Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 33(15): e17459, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38994921

ABSTRACT

Hybridization between divergent lineages can result in losses of distinct evolutionary taxa. Alternatively, hybridization can lead to increased genetic variability that may fuel local adaptation and the generation of novel traits and/or taxa. Here, we examined single-nucleotide polymorphisms generated using genotyping-by-sequencing in a population of Dolly Varden char (Pisces: Salmonidae) that is highly admixed within a contact zone between two subspecies (Salvelinus malma malma, Northern Dolly Varden [NDV] and S. m. lordi, Southern Dolly Varden [SDV]) in southwestern Alaska to assess the spatial distribution of hybrids and to test hypotheses on the origin of the admixed population. Ancestry analysis revealed that this admixed population is composed of advanced generation hybrids between NDV and SDV or advanced backcrosses to SDV; no F1 hybrids were detected. Coalescent-based demographic modelling supported the origin of this population about 55,000 years ago by secondary contact between NDV and SDV with low levels of contemporary gene flow. Ancestry in NDV and SDV varies within the watershed and ancestry in NDV was positively associated with distance upstream from the sea, contingent on habitat-type sampled, and negatively associated with the number of migrations that individual fish made to the sea. Our results suggest that divergence between subspecies over hundreds of thousands of years may not be associated with significant reproductive isolation, but that elevated diversity owing to hybridization may have contributed to adaptive divergence in habitat use and life history.


Subject(s)
Gene Flow , Genetics, Population , Hybridization, Genetic , Polymorphism, Single Nucleotide , Animals , Alaska , Polymorphism, Single Nucleotide/genetics , Trout/genetics , Trout/classification , Genotype
3.
PLoS One ; 19(5): e0300359, 2024.
Article in English | MEDLINE | ID: mdl-38771821

ABSTRACT

The diversity of functional feeding anatomy is particularly impressive in fishes and correlates with various interspecific ecological specializations. Intraspecific polymorphism can manifest in divergent feeding morphology and ecology, often along a benthic-pelagic axis. Arctic charr (Salvelinus alpinus) is a freshwater salmonid known for morphological variation and sympatric polymorphism and in Lake Þingvallavatn, Iceland, four morphs of charr coexist that differ in preferred prey, behaviour, habitat use, and external feeding morphology. We studied variation in six upper and lower jaw bones in adults of these four morphs using geometric morphometrics and univariate statistics. We tested for allometric differences in bone size and shape among morphs, morph effects on bone size and shape, and divergence along the benthic-pelagic axis. We also examined the degree of integration between bone pairs. We found differences in bone size between pelagic and benthic morphs for two bones (dentary and premaxilla). There was clear bone shape divergence along a benthic-pelagic axis in four bones (dentary, articular-angular, premaxilla and maxilla), as well as allometric shape differences between morphs in the dentary. Notably for the dentary, morph explained more shape variation than bone size. Comparatively, benthic morphs possess a compact and taller dentary, with shorter dentary palate, consistent with visible (but less prominent) differences in external morphology. As these morphs emerged in the last 10,000 years, these results indicate rapid functional evolution of specific feeding structures in arctic charr. This sets the stage for studies of the genetics and development of rapid and parallel craniofacial evolution.


Subject(s)
Feeding Behavior , Sympatry , Trout , Animals , Trout/anatomy & histology , Trout/physiology , Trout/genetics , Feeding Behavior/physiology , Ecosystem , Iceland , Lakes
4.
Mol Biol Rep ; 51(1): 659, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748061

ABSTRACT

BACKGROUND: Mitochondrial DNA (mtDNA) has become a significant tool for exploring genetic diversity and delineating evolutionary links across diverse taxa. Within the group of cold-water fish species that are native to the Indian Himalayan region, Schizothorax esocinus holds particular importance due to its ecological significance and is potentially vulnerable to environmental changes. This research aims to clarify the phylogenetic relationships within the Schizothorax genus by utilizing mitochondrial protein-coding genes. METHODS: Standard protocols were followed for the isolation of DNA from S. esocinus. For the amplification of mtDNA, overlapping primers were used, and then subsequent sequencing was performed. The genetic features were investigated by the application of bioinformatic approaches. These approaches covered the evaluation of nucleotide composition, codon usage, selective pressure using nonsynonymous substitution /synonymous substitution (Ka/Ks) ratios, and phylogenetic analysis. RESULTS: The study specifically examined the 13 protein-coding genes of Schizothorax species which belongs to the Schizothoracinae subfamily. Nucleotide composition analysis showed a bias towards A + T content, consistent with other cyprinid fish species, suggesting evolutionary conservation. Relative Synonymous Codon Usage highlighted leucine as the most frequent (5.18%) and cysteine as the least frequent (0.78%) codon. The positive AT-skew and the predominantly negative GC-skew indicated the abundance of A and C. Comparative analysis revealed significant conservation of amino acids in multiple genes. The majority of amino acids were hydrophobic rather than polar. The purifying selection was revealed by the genetic distance and Ka/Ks ratios. Phylogenetic study revealed a significant genetic divergence between S. esocinus and other Schizothorax species with interspecific K2P distances ranging from 0.00 to 8.87%, with an average of 5.76%. CONCLUSION: The present study provides significant contributions to the understanding of mitochondrial genome diversity and genetic evolution mechanisms in Schizothoracinae, hence offering vital insights for the development of conservation initiatives aimed at protecting freshwater fish species.


Subject(s)
Phylogeny , Animals , Mitochondrial Proteins/genetics , Base Composition/genetics , DNA, Mitochondrial/genetics , Codon Usage/genetics , Trout/genetics , Trout/classification , Codon/genetics , Genome, Mitochondrial/genetics , Evolution, Molecular , Fish Proteins/genetics , Genomics/methods , Genetic Variation/genetics , Cyprinidae/genetics , Cyprinidae/classification
5.
BMC Ecol Evol ; 24(1): 45, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622503

ABSTRACT

BACKGROUND: A major goal in evolutionary biology is to understand the processes underlying phenotypic variation in nature. Commonly, studies have focused on large interconnected populations or populations found along strong environmental gradients. However, studies on small fragmented populations can give strong insight into evolutionary processes in relation to discrete ecological factors. Evolution in small populations is believed to be dominated by stochastic processes, but recent work shows that small populations can also display adaptive phenotypic variation, through for example plasticity and rapid adaptive evolution. Such evolution takes place even though there are strong signs of historical bottlenecks and genetic drift. Here we studied 24 small populations of the freshwater fish Arctic charr (Salvelinus alpinus) found in groundwater filled lava caves. Those populations were found within a few km2-area with no apparent water connections between them. We studied the relative contribution of neutral versus non-neutral evolutionary processes in shaping phenotypic divergence, by contrasting patterns of phenotypic and neutral genetic divergence across populations in relation to environmental measurements. This allowed us to model the proportion of phenotypic variance explained by the environment, taking in to account the observed neutral genetic structure. RESULTS: These populations originated from the nearby Lake Mývatn, and showed small population sizes with low genetic diversity. Phenotypic variation was mostly correlated with neutral genetic diversity with only a small environmental effect. CONCLUSIONS: Phenotypic diversity in these cave populations appears to be largely the product of neutral processes, fitting the classical evolutionary expectations. However, the fact that neutral processes did not explain fully the phenotypic patterns suggests that further studies can increase our understanding on how neutral evolutionary processes can interact with other forces of selection at early stages of divergence. The accessibility of these populations has provided the opportunity for long-term monitoring of individual fish, allowing tracking how the environment can influence phenotypic and genetic divergence for shaping and maintaining diversity in small populations. Such studies are important, especially in freshwater, as habitat alteration is commonly breaking populations into smaller units, which may or may not be viable.


Subject(s)
Ecosystem , Genetic Drift , Animals , Trout/genetics
6.
Mar Biotechnol (NY) ; 26(3): 526-538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38647909

ABSTRACT

High-temperature stress poses a significant environmental challenge for aquatic organisms, including tsinling lenok trout (Brachymystax lenok tsinlingensis). This study aimed to investigate the role of microRNAs (miRNAs) in inducing liver inflammation in tsinling lenok trout under high-temperature stress. Tsinling lenok trout were exposed to high-temperature conditions (24 °C) for 8 h, and liver samples were collected for analysis. Through small RNA sequencing, we identified differentially expressed miRNAs in the liver of high-temperature-stressed tsinling lenok trout compared to the control group (maintained at 16 °C). Several miRNAs, including novel-m0105-5p and miR-8159-x, showed significant changes in expression levels. Additionally, we conducted bioinformatics analysis to explore the potential target genes of these differentially expressed miRNAs. Our findings revealed that these miRNA target genes are involved in inflammatory response pathways, such as NFKB1 and MAP3K5. The downregulation of novel-m0105-5p and miR-8159-x in the liver of high-temperature-stressed tsinling lenok trout suggests their role in regulating liver inflammatory responses. To validate this, we performed a dual-luciferase reporter assay to confirm the regulatory relationship between miRNAs and target genes. Our results demonstrated that novel-m0105-5p and miR-8159-x enhance the inflammatory response of hepatocytes by promoting the expression of NFKB1 and MAP3K5, respectively. In conclusion, our study provides evidence that high-temperature stress induces liver inflammation in tsinling lenok trout through dysregulation of miRNAs. Understanding the molecular mechanisms underlying the inflammatory response in tsinling lenok trout under high-temperature stress is crucial for developing strategies to mitigate the negative impacts of environmental stressors on fish health and aquaculture production.


Subject(s)
Liver , MicroRNAs , Trout , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Liver/metabolism , Trout/genetics , Hot Temperature , Fish Diseases/genetics , Fish Diseases/immunology , Fish Diseases/metabolism , Inflammation/genetics , Inflammation/metabolism , Gene Expression Regulation , Stress, Physiological
7.
Genome ; 67(8): 256-266, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38593476

ABSTRACT

Course-based undergraduate research experiences (CUREs) increase student access to high impact research experiences. CUREs engage students in the scientific process by learning how to pose scientific questions, develop hypotheses, and generate data to test them. Environmental DNA (eDNA) is a growing field of research that is gaining accessibility through decreasing laboratory costs, which can make a foundation for multiple, engaging CUREs. This manuscript describes three case studies that used eDNA in an upper year undergraduate course. The first focusses on a systematic literature review of eDNA metadata reporting. The second describes the biomonitoring of brook trout in southern Ontario using eDNA. The third involves eDNA metabarcoding for freshwater fish detection in southern Ontario. Undergraduates were involved in the development and execution of experiments, scientific communication, the peer review process, and fundraising. Through this manuscript, we show the novel application of eDNA CUREs and provide a roadmap for other instructors interested in implementing similar projects. Interviews with seven students from these courses indicate the benefits experienced from taking these courses. We argue that the use of eDNA in CUREs should be expanded in undergraduate biology programs due to the benefit to students and the increasing accessibility of this technology.


Subject(s)
DNA, Environmental , Students , Animals , Humans , Ontario , Universities , Trout/genetics , DNA Barcoding, Taxonomic
8.
J Fish Biol ; 104(6): 1960-1971, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38553987

ABSTRACT

The study investigated if gonad maturation in triploid brown trout, Salmo trutta, was entirely suppressed or only delayed, and if triploids could interbreed with diploid counterparts. Ten percent of the total number of 3-year-old triploid S. trutta, 15% of 4-year-old fish, and 17% of 5-year-old fish produced semen. Three and 4 years old triploid fish did not produce eggs, but 15% of the 5-year-old fish did so. The quantity and sperm motility of triploid semen did not differ from diploids, but the sperm concentration was significantly lower. When diploid eggs were fertilized with triploid semen (3n × 2n crosses), the percentage of eyed stage embryos, of hatched larvae, and of normal-shaped larvae did not differ from the diploid controls. Circa 90% of 3n × 2n crosses had a ploidy level of 2.4n. In the remaining percentage of 3n × 2n crosses, the ploidy level was ≥2n and <2.4n. In sperm competition experiments where diploid eggs were fertilized with a mixture of diploid and triploid semen, 52% of the originating larvae had a ploidy level of 2n, 43% of 2.4n, and 5% of the fish were not exactly classified. From the start of feeding to an age of 248 days, the mortality rate of 3n × 2n interploid crosses and of 2n × 2n controls was similar. The growth of interploid crosses was significantly higher than that of controls. In triploid mature females, the egg mass per kilogram of body weight was significantly lower than in diploids. The mass of the non-hardened eggs and the percentile weight increase during hardening did not differ from diploid eggs. When triploid eggs were fertilized with diploid semen (2n × 3n crosses), the development rate to normal hatched larvae was less than 10%. All originating larvae had a ploidy level of 3n. From the start of feeding to an age of 248 days, 2n × 3n crosses had a higher mortality rate (15%) than diploid controls (<5%). Growth of this type of interploid crosses was reduced in comparison to controls. Therefore, triploids introduced into natural waters for recreational fisheries or escaping from farms may interbreed with diploid counterparts. This not only alters the genotypes of local populations but also changes the ploidy levels.


Subject(s)
Diploidy , Triploidy , Trout , Animals , Trout/genetics , Trout/growth & development , Trout/physiology , Male , Female , Gonads/growth & development , Sperm Motility , Spermatozoa/physiology
9.
Heredity (Edinb) ; 132(5): 247-256, 2024 May.
Article in English | MEDLINE | ID: mdl-38480957

ABSTRACT

The 'good genes' hypotheses of sexual selection predict that females prefer males with strong ornaments because they are in good health and vigor and can afford the costs of the ornaments. A key assumption of this concept is that male health and vigor are useful predictors of genetic quality and hence offspring performance. We tested this prediction in wild-caught lake char (Salvelinus umbla) whose breeding coloration is known to reveal aspects of male health. We first reanalyzed results from sperm competition trials in which embryos of known parenthood had been raised singly in either a stress- or non-stress environment. Paternal coloration did not correlate with any measures of offspring performance. However, offspring growth was reduced with higher kinship coefficients between the parents. To test the robustness of these first observations, we collected a new sample of wild males and females, used their gametes in a full-factorial in vitro breeding experiment, and singly raised about 3000 embryos in either a stress- or non-stress environment (stress induced by microbes). Again, paternal coloration did not predict offspring performance, while offspring growth was reduced with higher kinship between the parents. We conclude that, in lake char, the genetic benefits of mate choice would be strongest if females could recognize and avoid genetically related males, while male breeding colors may be more relevant in intra-sexual selection.


Subject(s)
Pigmentation , Trout , Animals , Male , Female , Trout/genetics , Trout/growth & development , Pigmentation/genetics , Mating Preference, Animal
10.
G3 (Bethesda) ; 14(5)2024 05 07.
Article in English | MEDLINE | ID: mdl-38478598

ABSTRACT

Brook charr is a cold-water species which is highly sensitive to increased water temperatures, such as those associated with climate change. Environmental variation can potentially induce phenotypic changes that are inherited across generations, for instance, via epigenetic mechanisms. Here, we tested whether parental thermal regimes (intergenerational plasticity) and offspring-rearing temperatures (within-generational plasticity) modify the brain transcriptome of Brook charr progeny (fry stage). Parents were exposed to either cold or warm temperatures during final gonad maturation and their progeny were reared at 5 or 8 °C during the first stages of development. Illumina Novaseq6000 was used to sequence the brain transcriptome at the yolk sac resorption stage. The number of differentially expressed genes was very low when comparing fry reared at different temperatures (79 differentially expressed genes). In contrast, 9,050 differentially expressed genes were significantly differentially expressed between fry issued from parents exposed to either cold or warm temperatures. There was a significant downregulation of processes related to neural and synaptic activity in fry originating from the warm parental group vs fry from the cold parental one. We also observed significant upregulation of DNA methylation genes and of the most salient processes associated with compensation to warming, such as metabolism, cellular response to stress, and adaptive immunity.


Subject(s)
DNA Methylation , Phenotype , Transcriptome , Trout , Animals , Trout/genetics , Temperature , Gene Expression Profiling , Female , Male , Brain/metabolism , Epigenesis, Genetic
11.
Mol Ecol ; 33(7): e17305, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421099

ABSTRACT

Across its Holarctic range, Arctic charr (Salvelinus alpinus) populations have diverged into distinct trophic specialists across independent replicate lakes. The major aspect of divergence between ecomorphs is in head shape and body shape, which are ecomorphological traits reflecting niche use. However, whether the genomic underpinnings of these parallel divergences are consistent across replicates was unknown but key for resolving the substrate of parallel evolution. We investigated the genomic basis of head shape and body shape morphology across four benthivore-planktivore ecomorph pairs of Arctic charr in Scotland. Through genome-wide association analyses, we found genomic regions associated with head shape (89 SNPs) or body shape (180 SNPs) separately and 50 of these SNPs were strongly associated with both body and head shape morphology. For each trait separately, only a small number of SNPs were shared across all ecomorph pairs (3 SNPs for head shape and 10 SNPs for body shape). Signs of selection on the associated genomic regions varied across pairs, consistent with evolutionary demography differing considerably across lakes. Using a comprehensive database of salmonid QTLs newly augmented and mapped to a charr genome, we found several of the head- and body-shape-associated SNPs were within or near morphology QTLs from other salmonid species, reflecting a shared genetic basis for these phenotypes across species. Overall, our results demonstrate how parallel ecotype divergences can have both population-specific and deeply shared genomic underpinnings across replicates, influenced by differences in their environments and demographic histories.


Subject(s)
Genome-Wide Association Study , Somatotypes , Animals , Trout/genetics , Genomics , Quantitative Trait Loci/genetics
12.
Microbiol Spectr ; 12(3): e0294323, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38329329

ABSTRACT

Teleost gill mucus has a highly diverse microbiota, which plays an essential role in the host's fitness and is greatly influenced by the environment. Arctic char (Salvelinus alpinus), a salmonid well adapted to northern conditions, faces multiple stressors in the Arctic, including water chemistry modifications, that could negatively impact the gill microbiota dynamics related to the host's health. In the context of increasing environmental disturbances, we aimed to characterize the taxonomic distribution of transcriptionally active taxa within the bacterial gill microbiota of Arctic char in the Canadian Arctic in order to identify active bacterial composition that correlates with environmental factors. For this purpose, a total of 140 adult anadromous individuals were collected from rivers, lakes, and bays belonging to five Inuit communities located in four distinct hydrologic basins in the Canadian Arctic (Nunavut and Nunavik) during spring (May) and autumn (August). Various environmental factors were collected, including latitudes, water and air temperatures, oxygen concentration, pH, dissolved organic carbon (DOC), salinity, and chlorophyll-a concentration. The taxonomic distribution of transcriptionally active taxa within the gill microbiota was quantified by 16S rRNA gene transcripts sequencing. The results showed differential bacterial activity between the different geographical locations, explained by latitude, salinity, and, to a lesser extent, air temperature. Network analysis allowed the detection of a potential dysbiosis signature (i.e., bacterial imbalance) in fish gill microbiota from Duquet Lake in the Hudson Strait and the system Five Mile Inlet connected to the Hudson Bay, both showing the lowest alpha diversity and connectivity between taxa.IMPORTANCEThis paper aims to decipher the complex relationship between Arctic char (Salvelinus alpinus) and its symbiotic microbial consortium in gills. This salmonid is widespread in the Canadian Arctic and is the main protein and polyunsaturated fatty acids source for Inuit people. The influence of environmental parameters on gill microbiota in wild populations remains poorly understood. However, assessing the Arctic char's active gill bacterial community is essential to look for potential pathogens or dysbiosis that could threaten wild populations. Here, we concluded that Arctic char gill microbiota was mainly influenced by latitude and air temperature, the latter being correlated with water temperature. In addition, a dysbiosis signature detected in gill microbiota was potentially associated with poor fish health status recorded in these disturbed environments. With those results, we hypothesized that rapid climate change and increasing anthropic activities in the Arctic might profoundly disturb Arctic char gill microbiota, affecting their survival.


Subject(s)
Lakes , Microbiota , Animals , Bays , Canada , Dysbiosis , Gills , RNA, Ribosomal, 16S/genetics , Trout/genetics , Trout/metabolism , Water/metabolism
13.
Mol Ecol ; 33(6): e17298, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361438

ABSTRACT

Inbreeding depression, that is, the reduction of health and vigour in individuals with high inbreeding coefficients, is expected to increase with environmental, social, or physiological stress. It has therefore been predicted that sexual selection and the associated stress usually lead to higher inbreeding depression in males than in females. However, sex-specific differences in life history may reverse that pattern during certain developmental stages. In some salmonids, for example, female juveniles start developing their gonads earlier than males who instead grow faster. We tested whether the sexes are differently affected by inbreeding during that time. To study the effects of inbreeding coefficients that may be typical for natural populations of brown trout (Salmo trutta), and also to control for potentially confounding maternal or paternal effects, we sampled males and females from the wild, used their gametes in a block-wise full-factorial breeding design to produce 60 full-sib families, released the offspring as yolk-sac larvae into the wild, sampled them 6 months later, identified their genetic sex, and used microsatellites to assign them to their parents. We used whole-genome resequencing to calculate the kinship coefficients for each breeding pair and hence the expected average inbreeding coefficient per family. Juvenile growth could be predicted from these expected inbreeding coefficients and the genetic sex: Females reached lower body sizes with increasing inbreeding coefficient, while no such link could be found in males. This sex-specific inbreeding depression led to the overall pattern that females were on average smaller than males by the end of their first summer.


Subject(s)
Genome , Inbreeding , Humans , Male , Animals , Female , Breeding , Trout/genetics
14.
J Fish Biol ; 104(4): 1202-1212, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38263640

ABSTRACT

Temperature variation is affecting fish biodiversity worldwide, causing changes in geographic distribution, phenotypic structure, and even species extinction. Incubation is a critical stage for stenothermic species, which are vulnerable to large temperature fluctuations, and its effects on the phenotype at later developmental stages are understudied, despite the fact that the phenotype being essential for organism ecology and evolution. In this study, we tested the effects of heat shocks during the embryonic period on the phenotype of Arctic charr (Salvelinus alpinus). We repeatedly quantified multiple phenotypic traits, including morphology, development, and behavior, over a period of 4 months, from hatching to juvenile stage in individuals that had experienced heat shocks (+ 5°C on 24 h, seven times) during their embryonic stage and those that had not. We found that heat shocks led to smaller body size at hatching and a lower sociability. Interestingly, these effects weakened throughout the development of individuals and even reversed in the case of body size. We also found an accelerated growth rate and a higher body condition in the presence of heat shocks. Our study provides evidence that heat shocks experienced during incubation can have long-lasting effects on an individual's phenotype. This highlights the importance of the incubation phase for the development of ectothermic organisms and suggests that temperature fluctuations may have significant ecological and evolutionary implications for Arctic charr. Given the predicted increase in extreme events and the unpredictability of temperature fluctuations, it is critical to further investigate their effects on development by examining fluctuations that vary in frequency and intensity.


Subject(s)
Biodiversity , Trout , Animals , Phenotype , Trout/genetics , Body Size , Heat-Shock Response
15.
Genet. mol. biol ; 32(1): 42-50, 2009. ilus, mapas, tab
Article in English | LILACS | ID: lil-505770

ABSTRACT

The aim of this study was to analyze the morphological variation of brown trout (Salmo trutta) in the Duero basin, an Atlantic river basin in the Iberian Peninsula, where a spatial segregation of two divergent lineages was previously reported, based on isozyme, microsatellite and mtDNA data. In these studies, two divergent pure regions (Pisuerga and Lower-course) and several hybrid populations between them were identified. Morphological variation was evaluated in 11 populations representative of the genetic differentiation previously observed in the Duero basin, using multivariate analysis on 12 morphometric and 4 meristic traits. A large differentiation between populations was observed (interpopulation component of variance: 41.8 percent), similar to that previously detected with allozymes and microsatellites. Morphometric differentiation was also reflected by the high classification success of pure and hybrid individuals to their respective populations, using multivariate discriminant functions (94.1 percent and 79.0 percent, respectively). All multivariate and clustering analyses performed demonstrated a strong differentiation between the pure regions. The hybrid populations, though showing large differentiation among them, evidenced an intermediate position between the pure samples. Head and body shape traits were the most discriminant among the morphometric characters, while pectoral rays and gillrakers were the most discriminant among the meristic traits. These results confirmed the high divergence of the brown trout from the Duero basin and suggest some traits on which selection could be acting to explain the spatial segregation observed.


Subject(s)
Animals , DNA, Mitochondrial , Trout/genetics , Genetic Variation , Microsatellite Repeats , Multivariate Analysis , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL