Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.586
Filter
1.
Int J Mol Sci ; 24(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37569724

ABSTRACT

Cardiac muscle contraction is regulated via Ca2+ exchange with the hetero-trimeric troponin complex located on the thin filament. Binding of Ca2+ to cardiac troponin C, a Ca2+ sensing subunit within the troponin complex, results in a series of conformational re-arrangements among the thin filament components, leading to an increase in the formation of actomyosin cross-bridges and muscle contraction. Ultimately, a decline in intracellular Ca2+ leads to the dissociation of Ca2+ from troponin C, inhibiting cross-bridge cycling and initiating muscle relaxation. Therefore, troponin C plays a crucial role in the regulation of cardiac muscle contraction and relaxation. Naturally occurring and engineered mutations in troponin C can lead to altered interactions among components of the thin filament and to aberrant Ca2+ binding and exchange with the thin filament. Mutations in troponin C have been associated with various forms of cardiac disease, including hypertrophic, restrictive, dilated, and left ventricular noncompaction cardiomyopathies. Despite progress made to date, more information from human studies, biophysical characterizations, and animal models is required for a clearer understanding of disease drivers that lead to cardiomyopathies. The unique use of engineered cardiac troponin C with the L48Q mutation that had been thoroughly characterized and genetically introduced into mouse myocardium clearly demonstrates that Ca2+ sensitization in and of itself should not necessarily be considered a disease driver. This opens the door for small molecule and protein engineering strategies to help boost impaired systolic function. On the other hand, the engineered troponin C mutants (I61Q and D73N), genetically introduced into mouse myocardium, demonstrate that Ca2+ desensitization under basal conditions may be a driving factor for dilated cardiomyopathy. In addition to enhancing our knowledge of molecular mechanisms that trigger hypertrophy, dilation, morbidity, and mortality, these cardiomyopathy mouse models could be used to test novel treatment strategies for cardiovascular diseases. In this review, we will discuss (1) the various ways mutations in cardiac troponin C might lead to disease; (2) relevant data on mutations in cardiac troponin C linked to human disease, and (3) all currently existing mouse models containing cardiac troponin C mutations (disease-associated and engineered).


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Mice , Humans , Animals , Troponin C/genetics , Troponin C/chemistry , Troponin C/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Mutation , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Myocardial Contraction , Calcium/metabolism
2.
FEBS Open Bio ; 13(11): 2047-2060, 2023 11.
Article in English | MEDLINE | ID: mdl-37650870

ABSTRACT

Genetically encoded calcium indicators based on truncated troponin C are attractive probes for calcium imaging due to their relatively small molecular size and twofold reduced calcium ion buffering. However, the best-suited members of this family, YTnC and cNTnC, suffer from low molecular brightness, limited dynamic range, and/or poor sensitivity to calcium transients in neurons. To overcome these limitations, we developed an enhanced version of YTnC, named YTnC2. Compared with YTnC, YTnC2 had 5.7-fold higher molecular brightness and 6.4-fold increased dynamic range in vitro. YTnC2 was successfully used to reveal calcium transients in the cytosol and in the lumen of mitochondria of both mammalian cells and cultured neurons. Finally, we obtained and analyzed the crystal structure of the fluorescent domain of the YTnC2 mutant.


Subject(s)
Calcium , Troponin C , Humans , Animals , Troponin C/genetics , Troponin C/chemistry , Troponin C/metabolism , Calcium/metabolism , Green Fluorescent Proteins/chemistry , HeLa Cells , Neurons/metabolism , Mammals
3.
J Chem Inf Model ; 63(11): 3462-3473, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37204863

ABSTRACT

Despite large investments from academia and industry, heart failure, which results from a disruption of the contractile apparatus, remains a leading cause of death. Cardiac muscle contraction is a calcium-dependent mechanism, which is regulated by the troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium-binding subunit (cNTnC). There is an increasing need for the development of small molecules that increase calcium sensitivity without altering the systolic calcium concentration, thereby strengthening the cardiac function. Here, we examined the effect of our previously identified calcium-sensitizing small molecule, ChemBridge compound 7930079, in the context of several homologous muscle systems. The effect of this molecule on force generation in isolated cardiac trabeculae and slow skeletal muscle fibers was measured. Furthermore, we explored the use of Gaussian accelerated molecular dynamics in sampling highly predictive receptor conformations based on NMR-derived starting structures. Additionally, we took a rational computational approach for lead optimization based on lipophilic diphenyl moieties. This integrated structural-biochemical-physiological approach led to the identification of three novel low-affinity binders, which had similar binding affinities to the known positive inotrope trifluoperazine. The most potent identified calcium sensitizer was compound 16 with an apparent affinity of 117 ± 17 µM.


Subject(s)
Muscle, Striated , Troponin C , Troponin C/chemistry , Calcium/metabolism , Muscle, Striated/metabolism , Structure-Activity Relationship
4.
Top Companion Anim Med ; 53-54: 100777, 2023.
Article in English | MEDLINE | ID: mdl-37030618

ABSTRACT

Functional pheochromocytomas secrete catecholamines and have been associated with cardiovascular lesions in dogs. This study aimed to describe the postmortem pathological findings in the cardiovascular system of dogs with pheochromocytoma and to evaluate the expression of cardiac troponin C in these dogs using immunohistochemical analysis. Twelve cases were identified, with a mean age of 10.6 years. The heart of all dogs was enlarged and with concentric hypertrophy of the left ventricular myocardium. Histological analysis showed cardiomyocyte necrosis and degeneration in the myocardium, with frequent bands of contraction, fibrosis, inflammation, and thickening of the medium-caliber arteries in the myocardium. There was a marked decrease or absence of immunolabeling in necrotic cardiomyocytes. We conclude that IHC for troponin C can be a useful tool for detecting myocardial necrosis in dogs with pheochromocytomas, including early cases of necrosis with only incipient cardiac changes where overt histologic abnormalities are not immediately apparent in the cardiomyocytes.


Subject(s)
Adrenal Gland Neoplasms , Dog Diseases , Necrosis , Pheochromocytoma , Dogs , Animals , Pheochromocytoma/veterinary , Pheochromocytoma/complications , Pheochromocytoma/metabolism , Troponin C/metabolism , Myocardium/metabolism , Myocardium/pathology , Adrenal Gland Neoplasms/veterinary , Adrenal Gland Neoplasms/complications , Adrenal Gland Neoplasms/metabolism , Necrosis/complications , Necrosis/metabolism , Necrosis/pathology , Necrosis/veterinary , Dog Diseases/pathology
5.
Protein J ; 42(4): 263-275, 2023 08.
Article in English | MEDLINE | ID: mdl-36959428

ABSTRACT

Muscle weakness as a secondary feature of attenuated neuronal input often leads to disability and sometimes death in patients with neurogenic neuromuscular diseases. These impaired muscle function has been observed in several diseases including amyotrophic lateral sclerosis, Charcot-Marie-Tooth, spinal muscular atrophy and Myasthenia gravis. This has spurred the search for small molecules which could activate fast skeletal muscle troponin complex as a means to increase muscle strength. Discovered small molecules have however been punctuated by off-target and side effects leading to the development of the second-generation small molecule, Reldesemtiv. In this study, we investigated the impact of Reldesemtiv binding to the fast skeletal troponin complex and the molecular determinants that condition the therapeutic prowess of Redesemtiv through computational techniques. It was revealed that Reldesemtiv binding possibly potentiates troponin C compacting characterized by reduced exposure to solvent molecules which could favor the slow release of calcium ions and the resultant sensitization of the subunit to calcium. These conformational changes were underscored by conventional and carbon hydrogen bonds, pi-alkyl, pi-sulfur and halogen interactions between Reldesemtiv the binding site residues. Arg113 (-3.96 kcal/mol), Met116 (-2.23 kcal/mol), Val114 (-1.28 kcal/mol) and Met121 (-0.63 kcal/mol) of the switch region of the inhibitory subunit were among the residues that contributed the most to the total free binding energy of Reldesemtiv highlighting their importance. These findings present useful insights which could lay the foundation for the development of fast skeletal muscle small molecule activators with high specificity and potency.


Subject(s)
Calcium , Muscle, Skeletal , Humans , Calcium/metabolism , Muscle, Skeletal/metabolism , Pyrimidines/pharmacology , Troponin C/metabolism , Troponin C/pharmacology
6.
J Genet ; 1022023.
Article in English | MEDLINE | ID: mdl-36814108

ABSTRACT

Pediatric cardiomyopathies (CM) are rare and challenging to diagnose due to the complex and mixed phenotypes. With the advent of next-generation sequencing (NGS), variants in several genes associated with CM have been identified, such as Troponin C (TnC), encoded by the TNNC1 gene. De novo variants in TNNC1 have been associated with different types of CM, including dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). The American College of Medical Genetics and Genomics recently added TNNC1 to their recommended list of genes for reporting secondary findings. In this study, we report a de novo variant, c.100G>C (p.Gly34Arg) in the TNNC1 gene identified in three siblings with a diagnosis of severe DCM causing infant death for one of the siblings and stillbirth in the other two pregnancies. The identification of the same de novo variant in all affected siblings is suggestive of germline mosaicism in this family.


Subject(s)
Cardiomyopathy, Dilated , Troponin C , Female , Humans , Infant, Newborn , Pregnancy , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/mortality , Infant Mortality , Mosaicism , Mutation , Stillbirth/genetics , Troponin C/genetics
7.
J Gen Physiol ; 155(3)2023 03 06.
Article in English | MEDLINE | ID: mdl-36633587

ABSTRACT

Cardiac muscle contraction is regulated by Ca2+-induced structural changes of the thin filaments to permit myosin cross-bridge cycling driven by ATP hydrolysis in the sarcomere. In congestive heart failure, contraction is weakened, and thus targeting the contractile proteins of the sarcomere is a promising approach to therapy. However, development of novel therapeutic interventions has been challenging due to a lack of precise discovery tools. We have developed a fluorescence lifetime-based assay using an existing site-directed probe, N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD) attached to human cardiac troponin C (cTnC) mutant cTnCT53C, exchanged into porcine cardiac myofibrils. We hypothesized that IANBD-cTnCT53C fluorescence lifetime measurements provide insight into the activation state of the thin filament. The sensitivity and precision of detecting structural changes in cTnC due to physiological and therapeutic modulators of thick and thin filament functions were determined. The effects of Ca2+ binding to cTnC and myosin binding to the thin filament were readily detected by this assay in mock high-throughput screen tests using a fluorescence lifetime plate reader. We then evaluated known effectors of altered cTnC-Ca2+ binding, W7 and pimobendan, and myosin-binding drugs, mavacamten and omecamtiv mecarbil, used to treat cardiac diseases. Screening assays were determined to be of high quality as indicated by the Z' factor. We conclude that cTnC lifetime-based probes allow for precise evaluation of the thin filament activation in functioning myofibrils that can be used in future high-throughput screens of small-molecule modulators of function of the thin and thick filaments.


Subject(s)
Calcium , Troponin C , Humans , Animals , Swine , Calcium/metabolism , Fluorescence , Troponin C/metabolism , Myocardium/metabolism , Myocardial Contraction/physiology
8.
J Chem Inf Model ; 63(1): 354-361, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36507851

ABSTRACT

Calcium-binding proteins play critical roles in various biological processes such as signal transduction, cell growth, and transcription factor regulation. Ion binding and target binding of Ca2+-binding proteins are highly related. Therefore, understanding the ion binding mechanism will benefit the relevant inhibitor design toward the Ca2+-binding proteins. The EF-hand is the typical ion binding motif in Ca2+-binding proteins. Previous studies indicate that the ion binding affinity of the EF-hand increases with the peptide length, but this mechanism has not been fully understood. Herein, using molecular dynamics simulations, thermodynamic integration calculations, and molecular mechanics Poisson-Boltzmann surface area analysis, we systematically investigated four Ca2+-binding peptides containing the EF-hand loop in site III of rabbit skeletal troponin C. These four peptides have 13, 21, 26, and 34 residues. Our simulations reproduced the observed trend that the ion binding affinity increases with the peptide length. Our results implied that the E-helix motif preceding the EF-hand loop, likely the Phe99 residue in particular, plays a significant role in this regulation. The E-helix has a significant impact on the backbone and side-chain conformations of the Asp103 residue, rigidifying important hydrogen bonds in the EF-hand and decreasing the solvent exposure of the Ca2+ ion, hence leading to more favorable Ca2+ binding in longer peptides. The present study provides molecular insights into the ion binding in the EF-hand and establishes an important step toward elucidating the responses of Ca2+-binding proteins toward the ion and target availability.


Subject(s)
Molecular Dynamics Simulation , Troponin C , Animals , Rabbits , Troponin C/chemistry , Calcium/metabolism , Protein Structure, Tertiary , Peptides/chemistry , Binding Sites , Protein Binding
9.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36498942

ABSTRACT

NTnC-like green fluorescent genetically encoded calcium indicators (GECIs) with two calcium ion binding sites were constructed using the insertion of truncated troponin C (TnC) from Opsanus tau into green fluorescent proteins (GFPs). These GECIs are small proteins containing the N- and C-termini of GFP; they exert a limited effect on the cellular free calcium ion concentration; and in contrast to calmodulin-based calcium indicators they lack undesired interactions with intracellular proteins in neurons. The available TnC-based NTnC or YTnC GECIs had either an inverted response and high brightness but a limited dynamic range or a positive response and fast kinetics in neurons but lower brightness and an enhanced but still limited dF/F dynamic range. Here, we solved the crystal structure of NTnC at 2.5 Å resolution. Based on this structure, we developed positive NTnC2 and inverted iNTnC2 GECIs with a large dF/F dynamic range in vitro but very slow rise and decay kinetics in neurons. To overcome their slow responsiveness, we swapped TnC from O. tau in NTnC2 with truncated troponin C proteins from the muscles of fast animals, namely, the falcon, hummingbird, cheetah, bat, rattlesnake, and ant, and then optimized the resulting constructs using directed molecular evolution. Characterization of the engineered variants using purified proteins, mammalian cells, and neuronal cultures revealed cNTnC GECI with truncated TnC from Calypte anna (hummingbird) to have the largest dF/F fluorescence response and fast dissociation kinetics in neuronal cultures. In addition, based on the insertion of truncated TnCs from fast animals into YTnC2, we developed fYTnC2 GECI with TnC from Falco peregrinus (falcon). The purified proteins cNTnC and fYTnC2 had 8- and 6-fold higher molecular brightness and 7- and 6-fold larger dF/F responses to the increase in Ca2+ ion concentration than YTnC, respectively. cNTnC GECI was also 4-fold more photostable than YTnC and fYTnC2 GECIs. Finally, we assessed the developed GECIs in primary mouse neuronal cultures stimulated with an external electric field; in these conditions, cNTnC had a 2.4-fold higher dF/F fluorescence response than YTnC and fYTnC2 and was the same or slightly slower (1.4-fold) than fYTnC2 and YTnC in the rise and decay half-times, respectively.


Subject(s)
Calcium , Troponin C , Animals , Calcium/metabolism , Calcium Signaling , Calmodulin/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Indicators and Reagents , Troponin C/genetics , Troponin C/chemistry , Troponin C/metabolism
10.
J Chem Inf Model ; 62(23): 6201-6208, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36383927

ABSTRACT

Calcium-dependent heart muscle contraction is regulated by the cardiac troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium binding subunit (cNTnC). cNTnC contains one calcium binding site (site II), and altered calcium binding in this site has been studied for decades. It has been previously shown that cNTnC mutants, which increase calcium sensitization may have therapeutic benefits, such as restoring cardiac muscle contractility and functionality post-myocardial infarction events. Here, we computationally characterized eight mutations for their potential effects on calcium binding affinity in site II of cNTnC. We utilized two distinct methods to estimate calcium binding: adaptive steered molecular dynamics (ASMD) and thermodynamic integration (TI). We observed a sensitizing trend for all mutations based on the employed ASMD methodology. The TI results showed excellent agreement with experimentally known calcium binding affinities in wild-type cNTnC. Based on the TI results, five mutants were predicted to increase calcium sensitivity in site II. This study presents an interesting comparison of the two computational methods, which have both been shown to be valuable tools in characterizing the impacts of calcium sensitivity in mutant cNTnC systems.


Subject(s)
Calcium , Troponin C , Troponin C/chemistry , Calcium/metabolism , Troponin I/metabolism , Protein Binding , Binding Sites
11.
J Chem Inf Model ; 62(22): 5666-5674, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36283742

ABSTRACT

The cardiac troponin (cTn) complex is an important regulatory protein in heart contraction. Upon binding of Ca2+, cTn undergoes a conformational shift that allows the troponin I switch peptide (cTnISP) to be released from the actin filament and bind to the troponin C hydrophobic patch (cTnCHP). Mutations and modifications to this complex can change its sensitivity to Ca2+ and alter the energetics of the transition from the Ca2+-unbound, cTnISP-unbound form to the Ca2+-bound, cTnISP-bound form. We utilized targeted molecular dynamics (TMD) to obtain a trajectory of this transition pathway, followed by umbrella sampling to estimate the free energy associated with the cTnISP-cTnCHP binding and the cTnCHP opening events for wild-type (WT) cTn. We were able to reproduce experimental values for the cTnISP-cTnCHP binding event and obtain cTnCHP opening free energies in agreement with previous computational measurements of smaller cTnC systems. This excellent agreement for WT cTn demonstrated the strength of computational methods in studying the dynamics and energetics of the cTn complex. We then introduced mutations to the cTn complex that cause cardiomyopathy or alter its Ca2+ sensitivity and observed a general decrease in the free energy of opening the cTnCHP. For these same mutations, we observed no general trend in the effect on the cTnISP-cTnCHP binding event. Our method sets the stage for future computational studies on this system that predict the consequences of yet uncharacterized mutations on cTn dynamics and energetics.


Subject(s)
Calcium , Troponin C , Calcium/metabolism , Hydrophobic and Hydrophilic Interactions , Troponin C/chemistry , Troponin I/metabolism
12.
Sci Rep ; 12(1): 18116, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302792

ABSTRACT

The sarcomere is the functional unit of skeletal muscle, essential for proper contraction. Numerous acquired and inherited myopathies impact sarcomere function causing clinically significant disease. Mechanistic investigations of sarcomere activation have been challenging to undertake in the context of intact, live skeletal muscle fibers during real time physiological twitch contractions. Here, a skeletal muscle specific, intramolecular FRET-based biosensor was designed and engineered into fast skeletal muscle troponin C (TnC) to investigate the dynamics of sarcomere activation. In transgenic animals, the TnC biosensor incorporated into the skeletal muscle fiber sarcomeres by stoichiometric replacement of endogenous TnC and did not alter normal skeletal muscle contractile form or function. In intact single adult skeletal muscle fibers, real time twitch contractile data showed the TnC biosensor transient preceding the peak amplitude of contraction. Importantly, under physiological temperatures, inactivation of the TnC biosensor transient decayed significantly more slowly than the Ca2+ transient and contraction. The uncoupling of the TnC biosensor transient from the Ca2+ transient indicates the biosensor is not functioning as a Ca2+ transient reporter, but rather reports dynamic sarcomere activation/ inactivation that, in turn, is due to the ensemble effects of multiple activating ligands within the myofilaments. Together, these findings provide the foundation for implementing this new biosensor in future physiological studies investigating the mechanism of activation of the skeletal muscle sarcomere in health and disease.


Subject(s)
Biosensing Techniques , Sarcomeres , Animals , Sarcomeres/metabolism , Myofibrils/metabolism , Troponin C/metabolism , Fluorescence Resonance Energy Transfer , Calcium/metabolism , Muscle Contraction/physiology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism
13.
J Am Coll Surg ; 235(4): 643-653, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36106867

ABSTRACT

BACKGROUND: Intestinal injury from resuscitated hemorrhagic shock (HS) disrupts intestinal microvascular flow and causes enterocyte apoptosis, intestinal barrier breakdown, and injury to multiple organs. Fresh frozen plasma (FFP) resuscitation or directed peritoneal (DPR) resuscitation protect endothelial glycocalyx, improve intestinal blood flow, and alleviate intestinal injury. We postulated that FFP plus DPR might improve effective hepatic blood flow (EHBF) and prevent associated organ injury (liver, heart). STUDY DESIGN: Anesthetized Sprague-Dawley rats underwent HS (40% mean arterial pressure, 60 minutes) and were randomly assigned to groups (n = 8 per group): Sham; crystalloid resuscitation (CR; shed blood + 2 volumes CR); DPR (intraperitoneal 2.5% peritoneal dialysis fluid); FFP (shed blood + 1 vol IV FFP); FFP + DPR. EHBF was measured at postresuscitation timepoints. Organ injury was evaluated by serum ELISA (fatty acid-binding protein [FABP]-1 [liver], FABP-3 [heart], Troponin-I [heart], and Troponin-C [heart]) and hematoxylin and eosin. Differences were evaluated by 1-way ANOVA and 2-way repeated-measures ANOVA. RESULTS: CR resuscitation alone did not sustain EHBF. FFP resuscitation restored EHBF after resuscitation (2 hours, 3 hours, and 4 hours). DPR resuscitation restored EHBF throughout the postresuscitation period but failed to restore serum FABP-1 VS other groups. Combination FFP + DPR rapidly and sustainably restored EHBF and decreased organ injury. CR and DPR alone had elevated organ injury (FABP-1 [hepatocyte], FABP-3 [cardiac], and Troponin-I/C), whereas FFP or FFP + DPR demonstrated reduced injury at 4 hours after resuscitation. CONCLUSION: HS decreased EHBF, hepatocyte injury, and cardiac injury as evidenced by serology. FFP resuscitation improved EHBF and decreased organ damage. Although DPR resuscitation resulted in sustained EHBF, this alone failed to decrease hepatocyte or cardiac injury. Combination therapy with DPR and FFP may be a novel method to improve intestinal and hepatic blood flow and decrease organ injury after HS/resuscitation.


Subject(s)
Shock, Hemorrhagic , Animals , Crystalloid Solutions , Eosine Yellowish-(YS)/metabolism , Fatty Acid-Binding Proteins/metabolism , Hematoxylin/metabolism , Liver/metabolism , Plasma , Rats , Rats, Sprague-Dawley , Shock, Hemorrhagic/metabolism , Troponin C/metabolism , Troponin I
14.
Toxicon ; 219: 106921, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36122667

ABSTRACT

Poisoning by avocado (Persea americana) has been confirmed in sheep, goats, dogs, rabbits and ostriches. The clinical signs and lesions are attributed to the acetogenin, persin. Little is known regarding the epidemiology, clinical signs, lesions and therapy caused by acetogenin-induced heart damage. During the two-year study, we investigated a horse farm with six horses that often fed themselves with P. americana leaves or mature fruit pulp and skin on the ground. Two horses died, and one underwent necropsy, histopathology, and immunohistochemistry using the anti-cardiac troponin C (cTnC). Grossly and histopathologically, there was severe cardiac fibroplasia. Immunohistochemically, there was a multifocal decrease or negative expression in the cTnC cardiomyocytes' cytoplasm. Persea americana leaves were confirmed in the alimentary tract using botanical anatomy and molecular techniques. The chemical investigation by (LC-ESI-MS) revealed the presence of the acetogenins, persin and avocadene 1-acetate from P. americana. Persin was present in leaves and fruits (seed and pulp), while avocadene 1-acetate was found in leaves and fruits (seed, peel, and pulp) with a higher concentration in the pulp. Four other horses have been examined by electrocardiogram, echocardiogram and serum Troponin 1 (cTnI). To establish a causal effect of consumption of P. Americana and heart fibroplasia in horses, long-time experiments must be carried out.


Subject(s)
Acetogenins , Heart Diseases , Horse Diseases , Persea , Animals , Acetogenins/toxicity , Heart Diseases/chemically induced , Heart Diseases/pathology , Heart Diseases/veterinary , Horse Diseases/chemically induced , Horse Diseases/pathology , Horses , Persea/poisoning , Troponin C/analysis , Fibrosis
15.
ACS Chem Biol ; 17(6): 1495-1504, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35649123

ABSTRACT

W7 is a sarcomere inhibitor that decreases the calcium sensitivity of force development in cardiac muscle. W7 binds to the interface of the regulatory domain of cardiac troponin C (cNTnC) and the switch region of troponin I (cTnI), decreasing the binding of cTnI to cNTnC, presumably by electrostatic repulsion between the -NH3+ group of W7 and basic amino acids in cTnI. W7 analogs with a -CO2- tail are inactive. To evaluate the importance of the location of the charged -NH3+, we used a series of compounds W4, W6, W8, and W9, which have three less, one less, one more, and two more methylene groups in the tail region than W7. W6, W8, and W9 all bind tighter to cNTnC-cTnI chimera (cChimera) than W7, while W4 binds weaker. W4 and, strikingly, W6 have no effect on calcium sensitivity of force generation, while W8 and W9 decrease calcium sensitivity, but less than W7. The structures of the cChimera-W6 and cChimera-W8 complexes reveal that W6 and W8 bind to the same hydrophobic cleft as W7, with the aliphatic tail taking a similar route to the surface. NMR relaxation data show that internal flexibility in the tail of W7 is very limited. Alignment of the cChimera-W7 structure with the recent cryoEM structures of the cardiac sarcomere in the diastolic and systolic states reveals the critical location of the amino group. Small molecule induced structural changes can therefore affect the tightly balanced equilibrium between tethered components required for rapid contraction.


Subject(s)
Sarcomeres , Troponin C , Calcium/metabolism , Myocardium/metabolism , Sarcomeres/metabolism , Sulfonamides/chemistry , Troponin C/chemistry , Troponin I/chemistry
16.
Arch Biochem Biophys ; 726: 109241, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35667908

ABSTRACT

A stacking sodium dodecyl sulfate polyacrylamide gel electrophoresis system has been used to resolve and quantify all the major myofibrillar protein components (actin, myosin, tropomyosin, and troponin C, T, and I). Quantification was achieved by densitometry of the fast green-stained gels calibrated with the use of purified proteins. The approximate molar ratios of these proteins in rabbit muscle are: actin : myosin: tropomyosin: troponin T: troponin I: troponin C = 7:1:1:1:1:1. On the basis of these results and available structural information one obtains an estimate of 254 myosin molecules per thick filament.


Subject(s)
Myofibrils , Tropomyosin , Actins/metabolism , Animals , Electrophoresis, Polyacrylamide Gel , Muscle, Skeletal/metabolism , Myofibrils/metabolism , Myosins/metabolism , Rabbits , Tropomyosin/metabolism , Troponin C/metabolism
17.
Arch Biochem Biophys ; 726: 109301, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35661778

ABSTRACT

After the discovery of troponin by Ebashi almost sixty years ago the field of striated muscle regulation has made significant progress. In the 1970's the nascent troponin field gained momentum, including contributions by James D. Potter who established the stoichiometry of contractile proteins in the myofibril (Arch Biochem Biophys. 1974 Jun; 162(2):436-41. https://doi.org/10.1016/0003-9861(7490202-1)). This opened the door to refinement of competing models that described possible thick filament configurations. This study suggested the presence of one myosin per cross bridge and provided accurate calculations of the molar ratios of each protein - myosin: actin: tropomyosin: troponin T: troponin I: troponin C.


Subject(s)
Myofibrils , Tropomyosin , Actins/metabolism , Animals , Calcium/metabolism , Muscle, Skeletal/metabolism , Myofibrils/metabolism , Myosins/metabolism , Rabbits , Tropomyosin/metabolism , Troponin C/metabolism
18.
Allergy ; 77(10): 3041-3051, 2022 10.
Article in English | MEDLINE | ID: mdl-35567339

ABSTRACT

BACKGROUND: Clinical management of shrimp allergy is hampered by the lack of accurate tests. Molecular diagnosis has been shown to more accurately reflect the clinical reactivity but the full spectrum of shrimp allergens and their clinical relevance are yet to be established. We therefore sought to comprehend the allergen repertoire of shrimp, investigate and compare the sensitization pattern and diagnostic value of the allergens in allergic subjects of two distinct populations. METHODS: Sera were collected from 85 subjects with challenge-proven or doctor-diagnosed shrimp allergy in Hong Kong and Thailand. The IgE-binding proteins of Penaeus monodon were probed by Western blotting and identified by mass spectrometry. Recombinant shrimp allergens were synthesized and analyzed for IgE sensitization by ELISA. RESULTS: Ten IgE-binding proteins were identified, and a comprehensive panel of 11 recombinant shrimp allergens was generated. The major shrimp allergens among Hong Kong subjects were troponin C (Pen m 6) and glycogen phosphorylase (Pen m 14, 47.1%), tropomyosin (Pen m 1, 41.2%) and sarcoplasmic-calcium binding protein (Pen m 4, 35.3%), while those among Thai subjects were Pen m 1 (68.8%), Pen m 6 (50.0%) and fatty acid-binding protein (Pen m 13, 37.5%). Component-based tests yielded significantly higher area under curve values (0.77-0.96) than shrimp extract-IgE test (0.70-0.75). Yet the best component test differed between populations; Pen m 1-IgE test added diagnostic value only in the Thai cohort, whereas sensitizations to other components were better predictors of shrimp allergy in Hong Kong patients. CONCLUSION: Pen m 14 was identified as a novel shrimp allergen predictive of challenge outcome. Molecular diagnosis better predicts shrimp allergy than conventional tests, but the relevant component is population dependent.


Subject(s)
Food Hypersensitivity , Hypersensitivity , Allergens , Fatty Acid-Binding Proteins , Food Hypersensitivity/diagnosis , Humans , Immunoglobulin E , Tropomyosin , Troponin C
19.
Biochemistry ; 61(11): 1103-1112, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35522994

ABSTRACT

The C-terminal 14-16 residues of human troponin T are required for full inactivation, and they prevent full activation at saturating Ca2+. Basic residues within that C-terminal region of TnT are essential for its function, but the mechanism of action is unknown. That region of TnT is natively disordered and does not appear in reconstructions of the troponin structure. We used Förster resonance energy transfer to determine if the C-terminal basic region of TnT alters transitions of TnI or if it operates independently. We also examined Ca2+-dependent changes in the C-terminal region of TnT itself. Probes on TnI-143 (inhibitory region) and TnI-159 (switch region) moved away from sites on actin and tropomyosin and toward TnC-84 at high Ca2+. Ca2+ also displaced C-terminal TnT from actin-tropomyosin but without movement toward TnC. Deletion of C-terminal TnT produced changes in TnI-143 like those effected by Ca2+, but effects on TnI-159 were muted; there was no effect on the distance of the switch region to TnC-84. Substituting Ala for basic residues within C-terminal TnT displaced C-terminal TnT from actin-tropomyosin. The results suggest that C-terminal TnT stabilizes tropomyosin in the inactive position on actin. Removal of basic residues from C-terminal TnT produced a Ca2+-like state except that the switch region of TnI was not bound to TnC. Addition of Ca2+ caused more extreme displacement from actin-tropomyosin as the active state became more fully occupied as in the case of wild-type TnT in the presence of both Ca2+ and bound rigor myosin S1.


Subject(s)
Troponin I , Troponin T , Actins/metabolism , Calcium/metabolism , Humans , Muscle, Skeletal/metabolism , Tropomyosin/chemistry , Troponin C/chemistry , Troponin C/genetics , Troponin I/chemistry , Troponin T/chemistry , Troponin T/genetics
20.
J Phys Chem B ; 126(21): 3844-3851, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35584206

ABSTRACT

The troponin core is an important regulatory complex in cardiac sarcomeres. Contraction is initiated by a calcium ion binding to cardiac troponin C (cTnC), initiating a conformational shift within the protein, altering its interactions with cardiac troponin I (cTnI). The change in cTnC-cTnI interactions prompts the C-terminal domain of cTnI to dissociate from actin, allowing tropomyosin to reveal myosin-binding sites on actin. Each of the concerted movements in the cardiac thin filament (CTF) is crucial for allowing the contraction of cardiomyocytes, yet little is known about the free energy associated with each transition, which is vital for understanding contraction on a molecular level. Using metadynamics, we calculated the free-energy surface of two transitions in the CTF: cTnC opening in the presence and absence of Ca2+ and cTnI dissociating from actin with both open and closed cTnC. These results not only provide the free-energy surface of the transitions but will also be shown to determine if the order of transitions in the contraction cycle is important. From our calculations, we found that the calcium ion helps stabilize the open conformation of cTnC and that the C-terminus of cTnI is stabilized by cTnC in the open conformation when dissociating from the actin surface.


Subject(s)
Sarcomeres , Troponin C , Actins/metabolism , Calcium/chemistry , Muscle Contraction , Myocardium/metabolism , Sarcomeres/metabolism , Troponin C/chemistry , Troponin I/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...