/metabolism
14.
J Neuromuscul Dis ; 10(5): 977-984, 2023.
Article in English | MEDLINE | ID: mdl-37393515

ABSTRACT

BACKGROUND: Pathogenic variants in the TPM3 gene, encoding slow skeletal muscle α-tropomyosin account for less than 5% of nemaline myopathy cases. Dominantly inherited or de novo missense variants in TPM3 are more common than recessive loss-of-function variants. The recessive variants reported to date seem to affect either the 5' or the 3' end of the skeletal muscle-specific TPM3 transcript. OBJECTIVES: The aim of the study was to identify the disease-causing gene and variants in a Finnish patient with an unusual form of nemaline myopathy. METHODS: The genetic analyses included Sanger sequencing, whole-exome sequencing, targeted array-CGH, and linked-read whole genome sequencing. RNA sequencing was done on total RNA extracted from cultured myoblasts and myotubes of the patient and controls. TPM3 protein expression was assessed by Western blot analysis. The diagnostic muscle biopsy was analyzed by routine histopathological methods. RESULTS: The patient had poor head control and failure to thrive, but no hypomimia, and his upper limbs were clearly weaker than his lower limbs, features which in combination with the histopathology suggested TPM3-caused nemaline myopathy. Muscle histopathology showed increased fiber size variation and numerous nemaline bodies predominantly in small type 1 fibers. The patient was found to be compound heterozygous for two splice-site variants in intron 1a of TPM3: NM_152263.4:c.117+2_5delTAGG, deleting the donor splice site of intron 1a, and NM_152263.4:c.117 + 164 C>T, which activates an acceptor splice site preceding a non-coding exon in intron 1a. RNA sequencing revealed inclusion of intron 1a and the non-coding exon in the transcripts, resulting in early premature stop codons. Western blot using patient myoblasts revealed markedly reduced levels of the TPM3 protein. CONCLUSIONS: Novel biallelic splice-site variants were shown to markedly reduce TPM3 protein expression. The effects of the variants on splicing were readily revealed by RNA sequencing, demonstrating the power of the method.


Subject(s)
Myopathies, Nemaline , Humans , Myopathies, Nemaline/genetics , Exome Sequencing , Tropomyosin/genetics , Tropomyosin/metabolism , Muscle, Skeletal/pathology , Sequence Analysis, RNA
15.
Stem Cell Res ; 71: 103161, 2023 09.
Article in English | MEDLINE | ID: mdl-37422949

ABSTRACT

The CHOPWT17_TPM1KOc28 iPSC line was generated to interrogate the functions of Tropomyosin 1 (TPM1) in primary human cell development. This line was reprogrammed from a previously published wild type control iPSC line.


Subject(s)
Induced Pluripotent Stem Cells , Tropomyosin , Humans , Tropomyosin/genetics , Tropomyosin/metabolism , Induced Pluripotent Stem Cells/metabolism , Cell Line, Tumor
16.
Cells ; 12(14)2023 07 14.
Article in English | MEDLINE | ID: mdl-37508514

ABSTRACT

The odontoblastic differentiation of dental pulp stem cells (DPSCs) associated with caries injury happens in an inflammatory context. We recently demonstrated that there is a link between inflammation and dental tissue regeneration, identified via enhanced DPSC-mediated dentinogenesis in vitro. Brain-derived neurotrophic factor (BDNF) is a nerve growth factor-related gene family molecule which functions through tropomyosin receptor kinase B (TrkB). While the roles of BDNF in neural tissue repair and other regeneration processes are well identified, its role in dentinogenesis has not been explored. Furthermore, the role of BDNF receptor-TrkB in inflammation-induced dentinogenesis remains unknown. The role of BDNF/TrkB was examined during a 17-day odontogenic differentiation of DPSCs. Human DPSCs were subjected to odontogenic differentiation in dentinogenic media treated with inflammation inducers (LTA or TNFα), BDNF, and a TrkB agonist (LM22A-4) and/or antagonist (CTX-B). Our data show that BDNF and TrkB receptors affect the early and late stages of the odontogenic differentiation of DPSCs. Immunofluorescent data confirmed the expression of BDNF and TrkB in DPSCs. Our ELISA and qPCR data demonstrate that TrkB agonist treatment increased the expression of dentin matrix protein-1 (DMP-1) during early DPSC odontoblastic differentiation. Coherently, the expression levels of runt-related transcription factor 2 (RUNX-2) and osteocalcin (OCN) were increased. TNFα, which is responsible for a diverse range of inflammation signaling, increased the levels of expression of dentin sialophosphoprotein (DSPP) and DMP1. Furthermore, BDNF significantly potentiated its effect. The application of CTX-B reversed this effect, suggesting TrkB`s critical role in TNFα-mediated dentinogenesis. Our studies provide novel findings on the role of BDNF-TrkB in the inflammation-induced odontoblastic differentiation of DPSCs. This finding will address a novel regulatory pathway and a therapeutic approach in dentin tissue engineering using DPSCs.


Subject(s)
Receptor, trkB , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Receptor, trkB/metabolism , Tropomyosin/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Dental Pulp , Cell Differentiation , Inflammation/metabolism , Stem Cells
17.
Am J Pathol ; 193(9): 1248-1266, 2023 09.
Article in English | MEDLINE | ID: mdl-37301536

ABSTRACT

Prostate cancer (PC) is a malignancy with high morbidity and mortality. Bone metastasis is the main driver of short survival time and difficulties in the treatment and prevention of PC. The goal of this study was to explore the biological function of E3 ubiquitin ligase F-box only protein 22 (FBXO22) in PC metastasis and its specific regulation mechanism. According to transcriptome sequencing, FBXO22 was overexpressed in PC tissues (versus adjacent tissues) and bone tissues (versus biopsied bone tissues without bone metastases). Fbxo22 down-regulation reduced bone metastases and macrophage M2 polarization in mice. FBXO22 was down-regulated in macrophages, and polarization was observed by flow cytometry. Macrophages were co-cultured with PC cells and osteoblasts to assess PC cell and osteoblast activity. FBXO22 knockdown restored osteoblast capacity. FBXO22 ubiquitinated and degraded Krüppel-like factor 4 (KLF4), which regulated the nerve growth factor (NGF)/tropomyosin receptor kinase A pathway by repressing NGF transcription. Silencing of KLF4 mitigated the metastasis-suppressing properties of FBXO22 knockdown, whereas NGF reversed the metastasis-suppressing properties of KLF4 in vitro and in vivo. Cumulatively, these data indicate that FBXO22 promotes PC cell activity and osteogenic lesions by stimulating macrophage M2 polarization. It also degrades KLF4 in macrophages and promotes NGF transcription, thereby activating the NGF/tropomyosin receptor kinase A pathway.


Subject(s)
Bone Neoplasms , F-Box Proteins , Prostatic Neoplasms , Humans , Male , Mice , Animals , Nerve Growth Factor/metabolism , Tropomyosin/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Prostatic Neoplasms/genetics , Signal Transduction , Receptors, Cytoplasmic and Nuclear
18.
J Pharm Pharmacol ; 75(8): 1119-1129, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37315215

ABSTRACT

OBJECTIVES: Excess amyloid beta (Aß) and oxidative stress (OS) are inextricable hallmarks of the neuronal damage associated Alzheimer's disease. Aß-induced cognitive and memory dysfunctions are mediated through different signalling pathways as phosphatidylinositol-3-kinase (PI3K) and their downstream intermediates including protein-kinase-B, known as Akt, glycogen-synthase-kinase-3ß (GSK-3ß), cAMP-response-element-binding-protein (CREB), brain-derived-neurotrophic factor (BDNF) and tropomyosin-related-kinase receptor-B (TrKB). The current work aims to investigate the protective potentials of CoQ10 against scopolamine (Scop)-induced cognitive disability and the contribution of PI3K/Akt/GSK-3ß/CREB/BDNF/TrKB in the neuroprotection effects. METHODS: The chronic co-administration of CQ10 (50, 100 and 200 mg/kg/day i.p.) with Scop in Wistar rats for 6 weeks were assayed both behaviourally and biochemically. KEY FINDINGS: CoQ10 ameliorated the Scop-induced cognitive and memory defects by restoring alterations in novel object recognition and Morris water maze behavioural tests. CoQ10 favourably changed the Scop-induced deleterious effects in hippocampal malondialdehyde, 8-hydroxy-2' deoxyguanosine, antioxidants and PI3K/Akt/GSK-3ß/CREB/BDNF/TrKB levels. CONCLUSIONS: These results exhibited the neuroprotective effects of CoQ10 on Scop-induced AD and revealed its ability to inhibit oxidative stress, amyloid deposition and to modulate PI3K/Akt/GSK-3ß/CREB/BDNF/TrKB pathway.


Subject(s)
Alzheimer Disease , Proto-Oncogene Proteins c-akt , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tropomyosin/metabolism , Amyloid beta-Peptides/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Rats, Wistar , Oxidative Stress , Scopolamine Derivatives
19.
BMC Cancer ; 23(1): 557, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328795

ABSTRACT

BACKGROUND: Primary liver cancer is a malignant tumour of the digestive system, ranking second in cancer mortality in China. In different types of cancer, such as liver cancer, microRNAs (miRNAs) have been shown to be dysregulated. However, little is known about the role of miR-5195-3p in insulin-resistant liver cancer. METHODS AND RESULTS: In this study, in vitro and in vivo experiments were conducted to identify the altered biological behaviour of insulin-resistant hepatoma cells (HepG2/IR), and we proved that HepG2/IR cells had stronger malignant biological behaviour. Functional experiments showed that enhanced expression of miR-5195-3p could inhibit the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) and chemoresistance of HepG2/IR cells, while impaired expression of miR-5195-3p in HepG2 cells resulted in the opposite effects. Bioinformatics prediction and dual luciferase reporter gene assays proved that SOX9 and TPM4 were the target genes of miR-5195-3p in hepatoma cells. CONCLUSIONS: In conclusion, our study demonstrated that miR-5195-3p plays a critical role in insulin-resistant hepatoma cells and might be a potential therapeutic target for liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Insulin/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Tropomyosin/genetics , Tropomyosin/metabolism
20.
BMC Neurol ; 23(1): 181, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147571

ABSTRACT

BACKGROUND: We report a patient with a novel c.737 C > T variant (p.Ser246Leu) of the TPM3 gene presenting with adult-onset distal myopathy. CASE PRESENTATION: A 35-year-old Chinese male patient presented with a history of progressive finger weakness. Physical examination revealed differential finger extension weakness, together with predominant finger abduction, elbow flexion, ankle dorsiflexion and toe extension weakness. Muscle MRI showed disproportionate fatty infiltration of the glutei, sartorius and extensor digitorum longus muscles without significant wasting. Muscle biopsy and ultrastructural examination showed a non-specific myopathic pattern without nemaline or cap inclusions. Genetic sequencing revealed a novel heterozygous p.Ser246Leu variant (c.737C>T) of the TPM3 gene which is predicted to be pathogenic. This variant is located in the area of the TPM3 gene where the protein product interacts with actin at position Asp25 of actin. Mutations of TPM3 in these loci have been shown to alter the sensitivity of thin filaments to the influx of calcium ions. CONCLUSION: This report further expands the phenotypic spectrum of myopathies associated with TPM3 mutations, as mutations in TPM3 had not previously been reported with adult-onset distal myopathy. We also discuss the interpretation of variants of unknown significance in patients with TPM3 mutations and summarise the typical muscle MRI findings of patients with TPM3 mutations.


Subject(s)
Distal Myopathies , Tropomyosin , Male , Humans , Adult , Tropomyosin/genetics , Tropomyosin/metabolism , Distal Myopathies/pathology , Actins/genetics , Muscle, Skeletal/pathology , Mutation , Muscle Weakness , Paresis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...