Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Cancer Res Commun ; 4(8): 2203-2214, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087378

ABSTRACT

The role of mast cell (MC), a common myeloid-derived immune cell, in the development of oral squamous cell carcinoma (OSCC) is unclear. The aim of this study was to investigate MC infiltration in oral precancer and oral cancer. The evaluation of immune cell infiltration and its association with prognosis in OSCC used RNA sequencing and multiple public datasets. Multiplex immunofluorescence was used to explore the infiltration of MC in the microenvironment of OSCC and oral precancer and the interaction with CD8+ cells. The role of MC in OSCC progression was verified by in vivo experiments. The resting MC infiltration was mainly present in oral precancer, whereas activated MC infiltration was significantly higher in OSCC. Activated MC was associated with malignant transformation of oral precancer and poor prognosis of OSCC. In vivo studies showed that MC promoted the growth of OSCC. The infiltration of activated MC was negatively correlated with the infiltration of CD8+ T cells. The subtype of MC containing tryptase without chymase (MCT) was significantly higher in OSCC compared with oral precancer and was associated with poor survival. Furthermore, spatial distance analysis revealed a greater distance between MCT and CD8+ cells, which was also linked to poor prognosis in OSCC. Cox regression analysis showed that MCT could be a potential diagnostic and prognostic biomarker. This study provides new insights into the role of MC in the immune microenvironment of OSCC. It might enhance the immunotherapeutic efficacy of OSCC by developing targeted therapies against MC. SIGNIFICANCE: In this study, we investigated the role of mast cells (MC) in oral precancer and oral cancer and demonstrated that MCs are involved in oral cancer progression and may serve as a potential diagnostic and prognostic marker. It might improve the immunotherapeutic efficacy through developing targeted therapies against MCs.


Subject(s)
Cell Transformation, Neoplastic , Disease Progression , Mast Cells , Mouth Neoplasms , Precancerous Conditions , Tumor Microenvironment , Mast Cells/pathology , Mast Cells/immunology , Mouth Neoplasms/pathology , Mouth Neoplasms/immunology , Mouth Neoplasms/mortality , Humans , Tumor Microenvironment/immunology , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/pathology , Precancerous Conditions/pathology , Precancerous Conditions/immunology , Prognosis , Animals , CD8-Positive T-Lymphocytes/immunology , Mice , Male , Tryptases/metabolism , Tryptases/genetics , Female , Chymases/metabolism , Chymases/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology
2.
PLoS One ; 19(4): e0283915, 2024.
Article in English | MEDLINE | ID: mdl-38635782

ABSTRACT

Anaphylaxis is a severe life-threatening hypersensitivity reaction induced by mast cell degranulation. Among the various mediators of mast cells, little is known about the role of tryptase. Therefore, we aimed to elucidate the role of protease-activating receptor-2 (PAR-2), a receptor activated by tryptase, in murine anaphylactic models using PAR-2-deficient mice and newly generated tryptase-deficient mice. Anaphylaxis was induced by IgE-dependent and IgE-independent mast cell degranulation in mice. PAR-2 deficiency exacerbated the decrease in body temperature and hypotension during anaphylaxis; however, the number of skin mast cells, degree of mast cell degranulation, and systemic and local vascular hyperpermeability were comparable in PAR-2 knockout and wild-type mice. Nitric oxide, which is produced by endothelial nitric oxide synthase (eNOS), is an indispensable vasodilator in anaphylaxis. In the lungs of anaphylactic mice, PAR-2 deficiency promoted eNOS expression and phosphorylation, suggesting a protective effect of PAR-2 against anaphylaxis by downregulating eNOS activation and expression. Based on the hypothesis that the ligand for PAR-2 in anaphylaxis is mast cell tryptase, tryptase-deficient mice were generated using CRISPR-Cas9. In wild-type mice, the PAR-2 antagonist exacerbated the body temperature drop due to anaphylaxis; however, the effect of the PAR-2 antagonist was abolished in tryptase-deficient mice. These results suggest that tryptase is a possible ligand of PAR-2 in anaphylaxis and that the tryptase/PAR-2 pathway attenuates the anaphylactic response in mice.


Subject(s)
Anaphylaxis , Animals , Mice , Anaphylaxis/metabolism , Immunoglobulin E/metabolism , Ligands , Mast Cells/metabolism , Receptor, PAR-2/genetics , Receptor, PAR-2/metabolism , Tryptases/genetics , Tryptases/metabolism
3.
Curr Allergy Asthma Rep ; 24(4): 199-209, 2024 04.
Article in English | MEDLINE | ID: mdl-38460022

ABSTRACT

PURPOSE OF REVIEW: To provide an overview on the current understanding of genetic variability in human tryptases and summarize the literature demonstrating the differential impact of mature tryptases on mast cell-mediated reactions and associated clinical phenotypes. RECENT FINDINGS: It is becoming increasingly recognized that tryptase gene composition, and in particular the common genetic trait hereditary alpha-tryptasemia (HαT), impacts clinical allergy. HαT has consistently been associated with clonal mast cell disorders (MCD) and has also been associated with more frequent anaphylaxis among these patients, and patients in whom no allergic trigger can be found, specifically idiopathic anaphylaxis. Additionally, more severe anaphylaxis among Hymenoptera venom allergy patients has been linked to HαT in both retrospective and prospective studies. An increased relative number of α-tryptase-encoding gene copies, even in the absence of HαT, has also been associated with systemic mastocytosis and has been shown to positively correlate with the severity of mast cell-mediated reactions to vibration and food. These findings may be due to increased generation of α/ß-tryptase heterotetramers and differences in their enzymatic activity relative to ß-tryptase homotetramers. HαT is a naturally occurring overexpression model of α-tryptase in humans. Increased relative α-tryptase expression modifies immediate hypersensitivity symptoms and is associated with more frequent and severe mast cell-mediated reactions, ostensibly due to increased α/ß-tryptase heterotetramer production.


Subject(s)
Anaphylaxis , Mast Cell Activation Syndrome , Mastocytosis , Humans , Mast Cells , Tryptases/genetics , Anaphylaxis/genetics , Anaphylaxis/diagnosis , Retrospective Studies , Prospective Studies , Mastocytosis/genetics , Mastocytosis/diagnosis
4.
PLoS One ; 19(2): e0291947, 2024.
Article in English | MEDLINE | ID: mdl-38335181

ABSTRACT

Tryptase, the most abundant mast cell granule protein, is elevated in severe asthma patients independent of type 2 inflammation status. Higher active ß tryptase allele counts are associated with higher levels of peripheral tryptase and lower clinical benefit from anti-IgE therapies. Tryptase is a therapeutic target of interest in severe asthma and chronic spontaneous urticaria. Active and inactive allele counts may enable stratification to assess response to therapies in asthmatic patient subpopulations. Tryptase gene loci TPSAB1 and TPSB2 have high levels of sequence identity, which makes genotyping a challenging task. Here, we report a targeted next-generation sequencing (NGS) assay and downstream bioinformatics analysis for determining polymorphisms at tryptase TPSAB1 and TPSB2 loci. Machine learning modeling using multiple polymorphisms in the tryptase loci was used to improve the accuracy of genotyping calls. The assay was tested and qualified on DNA extracted from whole blood of healthy donors and asthma patients, achieving accuracy of 96%, 96% and 94% for estimation of inactive α and ßΙΙΙFS tryptase alleles and α duplication on TPSAB1, respectively. The reported NGS assay is a cost-effective method that is more efficient than Sanger sequencing and provides coverage to evaluate known as well as unreported tryptase polymorphisms.


Subject(s)
Asthma , Mast Cells , Humans , Tryptases/genetics , Tryptases/metabolism , Mast Cells/metabolism , Genotype , Asthma/drug therapy , Asthma/genetics , High-Throughput Nucleotide Sequencing
5.
Curr Allergy Asthma Rep ; 24(2): 25-32, 2024 02.
Article in English | MEDLINE | ID: mdl-38270805

ABSTRACT

PURPOSE OF REVIEW: Mast cell (MC) activation can present with a wide range of symptoms. The mechanisms that cause such activation are varied. One of them is the presence of clonal MCs which is defined, within other possible changes, by the presence of a somatic, activating mutation in the KIT gene. The clinical course and prognosis of patients with this underlying disease may be different from other causes of MC activation (MCA). For this reason, it is important to early diagnose, or at least suspect, which patients with MCA are due to clonal MCs. RECENT FINDINGS: The diagnosis of clonality must be made in a comprehensive manner. However, this paper reviews chronologically each of the stages from the patient's first visit to the doctor's office which can be indicative of clonality: clinical presentation of MCA, physical examination, analytical determinations of tryptase, and/or KIT mutational analysis and bone involvement, among others. The different clonality predictive scores proposed are also reviewed and compared. Although the gold standard for the diagnosis of certainty of MC clonality is the performance of a bone marrow (BM) biopsy, there are clinical symptoms, signs, and biological parameters suggestive of clonality, as well as predictive scores, which can guide (or rule out) an early diagnosis and avoid unnecessary BM biopsies.


Subject(s)
Mast Cell Activation Syndrome , Mastocytosis , Humans , Mast Cells/pathology , Mastocytosis/diagnosis , Mastocytosis/genetics , Mutation , Prognosis , Tryptases/genetics , Proto-Oncogene Proteins c-kit/genetics
6.
Sci Rep ; 14(1): 2416, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287122

ABSTRACT

Hereditary α tryptasemia (HαT) is an autosomal dominant trait characterized by increased TPSAB1 copy number (CN) encoding α-tryptase. The determination of HαT is being discussed as an important biomarker to be included in risk assessment models and future diagnostic algorithms for patients with mastocytosis and anaphylaxis. Due to the complex genetic structure at the human tryptase locus, genetic testing for tryptase gene composition is presently notably limited and infrequently pursued. This study aimed to develop, optimise and validate a multiplex droplet digital PCR (ddPCR) assay that can reliably quantify α- and ß-tryptase encoding sequences in a single reaction. To optimise the ddPCR conditions and establish an amplitude-based multiplex ddPCR assay, additional primers and probes, a thermal gradient with varying annealing temperatures, different primers/probe concentrations, and various initial DNA quantities were tested. Results obtained from all 114 samples analysed using multiplex ddPCR were identical to those obtained through the use of original duplex assays. Utilizing this multiplex ddPCR assay, in contrast to conducting distinct duplex ddPCRs, presents noteworthy benefits for tryptase genotyping. These advantages encompass a substantial threefold decrease in material costs and considerable time savings. Consequently, this approach exhibits high suitability and particularly captures interest for routine clinical implementation.


Subject(s)
Mastocytosis , Multiplex Polymerase Chain Reaction , Humans , Tryptases/genetics , Genotype , Multiplex Polymerase Chain Reaction/methods , Genetic Testing
7.
Allergol. immunopatol ; 40(6): 385-389, nov.-dic. 2012. ilus
Article in English | IBECS | ID: ibc-107721

ABSTRACT

Tryptase is one of the main proteases located in the secretory granules of the mast cells, and is released through degranulation. It is therefore assumed to play an important role in inflammatory and allergic processes. Four genes are known to encode for these enzymes, with different alleles that give rise to different types of tryptases. The term "tryptase" generally refers to beta-tryptase, which in vivo is a heterotetramer, possessing a structure of vital importance for enabling drug and substrate access to the active site of the molecule. Tryptase has been reported to possess antagonistic functions, since it plays an important role both in inflammatory phenomena and as a protector against infection. In allergic processes it is associated to bronchial hyperresponsiveness in asthmatic patients, where PAR-2 is of great importance as an airway receptor. Lastly, the genes that encode for tryptase are highly polymorphic and complex. As a result, it is important to establish a relationship between genotype and phenotype in disorders such as asthma, and to identify mutations that are presumably of pharmacological relevance(AU)


No disponible


Subject(s)
Humans , Tryptases/genetics , Hypersensitivity/genetics , Mast Cells/immunology , Peripheral Nervous System/immunology
SELECTION OF CITATIONS
SEARCH DETAIL