Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.029
Filter
1.
Front Cell Infect Microbiol ; 14: 1381155, 2024.
Article in English | MEDLINE | ID: mdl-38650737

ABSTRACT

Kinetoplastid pathogens including Trypanosoma brucei, T. cruzi, and Leishmania species, are early diverged, eukaryotic, unicellular parasites. Functional understanding of many proteins from these pathogens has been hampered by limited sequence homology to proteins from other model organisms. Here we describe the development of a high-throughput deep mutational scanning approach in T. brucei that facilitates rapid and unbiased assessment of the impacts of many possible amino acid substitutions within a protein on cell fitness, as measured by relative cell growth. The approach leverages several molecular technologies: cells with conditional expression of a wild-type gene of interest and constitutive expression of a library of mutant variants, degron-controlled stabilization of I-SceI meganuclease to mediate highly efficient transfection of a mutant allele library, and a high-throughput sequencing readout for cell growth upon conditional knockdown of wild-type gene expression and exclusive expression of mutant variants. Using this method, we queried the effects of amino acid substitutions in the apparently non-catalytic RNase III-like domain of KREPB4 (B4), which is an essential component of the RNA Editing Catalytic Complexes (RECCs) that carry out mitochondrial RNA editing in T. brucei. We measured the impacts of thousands of B4 variants on bloodstream form cell growth and validated the most deleterious variants containing single amino acid substitutions. Crucially, there was no correlation between phenotypes and amino acid conservation, demonstrating the greater power of this method over traditional sequence homology searching to identify functional residues. The bloodstream form cell growth phenotypes were combined with structural modeling, RECC protein proximity data, and analysis of selected substitutions in procyclic form T. brucei. These analyses revealed that the B4 RNaseIII-like domain is essential for maintenance of RECC integrity and RECC protein abundances and is also involved in changes in RECCs that occur between bloodstream and procyclic form life cycle stages.


Subject(s)
Protozoan Proteins , RNA Editing , Ribonuclease III , Trypanosoma brucei brucei , Amino Acid Substitution , DNA Mutational Analysis , High-Throughput Nucleotide Sequencing , Mutation , Protein Domains/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Trypanosoma brucei brucei/growth & development
2.
J Biol Chem ; 298(7): 102141, 2022 07.
Article in English | MEDLINE | ID: mdl-35714765

ABSTRACT

Trypanosoma brucei, the parasite that causes sleeping sickness, cycles between an insect and a mammalian host. However, the effect of RNA modifications such as pseudouridinylation on its ability to survive in these two different host environments is unclear. Here, two genome-wide approaches were applied for mapping pseudouridinylation sites (Ψs) on small nucleolar RNA (snoRNA), 7SL RNA, vault RNA, and tRNAs from T. brucei. We show using HydraPsiSeq and RiboMeth-seq that the Ψ on C/D snoRNA guiding 2'-O-methylation increased the efficiency of the guided modification on its target, rRNA. We found differential levels of Ψs on these noncoding RNAs in the two life stages (insect host and mammalian host) of the parasite. Furthermore, tRNA isoform abundance and Ψ modifications were characterized in these two life stages demonstrating stage-specific regulation. We conclude that the differential Ψ modifications identified here may contribute to modulating the function of noncoding RNAs involved in rRNA processing, rRNA modification, protein synthesis, and protein translocation during cycling of the parasite between its two hosts.


Subject(s)
Host-Parasite Interactions , Life Cycle Stages , Pseudouridine , RNA, Small Untranslated , Trypanosoma brucei brucei , Animals , Host-Parasite Interactions/physiology , Life Cycle Stages/physiology , Pseudouridine/genetics , Pseudouridine/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , RNA, Small Untranslated/genetics , RNA, Transfer/genetics , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/metabolism
3.
Molecules ; 27(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35208983

ABSTRACT

Social insects are in mutualism with microorganisms, contributing to their resistance against infectious diseases. The fungus Pseudallescheria boydii SNB-CN85 isolated from termites produces ovalicin derivatives resulting from the esterification of the less hindered site of the ovalicin epoxide by long-chain fatty acids. Their structures were elucidated using spectroscopic analysis and semisynthesis from ovalicin. For ovalicin, these compounds displayed antiprotozoal activities against Plasmodium falciparum and Trypanosoma brucei, with IC50 values of 19.8 and 1.1 µM, respectively, for the most active compound, i.e., ovalicin linoleate. In parallel, metabolomic profiling of a collection of P. boydii strains associated with termites made it possible to highlight this class of compounds together with tyroscherin derivatives in all strains. Finally, the complete genome of P. boydii strains was obtained by sequencing, and the cluster of potential ovalicin and ovalicin biosynthesis genes was annotated. Through these metabolomic and genomic analyses, a new ovalicin derivative named boyden C, in which the 6-membered ring of ovalicin was opened by oxidative cleavage, was isolated and structurally characterized.


Subject(s)
Antimalarials , Isoptera/microbiology , Plasmodium falciparum/growth & development , Scedosporium , Sesquiterpenes , Trypanocidal Agents , Trypanosoma brucei brucei/growth & development , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , French Guiana , Scedosporium/chemistry , Scedosporium/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology
4.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164094

ABSTRACT

The first stage of the drug discovery process involves the identification of small compounds with biological activity. Iboga alkaloids are monoterpene indole alkaloids (MIAs) containing a fused isoquinuclidine-tetrahydroazepine ring. Both the natural products and the iboga-inspired synthetic analogs have shown a wide variety of biological activities. Herein, we describe the chemoenzymatic preparation of a small library of novel N-indolylethyl-substituted isoquinuclidines as iboga-inspired compounds, using toluene as a starting material and an imine Diels-Alder reaction as the key step in the synthesis. The new iboga series was investigated for its potential to promote the release of glial cell line-derived neurotrophic factor (GDNF) by C6 glioma cells, and to inhibit the growth of infective trypanosomes. GDNF is a neurotrophic factor widely recognized by its crucial role in development, survival, maintenance, and protection of dopaminergic neuronal circuitries affected in several neurological and psychiatric pathologies. Four compounds of the series showed promising activity as GDNF releasers, and a leading structure (compound 11) was identified for further studies. The same four compounds impaired the growth of bloodstream Trypanosoma brucei brucei (EC50 1-8 µM) and two of them (compounds 6 and 14) showed a good selectivity index.


Subject(s)
Alkaloids , Antiprotozoal Agents , Glial Cell Line-Derived Neurotrophic Factor/biosynthesis , Tabernaemontana/chemistry , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/drug therapy , Alkaloids/chemical synthesis , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cell Line, Tumor , Mice , Rats , Trypanosomiasis, African/metabolism , Trypanosomiasis, African/pathology
5.
PLoS Negl Trop Dis ; 15(11): e0009939, 2021 11.
Article in English | MEDLINE | ID: mdl-34752454

ABSTRACT

Subspecies of the protozoan parasite Trypanosoma brucei are the causative agents of Human African Trypanosomiasis (HAT), a debilitating neglected tropical disease prevalent across sub-Saharan Africa. HAT case numbers have steadily decreased since the start of the century, and sustainable elimination of one form of the disease is in sight. However, key to this is the development of novel drugs to combat the disease. Acoziborole is a recently developed benzoxaborole, currently in advanced clinical trials, for treatment of stage 1 and stage 2 HAT. Importantly, acoziborole is orally bioavailable, and curative with one dose. Recent studies have made significant progress in determining the molecular mode of action of acoziborole. However, less is known about the potential mechanisms leading to acoziborole resistance in trypanosomes. In this study, an in vitro-derived acoziborole-resistant cell line was generated and characterised. The AcoR line exhibited significant cross-resistance with the methyltransferase inhibitor sinefungin as well as hypersensitisation to known trypanocides. Interestingly, transcriptomics analysis of AcoR cells indicated the parasites had obtained a procyclic- or stumpy-like transcriptome profile, with upregulation of procyclin surface proteins as well as differential regulation of key metabolic genes known to be expressed in a life cycle-specific manner, even in the absence of major morphological changes. However, no changes were observed in transcripts encoding CPSF3, the recently identified protein target of acoziborole. The results suggest that generation of resistance to this novel compound in vitro can be accompanied by transcriptomic switches resembling a procyclic- or stumpy-type phenotype.


Subject(s)
Drug Resistance , Protozoan Proteins/genetics , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/genetics , Trypanosomiasis, African/parasitology , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Life Cycle Stages/drug effects , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/metabolism
6.
PLoS One ; 16(11): e0258903, 2021.
Article in English | MEDLINE | ID: mdl-34807934

ABSTRACT

Most transcription in Trypanosoma brucei is constitutive and polycistronic. Consequently, the parasite relies on post-transcriptional mechanisms, especially affecting translation initiation and mRNA decay, to control gene expression both at steady-state and for adaptation to different environments. The parasite has six isoforms of the cap-binding protein EIF4E as well as five EIF4Gs. EIF4E1 does not bind to any EIF4G, instead being associated with a 4E-binding protein, 4EIP. 4EIP represses translation and reduces the stability of a reporter mRNA when artificially tethered to the 3'-UTR, whether or not EIF4E1 is present. 4EIP is essential during the transition from the mammalian bloodstream form to the procyclic form that lives in the Tsetse vector. In contrast, EIF4E1 is dispensable during differentiation, but is required for establishment of growing procyclic forms. In Leishmania, there is some evidence that EIF4E1 might be active in translation initiation, via direct recruitment of EIF3. However in T. brucei, EIF4E1 showed no detectable association with other translation initiation factors, even in the complete absence of 4EIP. There was some evidence for interactions with NOT complex components, but if these occur they must be weak and transient. We found that EIF4E1is less abundant in the absence of 4EIP, and RNA pull-down results suggested this might occur through co-translational complex assembly. We also report that 4EIP directly recruits the cytosolic terminal uridylyl transferase TUT3 to EIF4E1/4EIP complexes. There was, however, no evidence that TUT3 is essential for 4EIP function.


Subject(s)
Eukaryotic Initiation Factor-4E/metabolism , Protozoan Proteins/metabolism , RNA Cap-Binding Proteins/metabolism , RNA Caps/metabolism , RNA Nucleotidyltransferases/metabolism , Trypanosoma brucei brucei/metabolism , Cell Differentiation , Genes, Reporter , Life Cycle Stages , Mitochondria/metabolism , Multiprotein Complexes/metabolism , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trypanosoma brucei brucei/growth & development
7.
PLoS One ; 16(10): e0258711, 2021.
Article in English | MEDLINE | ID: mdl-34695154

ABSTRACT

The Trypanosoma brucei repeat (TBR) is a tandem repeat sequence present on the Trypanozoon minichromosomes. Here, we report that the TBR sequence is not as homogenous as previously believed. BLAST analysis of the available T. brucei genomes reveals various TBR sequences of 177 bp and 176 bp in length, which can be sorted into two TBR groups based on a few key single nucleotide polymorphisms. Conventional and quantitative PCR with primers matched to consensus sequences that target either TBR group show substantial copy-number variations in the TBR repertoire within a collection of 77 Trypanozoon strains. We developed the qTBR, a novel PCR consisting of three primers and two probes, to simultaneously amplify target sequences from each of the two TBR groups into one single qPCR reaction. This dual probe setup offers increased analytical sensitivity for the molecular detection of all Trypanozoon taxa, in particular for T.b. gambiense and T. evansi, when compared to existing TBR PCRs. By combining the qTBR with 18S rDNA amplification as an internal standard, the relative copy-number of each TBR target sequence can be calculated and plotted, allowing for further classification of strains into TBR genotypes associated with East, West or Central Africa. Thus, the qTBR takes advantage of the single-nucleotide polymorphisms and copy number variations in the TBR sequences to enhance amplification and genotyping of all Trypanozoon strains, making it a promising tool for prevalence studies of African trypanosomiasis in both humans and animals.


Subject(s)
DNA Copy Number Variations , DNA, Protozoan/genetics , Polymorphism, Single Nucleotide , Protozoan Proteins/genetics , Repetitive Sequences, Nucleic Acid , Trypanosoma brucei brucei/genetics , Trypanosomiasis, African/genetics , DNA, Protozoan/analysis , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/parasitology
8.
Molecules ; 26(15)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34361641

ABSTRACT

The search for novel antitrypanosomals and the investigation into their mode of action remain crucial due to the toxicity and resistance of commercially available antitrypanosomal drugs. In this study, two novel antitrypanosomals, tortodofuordioxamide (compound 2) and tortodofuorpyramide (compound 3), were chemically derived from the natural N-alkylamide tortozanthoxylamide (compound 1) through structural modification. The chemical structures of these compounds were confirmed through spectrometric and spectroscopic analysis, and their in vitro efficacy and possible mechanisms of action were, subsequently, investigated in Trypanosoma brucei (T. brucei), one of the causative species of African trypanosomiasis (AT). The novel compounds 2 and 3 displayed significant antitrypanosomal potencies in terms of half-maximal effective concentrations (EC50) and selectivity indices (SI) (compound 1, EC50 = 7.3 µM, SI = 29.5; compound 2, EC50 = 3.2 µM, SI = 91.3; compound 3, EC50 = 4.5 µM, SI = 69.9). Microscopic analysis indicated that at the EC50 values, the compounds resulted in the coiling and clumping of parasite subpopulations without significantly affecting the normal ratio of nuclei to kinetoplasts. In contrast to the animal antitrypanosomal drug diminazene, compounds 1, 2 and 3 exhibited antioxidant absorbance properties comparable to the standard antioxidant Trolox (Trolox, 0.11 A; diminazene, 0.50 A; compound 1, 0.10 A; compound 2, 0.09 A; compound 3, 0.11 A). The analysis of growth kinetics suggested that the compounds exhibited a relatively gradual but consistent growth inhibition of T. brucei at different concentrations. The results suggest that further pharmacological optimization of compounds 2 and 3 may facilitate their development into novel AT chemotherapy.


Subject(s)
Trypanocidal Agents , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/drug therapy , Animals , Mice , RAW 264.7 Cells , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosomiasis, African/metabolism
9.
RNA Biol ; 18(sup1): 278-286, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34224320

ABSTRACT

In kinetoplastid protists, all mitochondrial tRNAs are encoded in the nucleus and imported from the cytoplasm to maintain organellar translation. This also applies to the tryptophanyl tRNA (tRNATrp) encoded by a single-copy nuclear gene, with a CCA anticodon to read UGG codon used in the cytosolic translation. Yet, in the mitochondrion it is unable to decode the UGA codon specifying tryptophan. Following mitochondrial import of tRNATrp, this problem is solved at the RNA level by a single C34 to U34 editing event that creates the UCA anticodon, recognizing UGA. To identify the enzyme responsible for this critical editing activity, we scrutinized the genome of Trypanosoma brucei for putative cytidine deaminases as the most likely candidates. Using RNAi silencing and poisoned primer extension, we have identified a novel deaminase enzyme, named here TbmCDAT for mitochondrial Cytidine Deaminase Acting on tRNA, which is responsible for this organelle-specific activity in T. brucei. The ablation of TbmCDAT led to the downregulation of mitochondrial protein synthesis, supporting its role in decoding the UGA tryptophan codon.


Subject(s)
Codon, Terminator , Cytidine Deaminase/metabolism , Cytidine/genetics , Mitochondria/enzymology , RNA, Protozoan/genetics , Trypanosoma brucei brucei/genetics , Uridine/genetics , Amino Acid Sequence , Base Sequence , Cytidine/chemistry , Cytidine Deaminase/genetics , Mitochondria/genetics , Nucleic Acid Conformation , RNA, Mitochondrial/analysis , RNA, Mitochondrial/genetics , RNA, Protozoan/analysis , RNA, Transfer, Trp , Sequence Homology , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/metabolism , Uridine/chemistry
10.
mBio ; 12(4): e0172521, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34311578

ABSTRACT

African trypanosomes utilize glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) to evade the host immune system. VSG turnover is thought to be mediated via cleavage of the GPI anchor by endogenous GPI-specific phospholipase C (GPI-PLC). However, GPI-PLC is topologically sequestered from VSG substrates in intact cells. Recently, A. J. Szempruch, S. E. Sykes, R. Kieft, L. Dennison, et al. (Cell 164:246-257, 2016, https://doi.org/10.1016/j.cell.2015.11.051) demonstrated the release of nanotubes that septate to form free VSG+ extracellular vesicles (EVs). Here, we evaluated the relative contributions of GPI hydrolysis and EV formation to VSG turnover in wild-type (WT) and GPI-PLC null cells. The turnover rate of VSG was consistent with prior measurements (half-life [t1/2] of ∼26 h) but dropped significantly in the absence of GPI-PLC (t1/2 of ∼36 h). Ectopic complementation restored normal turnover rates, confirming the role of GPI-PLC in turnover. However, physical characterization of shed VSG in WT cells indicated that at least 50% is released directly from cell membranes with intact GPI anchors. Shedding of EVs plays an insignificant role in total VSG turnover in both WT and null cells. In additional studies, GPI-PLC was found to have no role in biosynthetic and endocytic trafficking to the lysosome but did influence the rate of receptor-mediated endocytosis. These results indicate that VSG turnover is a bimodal process involving both direct shedding and GPI hydrolysis. IMPORTANCE African trypanosomes, the protozoan agent of human African trypanosomaisis, avoid the host immune system by switching expression of the variant surface glycoprotein (VSG). VSG is a long-lived protein that has long been thought to be turned over by hydrolysis of its glycolipid membrane anchor. Recent work demonstrating the shedding of VSG-containing extracellular vesicles has led us to reinvestigate the mode of VSG turnover. We found that VSG is shed in part by glycolipid hydrolysis but also in approximately equal part by direct shedding of protein with intact lipid anchors. Shedding of exocytic vesicles made a very minor contribution to overall VSG turnover. These results indicate that VSG turnover is a bimodal process and significantly alter our understanding of the "life cycle" of this critical virulence factor.


Subject(s)
Antigens, Protozoan/immunology , Life Cycle Stages , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/physiology , Antigens, Protozoan/genetics , Cell Line , Endocytosis , Protozoan Proteins/genetics , Trypanosoma brucei brucei/chemistry , Trypanosoma brucei brucei/genetics
11.
PLoS Negl Trop Dis ; 15(4): e0009284, 2021 04.
Article in English | MEDLINE | ID: mdl-33909626

ABSTRACT

The ability to reproduce the developmental events of trypanosomes that occur in their mammalian host in vitro offers significant potential to assist in understanding of the underlying biology of the process. For example, the transition from bloodstream slender to bloodstream stumpy forms is a quorum-sensing response to the parasite-derived peptidase digestion products of environmental proteins. As an abundant physiological substrate in vivo, we studied the ability of a basement membrane matrix enriched gel (BME) in the culture medium to support differentiation of pleomorphic Trypanosoma brucei to stumpy forms. BME comprises extracellular matrix proteins, which are among the most abundant proteins found in connective tissues in mammals and known substrates of parasite-released peptidases. We previously showed that two of these released peptidases are involved in generating a signal that promotes slender-to-stumpy differentiation. Here, we tested the ability of basement membrane extract to enhance parasite differentiation through its provision of suitable substrates to generate the quorum sensing signal, namely oligopeptides. Our results show that when grown in the presence of BME, T. brucei pleomorphic cells arrest at the G0/1 phase of the cell cycle and express the differentiation marker PAD1, the response being restricted to differentiation-competent parasites. Further, the stumpy forms generated in BME medium are able to efficiently proceed onto the next life cycle stage in vitro, procyclic forms, when incubated with cis-aconitate, further validating the in vitro BME differentiation system. Hence, BME provides a suitable in vitro substrate able to accurately recapitulate physiological parasite differentiation without the use of experimental animals.


Subject(s)
Basement Membrane/metabolism , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/metabolism , Animals , Cell Cycle , Cell Differentiation , Culture Media , Life Cycle Stages , Protozoan Proteins/metabolism , Quorum Sensing , Trypanosoma brucei brucei/cytology
12.
J Biol Chem ; 296: 100548, 2021.
Article in English | MEDLINE | ID: mdl-33741344

ABSTRACT

The genome of trypanosomatids rearranges by using repeated sequences as platforms for amplification or deletion of genomic segments. These stochastic recombination events have a direct impact on gene dosage and foster the selection of adaptive traits in response to environmental pressure. We provide here such an example by showing that the phosphoenolpyruvate carboxykinase (PEPCK) gene knockout (Δpepck) leads to the selection of a deletion event between two tandemly arranged fumarate reductase (FRDg and FRDm2) genes to produce a chimeric FRDg-m2 gene in the Δpepck∗ cell line. FRDg is expressed in peroxisome-related organelles, named glycosomes, expression of FRDm2 has not been detected to date, and FRDg-m2 is nonfunctional and cytosolic. Re-expression of FRDg significantly impaired growth of the Δpepck∗ cells, but FRD enzyme activity was not required for this negative effect. Instead, glycosomal localization as well as the covalent flavinylation motif of FRD is required to confer growth retardation and intracellular accumulation of reactive oxygen species (ROS). The data suggest that FRDg, similar to Escherichia coli FRD, can generate ROS in a flavin-dependent process by transfer of electrons from NADH to molecular oxygen instead of fumarate when the latter is unavailable, as in the Δpepck background. Hence, growth retardation is interpreted as a consequence of increased production of ROS, and rearrangement of the FRD locus liberates Δpepck∗ cells from this obstacle. Interestingly, intracellular production of ROS has been shown to be required to complete the parasitic cycle in the insect vector, suggesting that FRDg may play a role in this process.


Subject(s)
Glucose/metabolism , Homologous Recombination , Microbodies/enzymology , Reactive Oxygen Species/metabolism , Succinate Dehydrogenase/metabolism , Trypanosoma brucei brucei/metabolism , Cells, Cultured , Flavins/metabolism , Succinate Dehydrogenase/genetics , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/growth & development
13.
Sci Rep ; 11(1): 5390, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33686109

ABSTRACT

Propolis, is a gummy material produced by honey bees from different parts of plants and is enriched with varied biological active compounds like flavonoids, phenolics and phenolic acids with wide applicability in the food, pharmaceutical and cosmetics industries. The current report is focused on the characterisation of propolis collected from Asir region, South-west of Saudi Arabia and its effect on Trypanosoma brucei (the causative organism of African sleeping sickness) and cytotoxic effect against U937 human leukemia cells. The Chemical composition and spectral characteristics of Saudi propolis was studied by Liquid Chromatography Mass Spectrometry (LC-MS) and High-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD).The two main active compounds isolated from Saudi propolis via column chromatography and size exclusion chromatography were fisetinidol and ferulic acid. High resolution electrospray ionization-mass spectrophotometer (HRESI-MS) and nuclear magnetic resonance (NMR) were used to elucidate the structures of the isolated compounds. All crudes extracts, fractions as well as isolated compounds were subjected for biological testing against Trypanosoma brucei (S427 WT), and their cytotoxicity against U937 human leukemia cells. Amongst the various samples investigated, S-6 fraction demonstrated highest anti-trypanosomal activity at 2.4 µg/ml MIC followed by fisetinidol at 4.7 µg/ml reflecting that the anti-trypanosomal activity is attributable to the presence of fisetinidol in the fraction. Similarly, all the tested samples exhibited cytotoxicity with an IC50 > 60 µg/ml. S-6 fractions exhibited highest cytotoxic activity against U937 cells with an IC50 of 58.7 µg/ml followed by ferulic acid with an IC50 87.7 µg/ml indicating that the cytotoxic effect of propolis might be due to the presence of ferulic acid. In conclusion, the biological activity of propolis could be attributed to the synergistic action of the two active compounds-ferulic acid and fisetinidol. The data obtained in the study is thus indicative of the role of propolis as potential anti-trypanosomal and anticancer agent for effective cancer therapy.


Subject(s)
Antineoplastic Agents , Neoplasms/drug therapy , Propolis , Trypanocidal Agents , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Neoplasms/metabolism , Propolis/chemistry , Propolis/pharmacology , Saudi Arabia , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosomiasis, African/metabolism , U937 Cells
14.
Nucleic Acids Res ; 49(6): 3242-3262, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33660774

ABSTRACT

The African trypanosome Trypanosoma brucei is a unicellular eukaryote, which relies on a protective variant surface glycoprotein (VSG) coat for survival in the mammalian host. A single trypanosome has >2000 VSG genes and pseudogenes of which only one is expressed from one of ∼15 telomeric bloodstream form expression sites (BESs). Infectious metacyclic trypanosomes present within the tsetse fly vector also express VSG from a separate set of telomeric metacyclic ESs (MESs). All MESs are silenced in bloodstream form T. brucei. As very little is known about how this is mediated, we performed a whole genome RNAi library screen to identify MES repressors. This allowed us to identify a novel SAP domain containing DNA binding protein which we called TbSAP. TbSAP is enriched at the nuclear periphery and binds both MESs and BESs. Knockdown of TbSAP in bloodstream form trypanosomes did not result in cells becoming more 'metacyclic-like'. Instead, there was extensive global upregulation of transcripts including MES VSGs, VSGs within the silent VSG arrays as well as genes immediately downstream of BES promoters. TbSAP therefore appears to be a novel chromatin protein playing an important role in silencing the extensive VSG repertoire of bloodstream form T. brucei.


Subject(s)
Protozoan Proteins/metabolism , Repressor Proteins/metabolism , Trypanosoma brucei brucei/genetics , Variant Surface Glycoproteins, Trypanosoma/genetics , Chromatin/metabolism , Gene Expression Regulation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Protozoan Proteins/genetics , RNA Interference , Repressor Proteins/genetics , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism
15.
Nucleic Acids Res ; 49(6): 3557-3572, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33677542

ABSTRACT

Uridine insertion/deletion editing of mitochondrial mRNAs is a characteristic feature of kinetoplastids, including Trypanosoma brucei. Editing is directed by trans-acting gRNAs and catalyzed by related RNA Editing Core Complexes (RECCs). The non-catalytic RNA Editing Substrate Binding Complex (RESC) coordinates interactions between RECC, gRNA and mRNA. RESC is a dynamic complex comprising GRBC (Guide RNA Binding Complex) and heterogeneous REMCs (RNA Editing Mediator Complexes). Here, we show that RESC10 is an essential, low abundance, RNA binding protein that exhibits RNase-sensitive and RNase-insensitive interactions with RESC proteins, albeit its minimal in vivo interaction with RESC13. RESC10 RNAi causes extensive RESC disorganization, including disruption of intra-GRBC protein-protein interactions, as well as mRNA depletion from GRBC and accumulation on REMCs. Analysis of mitochondrial RNAs at single nucleotide resolution reveals transcript-specific effects: RESC10 dramatically impacts editing progression in pan-edited RPS12 mRNA, but is critical for editing initiation in mRNAs with internally initiating gRNAs, pointing to distinct initiation mechanisms for these RNA classes. Correlations between sites at which editing pauses in RESC10 depleted cells and those in knockdowns of previously studied RESC proteins suggest that RESC10 acts upstream of these factors and that RESC is particularly important in promoting transitions between uridine insertion and deletion RECCs.


Subject(s)
Protozoan Proteins/physiology , RNA Editing , RNA, Messenger/metabolism , RNA, Mitochondrial/metabolism , RNA-Binding Proteins/physiology , Trypanosoma brucei brucei/genetics , RNA, Guide, Kinetoplastida/metabolism , RNA, Messenger/chemistry , RNA, Mitochondrial/chemistry , RNA-Binding Proteins/metabolism , Trypanosoma brucei brucei/growth & development , Uridine/metabolism
16.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33597294

ABSTRACT

Centrioles and basal bodies (CBBs) are found in physically linked pairs, and in mammalian cells intercentriole connections (G1-G2 tether and S-M linker) regulate centriole duplication and function. In trypanosomes BBs are not associated with the spindle and function in flagellum/cilia nucleation with an additional role in mitochondrial genome (kinetoplast DNA [kDNA]) segregation. Here, we describe BBLP, a BB/pro-BB (pBB) linker protein in Trypanosoma brucei predicted to be a large coiled-coil protein conserved in the kinetoplastida. Colocalization with the centriole marker SAS6 showed that BBLP localizes between the BB/pBB pair, throughout the cell cycle, with a stronger signal in the old flagellum BB/pBB pair. Importantly, RNA interference (RNAi) depletion of BBLP leads to a conspicuous splitting of the BB/pBB pair associated only with the new flagellum. BBLP RNAi is lethal in the bloodstream form of the parasite and perturbs mitochondrial kDNA inheritance. Immunogold labeling confirmed that BBLP is localized to a cytoskeletal component of the BB/pBB linker, and tagged protein induction showed that BBLP is incorporated de novo in both new and old flagella BB pairs of dividing cells. We show that the two aspects of CBB disengagement-loss of orthogonal orientation and ability to separate and move apart-are consistent but separable events in evolutionarily diverse cells and we provide a unifying model explaining centriole/BB linkage differences between such cells.


Subject(s)
Basal Bodies/metabolism , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/cytology , Cytoskeleton/metabolism , DNA, Kinetoplast/genetics , Flagella/metabolism , Protozoan Proteins/genetics , RNA Interference , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/metabolism
17.
Molecules ; 26(2)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445584

ABSTRACT

Glucose 6-phosphate dehydrogenase (G6PDH) fulfills an essential role in cell physiology by catalyzing the production of NADPH+ and of a precursor for the de novo synthesis of ribose 5-phosphate. In trypanosomatids, G6PDH is essential for in vitro proliferation, antioxidant defense and, thereby, drug resistance mechanisms. So far, 16α-brominated epiandrosterone represents the most potent hit targeting trypanosomal G6PDH. Here, we extended the investigations on this important drug target and its inhibition by using a small subset of androstane derivatives. In Trypanosoma cruzi, immunofluorescence revealed a cytoplasmic distribution of G6PDH and the absence of signal in major organelles. Cytochemical assays confirmed parasitic G6PDH as the molecular target of epiandrosterone. Structure-activity analysis for a set of new (dehydro)epiandrosterone derivatives revealed that bromination at position 16α of the cyclopentane moiety yielded more potent T. cruzi G6PDH inhibitors than the corresponding ß-substituted analogues. For the 16α brominated compounds, the inclusion of an acetoxy group at position 3 either proved detrimental or enhanced the activity of the epiandrosterone or the dehydroepiandrosterone derivatives, respectively. Most derivatives presented single digit µM EC50 against infective T. brucei and the killing mechanism involved an early thiol-redox unbalance. This data suggests that infective African trypanosomes lack efficient NADPH+-synthesizing pathways, beyond the Pentose Phosphate, to maintain thiol-redox homeostasis.


Subject(s)
Glucosephosphate Dehydrogenase/metabolism , Life Cycle Stages , Steroids/pharmacology , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/growth & development , Androsterone/chemistry , Androsterone/pharmacology , Binding Sites , Cytosol/enzymology , Dehydroepiandrosterone/chemistry , Dehydroepiandrosterone/pharmacology , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Glucosephosphate Dehydrogenase/chemistry , Humans , Life Cycle Stages/drug effects , Models, Molecular , Oxidation-Reduction , Reproducibility of Results , Trypanosoma brucei brucei/drug effects
18.
Biomolecules ; 10(12)2020 12 13.
Article in English | MEDLINE | ID: mdl-33322191

ABSTRACT

In the absence of vaccines, there is a need for alternative sources of effective chemotherapy for African trypanosomiasis (AT). The increasing rate of resistance and toxicity of commercially available antitrypanosomal drugs also necessitates an investigation into the mode of action of new antitrypanosomals for AT. In this study, furoquinoline 4, 7, 8-trimethoxyfuro (2, 3-b) quinoline (compound 1) and oxylipin 9-oxo-10, 12-octadecadienoic acid (compound 2) were isolated from the plant species Zanthoxylum zanthoxyloides (Lam) Zepern and Timler (root), and their in vitro efficacy and mechanisms of action investigated in Trypanosomabrucei (T. brucei), the species responsible for AT. Both compounds resulted in a selectively significant growth inhibition of T. brucei (compound 1, half-maximal effective concentration EC50 = 1.7 µM, selectivity indices SI = 74.9; compound 2, EC50 = 1.2 µM, SI = 107.3). With regards to effect on the cell cycle phases of T. brucei, only compound 1 significantly arrested the second growth-mitotic (G2-M) phase progression even though G2-M and DNA replication (S) phase arrest resulted in the overall reduction of T. brucei cells in G0-G1 for both compounds. Moreover, both compounds resulted in the aggregation and distortion of the elongated slender morphology of T. brucei. Analysis of antioxidant potential revealed that at their minimum and maximum concentrations, the compounds exhibited significant oxidative activities in T. brucei (compound 1, 22.7 µM Trolox equivalent (TE), 221.2 µM TE; compound 2, 15.0 µM TE, 297.7 µM TE). Analysis of growth kinetics also showed that compound 1 exhibited a relatively consistent growth inhibition of T. brucei at different concentrations as compared to compound 2. The results suggest that compounds 1 and 2 are promising antitrypanosomals with the potential for further development into novel AT chemotherapy.


Subject(s)
Antiprotozoal Agents/pharmacology , Oxylipins/isolation & purification , Oxylipins/pharmacology , Quinolines/isolation & purification , Quinolines/pharmacology , Trypanosoma brucei brucei/drug effects , Zanthoxylum/chemistry , Cell Cycle Checkpoints/drug effects , Gas Chromatography-Mass Spectrometry , Kinetics , Oxidants/toxicity , Trypanosoma brucei brucei/cytology , Trypanosoma brucei brucei/growth & development
19.
Molecules ; 25(17)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825216

ABSTRACT

As part of an ongoing study of natural products from local medicinal plants, the methanol extract of stem bark of Rauvolfia caffra Sond was investigated for biological activity. Column chromatography and preparative thin-layer chromatography were used to isolate lupeol (1), raucaffricine (2), N-methylsarpagine (3), and spegatrine (4). The crude extract, fractions and isolated compounds were tested for anti-oxidant, antitrypanosomal and anti-proliferation activities. Two fractions displayed high DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity and reducing power with IC50 (The half maximal inhibitory concentration) and IC0.5 values of 0.022 ± 0.003 mg/mL and 0.036 ± 0.007 mg/mL, and 0.518 ± 0.044 mg/mL and 1.076 ± 0.136 mg/mL, respectively. Spegatrine (4) was identified as the main antioxidant compound in R. caffra with IC50 and IC0.5 values of 0.119 ± 0.067 mg/mL and 0.712 ± 0 mg/mL, respectively. One fraction displayed high antitrypanosomal activity with an IC50 value of 18.50 µg/mL. However, the major constituent of this fraction, raucaffricine (2), was not active. The crude extract, fractions and pure compounds did not display any cytotoxic effect at a concentration of 50 µg/mL against HeLa cells. This study shows directions for further in vitro studies on the antioxidant and antitrypanosomal activities of Rauvolfia caffra Sond.


Subject(s)
Antioxidants , Rauwolfia/chemistry , Trypanocidal Agents , Trypanosoma brucei brucei/growth & development , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , HeLa Cells , Humans , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification , Trypanocidal Agents/pharmacology
20.
Biochim Biophys Acta Bioenerg ; 1861(11): 148283, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32763239

ABSTRACT

Acetate:succinate CoA transferase (ASCT) is a mitochondrial enzyme that catalyzes the production of acetate and succinyl-CoA, which is coupled to ATP production with succinyl-CoA synthetase (SCS) in a process called the ASCT/SCS cycle. This cycle has been studied in Trypanosoma brucei (T. brucei), a pathogen of African sleeping sickness, and is involved in (i) ATP and (ii) acetate production and proceeds independent of oxygen and an electrochemical gradient. Interestingly, knockout of ASCT in procyclic form (PCF) of T. brucei cause oligomycin A-hypersensitivity phenotype indicating that ASCT/SCS cycle complements the deficiency of ATP synthase activity. In bloodstream form (BSF) of T. brucei, ATP synthase works in reverse to maintain the electrochemical gradient by hydrolyzing ATP. However, no information has been available on the source of ATP, although ASCT/SCS cycle could be a potential candidate. Regarding mitochondrial acetate production, which is essential for fatty acid biosynthesis and growth of T. brucei, ASCT or acetyl-CoA hydrolase (ACH) are known to be its source. Despite the importance of this cycle, direct evidence of its function is lacking, and there are no comprehensive biochemical or structural biology studies reported so far. Here, we show that in vitro-reconstituted ASCT/SCS cycle is highly specific towards acetyl-CoA and has a higher kcat than that of yeast and bacterial ATP synthases. Our results provide the first biochemical basis for (i) rescue of ATP synthase-deficient phenotype by ASCT/SCS cycle in PCF and (ii) a potential source of ATP for the reverse reaction of ATP synthase in BSF.


Subject(s)
Acetates/metabolism , Adenosine Triphosphate/metabolism , Coenzyme A-Transferases/metabolism , Mitochondria/metabolism , Succinate-CoA Ligases/metabolism , Trypanosoma brucei brucei/metabolism , Acyl Coenzyme A/metabolism , Coenzyme A-Transferases/chemistry , Coenzyme A-Transferases/genetics , Mutation , Oxidative Phosphorylation , Succinate-CoA Ligases/chemistry , Succinate-CoA Ligases/genetics , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...