Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.375
Filter
1.
Sci Rep ; 14(1): 11387, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762567

ABSTRACT

Identifying and controlling tumor escape mechanisms is crucial for improving cancer treatment effectiveness. Experimental studies reveal tumor hypoxia and adenosine as significant contributors to such mechanisms. Hypoxia exacerbates adenosine levels in the tumor microenvironment. Combining inhibition of these factors with dendritic cell (DC)-based immunotherapy promises improved clinical outcomes. However, challenges include understanding dynamics, optimal vaccine dosages, and timing. Mathematical models, including agent-based, diffusion, and ordinary differential equations, address these challenges. Here, we employ these models for the first time to elucidate how hypoxia and adenosine facilitate tumor escape in DC-based immunotherapy. After parameter estimation using experimental data, we optimize vaccination protocols to minimize tumor growth. Sensitivity analysis highlights adenosine's significant impact on immunotherapy efficacy. Its suppressive role impedes treatment success, but inhibiting adenosine could enhance therapy, as suggested by the model. Our findings shed light on hypoxia and adenosine-mediated tumor escape mechanisms, informing future treatment strategies. Additionally, identifiability analysis confirms accurate parameter determination using experimental data.


Subject(s)
Adenosine , Dendritic Cells , Immunotherapy , Tumor Escape , Adenosine/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Immunotherapy/methods , Tumor Microenvironment/immunology , Animals , Models, Theoretical , Neoplasms/therapy , Neoplasms/immunology , Tumor Hypoxia , Mice , Hypoxia/metabolism
2.
BMC Vet Res ; 20(1): 196, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741109

ABSTRACT

BACKGROUND: Hypoxia is a detrimental factor in solid tumors, leading to aggressiveness and therapy resistance. OMX, a tunable oxygen carrier from the heme nitric oxide/oxygen-binding (H-NOX) protein family, has the potential to reduce tumor hypoxia. [18F]Fluoromisonidazole ([18F]FMISO) positron emission tomography (PET) is the most widely used and investigated method for non-invasive imaging of tumor hypoxia. In this study, we used [18F]FMISO PET/CT (computed tomography) to assess the effect of OMX on tumor hypoxia in spontaneous canine tumors. RESULTS: Thirteen canine patients with various tumors (n = 14) were randomly divided into blocks of two, with the treatment groups alternating between receiving intratumoral (IT) OMX injection (OMX IT group) and intravenous (IV) OMX injection (OMX IV group). Tumors were regarded as hypoxic if maximum tumor-to-muscle ratio (TMRmax) was greater than 1.4. In addition, hypoxic volume (HV) was defined as the region with tumor-to-muscle ratio greater than 1.4 on [18F]FMISO PET images. Hypoxia was detected in 6/7 tumors in the OMX IT group and 5/7 tumors in the OMX IV injection group. Although there was no significant difference in baseline hypoxia between the OMX IT and IV groups, the two groups showed different responses to OMX. In the OMX IV group, hypoxic tumors (n = 5) exhibited significant reductions in tumor hypoxia, as indicated by decreased TMRmax and HV in [18F]FMISO PET imaging after treatment. In contrast, hypoxic tumors in the OMX IT group (n = 6) displayed a significant increase in [18F]FMISO uptake and variable changes in TMRmax and HV. CONCLUSIONS: [18F]FMISO PET/CT imaging presents a promising non-invasive procedure for monitoring tumor hypoxia and assessing the efficacy of hypoxia-modulating therapies in canine patients. OMX has shown promising outcomes in reducing tumor hypoxia, especially when administered intravenously, as evident from reductions in both TMRmax and HV in [18F]FMISO PET imaging.


Subject(s)
Dog Diseases , Misonidazole , Neoplasms , Positron Emission Tomography Computed Tomography , Tumor Hypoxia , Animals , Dogs , Misonidazole/analogs & derivatives , Positron Emission Tomography Computed Tomography/veterinary , Positron Emission Tomography Computed Tomography/methods , Dog Diseases/diagnostic imaging , Dog Diseases/drug therapy , Female , Tumor Hypoxia/drug effects , Male , Neoplasms/veterinary , Neoplasms/drug therapy , Neoplasms/diagnostic imaging , Thiosemicarbazones/therapeutic use , Thiosemicarbazones/pharmacology , Coordination Complexes
3.
J Colloid Interface Sci ; 666: 244-258, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38598997

ABSTRACT

Starvation therapy has shown promise as a cancer treatment, but its efficacy is often limited when used alone. In this work, a multifunctional nanoscale cascade enzyme system, named CaCO3@MnO2-NH2@GOx@PVP (CMGP), was fabricated for enhanced starvation/chemodynamic combination cancer therapy. CMGP is composed of CaCO3 nanoparticles wrapped in a MnO2 shell, with glucose oxidase (GOx) adsorbed and modified with polyvinylpyrrolidone (PVP). MnO2 decomposes H2O2 in cancer cells into O2, which enhances the efficiency of GOx-mediated starvation therapy. CaCO3 can be decomposed in the acidic cancer cell environment, causing Ca2+ overload in cancer cells and inhibiting mitochondrial metabolism. This synergizes with GOx to achieve more efficient starvation therapy. Additionally, the H2O2 and gluconic acid produced during glucose consumption by GOx are utilized by MnO2 with catalase-like activity to enhance O2 production and Mn2+ release. This process accelerates glucose consumption, reactive oxygen species (ROS) generation, and CaCO3 decomposition, promoting the Ca2+ release. CMGP can alleviate tumor hypoxia by cycling the enzymatic cascade reaction, which increases enzyme activity and combines with Ca2+ overload to achieve enhanced combined starvation/chemodynamic therapy. In vitro and in vivo studies demonstrate that CMGP has effective anticancer abilities and good biosafety. It represents a new strategy with great potential for combined cancer therapy.


Subject(s)
Calcium Carbonate , Glucose Oxidase , Manganese Compounds , Oxides , Glucose Oxidase/metabolism , Glucose Oxidase/chemistry , Glucose Oxidase/pharmacology , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Oxides/chemistry , Oxides/pharmacology , Humans , Animals , Calcium Carbonate/chemistry , Calcium Carbonate/pharmacology , Calcium Carbonate/metabolism , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Povidone/chemistry , Povidone/pharmacology , Tumor Hypoxia/drug effects , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Particle Size , Cell Line, Tumor , Hydrogen Peroxide/metabolism , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Surface Properties , Mice, Inbred BALB C
4.
Chem Commun (Camb) ; 60(40): 5322-5325, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38666540

ABSTRACT

A small molecule-based NIR-II type-I photosensitizer (IT-IC) with a strong push-pull effect and good planar π-conjugated structure was synthesized. The IT-IC NPs exhibited strong light absorption, outstanding NIR-II fluorescence emission, excellent photothermal conversion and efficient type-I/II ROS generation, showing encouraging therapeutic outcomes for hypoxic tumors.


Subject(s)
Infrared Rays , Photosensitizing Agents , Theranostic Nanomedicine , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Humans , Animals , Mice , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Reactive Oxygen Species/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Molecular Structure , Photochemotherapy , Tumor Hypoxia/drug effects , Cell Survival/drug effects , Nanoparticles/chemistry
5.
ACS Nano ; 18(19): 12261-12275, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38683132

ABSTRACT

Cancer immunotherapy holds significant promise for addressing diverse malignancies. Nevertheless, its efficacy remains constrained by the intricate tumor immunosuppressive microenvironment. Herein, a light-triggered nanozyme Fe-TCPP-R848-PEG (Fe-MOF-RP) was designed for remodeling the immunosuppressive microenvironment. The Fe-TCPP-MOFs were utilized not only as a core catalysis component against tumor destruction but also as a biocompatible delivery vector of an immunologic agonist, improving its long circulation and tumor enrichment. Concurrently, it catalyzes the decomposition of H2O2 within the tumor, yielding oxygen to augment photodynamic therapy. The induced ferroptosis, in synergy with photodynamic therapy, prompts the liberation of tumor-associated antigens from tumor cells inducing immunogenic cell death. Phototriggered on-demand release of R848 agonists stimulated the maturation of dendritic cells and reverted the tumor-promoting M2 phenotypes into adoptive M1 macrophages, which further reshaped the tumor immunosuppressive microenvironment. Notably, the nanozyme effectively restrains well-established tumors, such as B16F10 melanoma. Moreover, it demonstrates a distal tumor-inhibiting effect upon in situ light treatment. What is more, in a lung metastasis model, it elicits robust immune memory, conferring enduring protection against tumor rechallenge. Our study presents a straightforward and broadly applicable strategy for crafting nanozymes with the potential to effectively thwart cancer recurrence and metastasis.


Subject(s)
Ferroptosis , Light , Tumor Microenvironment , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Animals , Ferroptosis/drug effects , Mice , Mice, Inbred C57BL , Photochemotherapy , Tumor Hypoxia/drug effects , Nanoparticles/chemistry , Immunotherapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Melanoma, Experimental/pathology , Cell Line, Tumor
6.
Bioorg Med Chem Lett ; 106: 129773, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38677561

ABSTRACT

Hypoxia is a common phenomenon in solid tumors, and its presence inhibits the efficacy of tumor chemotherapy and radiotherapy. Accurate measurement of hypoxia before tumor treatment is essential. Three propylene amine oxime (PnAO) derivatives with different substituents attached to 2-nitroimidazole were synthesized in the work, they are 3,3,9,9-tetramethyl-1,11-bis(4-bromo-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (Br2P2), 3,3,9,9-tetramethyl-1,11-bis(4-methyl-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (Me2P2) and 3,3,9,9-tetramethyl-1,11-bis(4,5-dimethyl-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (2Me2P2). The three compounds were radiolabeled with 99mTc to give three complexes([99mTc]Tc-Br2P2, [99mTc]Tc-Me2P2 and [99mTc]Tc-2Me2P2) with good in vitro stability. [99mTc]Tc-Me2P2 with a more suitable reduction potential had the highest hypoxic cellular uptake, compared with [99mTc]Tc-2P2 that have been previously reported, [99mTc]Tc-Br2P2 and [99mTc]Tc-2Me2P2. Biodistribution results in S180 tumor-bearing mice demonstrated that [99mTc]Tc-Me2P2 had the highest tumor-to-muscle (T/M) ratio (12.37 ± 1.16) at 2 h in the four complexes. Autoradiography and immunohistochemical staining results revealed that [99mTc]Tc-Me2P2 specifically targeted tumor hypoxic regions. The SPECT/CT imaging results showed that [99mTc]Tc-Me2P2 could target the tumor site. [99mTc]Tc-Me2P2 may become a potential hypoxia imaging agent.


Subject(s)
Nitroimidazoles , Organotechnetium Compounds , Oximes , Tumor Hypoxia , Oximes/chemistry , Oximes/chemical synthesis , Nitroimidazoles/chemistry , Nitroimidazoles/chemical synthesis , Animals , Mice , Organotechnetium Compounds/chemistry , Organotechnetium Compounds/chemical synthesis , Tumor Hypoxia/drug effects , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacology , Humans , Tissue Distribution , Molecular Structure , Cell Line, Tumor , Structure-Activity Relationship
7.
Nat Commun ; 15(1): 2954, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582750

ABSTRACT

Single-atom catalysts (SACs) have attracted interest in photodynamic therapy (PDT), while they are normally limited by the side effects on normal tissues and the interference from the Tumor Microenvironment (TME). Here we show a TME-activated in situ synthesis of SACs for efficient tumor-specific water-based PDT. Upon reduction by upregulated GSH in TME, C3N4-Mn SACs are obtained in TME with Mn atomically coordinated into the cavity of C3N4 nanosheets. This in situ synthesis overcomes toxicity from random distribution and catalyst release in healthy tissues. Based on the Ligand-to-Metal charge transfer (LMCT) process, C3N4-Mn SACs exhibit enhanced absorption in the red-light region. Thereby, a water-splitting process is induced by C3N4-Mn SACs under 660 nm irradiation, which initiates the O2-independent generation of highly toxic hydroxyl radical (·OH) for cancer-specific PDT. Subsequently, the ·OH-initiated lipid peroxidation process is demonstrated to devote effective cancer cell death. The in situ synthesized SACs facilitate the precise cancer-specific conversion of inert H2O to reactive ·OH, which facilitates efficient cancer therapy in female mice. This strategy achieves efficient and precise cancer therapy, not only avoiding the side effects on normal tissues but also overcoming tumor hypoxia.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Female , Mice , Animals , Water , Neoplasms/drug therapy , Neoplasms/pathology , Tumor Hypoxia , Tumor Microenvironment , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
8.
Biochem Biophys Res Commun ; 714: 149977, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38663093

ABSTRACT

Malignant tumors are characterized by a hypoxic microenvironment, and metabolic reprogramming is necessary to ensure energy production and oxidative stress resistance. Although the microenvironmental properties of tumors vary under acute and chronic hypoxia, studies on chronic hypoxia-induced metabolic changes are limited. In the present study, we performed a comprehensive metabolic analysis in a chronic hypoxia model using colorectal cancer (CRC) organoids, and identified an amino acid supply system through the γ-glutamyl cycle, a glutathione recycling pathway. We analyzed the metabolic changes caused by hypoxia over time and observed that chronic hypoxia resulted in an increase in 5-oxoproline and a decrease in oxidized glutathione (GSSG) compared to acute hypoxia. These findings suggest that chronic hypoxia induces metabolic changes in the γ-glutamyl cycle. Moreover, inhibition of the γ-glutamyl cycle via γ-glutamyl cyclotransferase (GGCT) and γ-glutamyl transferase 1 (GGT1) knockdown significantly reversed chronic hypoxia-induced upregulation of 5-oxoproline and several amino acids. Notably, GGT1 knockdown downregulated the intracellular levels of γ-glutamyl amino acids. Conclusively, these results indicate that the γ-glutamyl cycle serves as an amino acid supply system in CRC under chronic hypoxia, which provides fresh insight into cancer metabolism under chronic hypoxia.


Subject(s)
Amino Acids , Colorectal Neoplasms , Organoids , gamma-Glutamyltransferase , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Organoids/metabolism , Organoids/pathology , gamma-Glutamyltransferase/metabolism , Amino Acids/metabolism , Cell Hypoxia , Tumor Microenvironment , Glutathione/metabolism , Hypoxia/metabolism , Tumor Hypoxia , gamma-Glutamylcyclotransferase/metabolism , gamma-Glutamylcyclotransferase/genetics
9.
Asian Pac J Cancer Prev ; 25(4): 1315-1324, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38679992

ABSTRACT

OBJECTIVE: Tumor hypoxia induces the production of Hypoxia-Inducible Factor (HIF)-1 alpha, which interacts with NF-kB, leading to cancer proliferation and metastasis. This study investigated the effect of tumor hypoxia modulation using carbogen (95% O2 and 5% CO2) and nicotinamide on reducing soluble interleukin-2 receptor (sIL-2R) levels in newly diagnosed DLBCL patients with tissue overexpression of HIF-1α ≥10%. MATERIAL AND METHODS: A prospective randomized controlled clinical trial was conducted at Dr. Kariadi Hospital in Semarang, Indonesia, from 2021 to 2022. Newly diagnosed DLBCL patients with tissue HIF-1α ≥10% were randomized into an intervention group (nicotinamide 2,000 mg + carbogen 10 liters/min during R-CHOP) and a control group (R-CHOP alone) for one cycle. sIL-2R levels were measured in the blood before and after intervention. RESULTS: The intervention group showed a significant reduction in sIL-2R levels after chemotherapy (p=0.026), with 85% of samples exhibiting a decrease. In contrast, only 45% of samples in the control group demonstrated a decrease in sIL-2R levels (p=0.184). The median sIL-2R level decreased from 139.50 pg/mL to 70.50 pg/mL in the intervention group, while the control group exhibited an increase from 182.50 pg/mL to 250.00 pg/mL following one cycle of chemotherapy. CONCLUSION: Tumor hypoxia modulation led to a significant decrease in serum sIL-2R levels, potentially through improvements in the crosstalk between hypoxia and inflammation pathways.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Cyclophosphamide , Doxorubicin , Lymphoma, Large B-Cell, Diffuse , Receptors, Interleukin-2 , Tumor Hypoxia , Vincristine , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/metabolism , Male , Female , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Middle Aged , Tumor Hypoxia/drug effects , Prospective Studies , Receptors, Interleukin-2/blood , Receptors, Interleukin-2/metabolism , Vincristine/therapeutic use , Doxorubicin/therapeutic use , Cyclophosphamide/therapeutic use , Adult , Prednisone/therapeutic use , Prognosis , Rituximab/therapeutic use , Follow-Up Studies , Aged , Indonesia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood
10.
Radiother Oncol ; 195: 110263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38556173

ABSTRACT

BACKGROUND AND PURPOSE: Improvements in treatment outcome for patients with locally advanced cervical cancer (LACC) require a better classification of patients according to their risk of recurrence. We investigated whether an imaging-based approach, combining pretreatment hypoxia and tumor response during therapy, could improve risk classification. MATERIAL AND METHODS: Ninety-three LACC patients with T2-weigthed (T2W)-, dynamic contrast enhanced (DCE)- and diffusion weighted (DW)-magnetic resonance (MR) images acquired before treatment, and T2W- and, for 64 patients, DW-MR images, acquired at brachytherapy, were collected. Pretreatment hypoxic fraction (HFpre) was determined from DCE- and DW-MR images using the consumption and supply-based hypoxia (CSH)-imaging method. Volume regression at brachytherapy was assessed from T2W-MR images and combined with HFpre. In 17 patients with adequate DW-MR images at brachytherapy, the apparent diffusion coefficient (ADC), reflecting tumor cell density, was calculated. Change in ADC during therapy was combined with volume regression yielding functional regression as explorative response measure. Endpoint was disease free survival (DFS). RESULTS: HFpre was the strongest predictor of DFS, but a significant correlation with outcome was found also for volume regression. The combination of HFpre and volume regression showed a stronger association with DFS than HFpre alone. Patients with disease recurrence were selected to either the intermediate- or high-risk group with a 100 % accuracy. Functional regression showed a stronger correlation to HFpre than volume regression. CONCLUSION: The combination of pretreatment hypoxia and volume regression at brachytherapy improved patient risk classification. Integration of ADC with volume regression showed promise as a new tumor response parameter.


Subject(s)
Brachytherapy , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/diagnostic imaging , Brachytherapy/methods , Brachytherapy/adverse effects , Middle Aged , Risk Assessment , Adult , Aged , Diffusion Magnetic Resonance Imaging/methods , Tumor Hypoxia , Magnetic Resonance Imaging/methods , Aged, 80 and over
11.
Cancer Lett ; 590: 216823, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38521197

ABSTRACT

A general feature of cancer is hypoxia, determined as low oxygen levels. Low oxygen levels may cause cells to alter in ways that contribute to tumor growth and resistance to treatment. Hypoxia leads to variations in cancer cell metabolism, angiogenesis and metastasis. Furthermore, a hypoxic tumor microenvironment might induce immunosuppression. Moreover, hypoxia has the potential to impact cellular processes, such as autophagy. Autophagy refers to the catabolic process by which damaged organelles and toxic macromolecules are broken down. The abnormal activation of autophagy has been extensively recorded in human tumors and it serves as a regulator of cell growth, spread to other parts of the body, and resistance to treatment. There is a correlation between hypoxia and autophagy in human malignancies. Hypoxia can regulate the activity of AMPK, mTOR, Beclin-1, and ATGs to govern autophagy in human malignancies. Furthermore, HIF-1α, serving as an indicator of low oxygen levels, controls the process of autophagy. Hypoxia-induced autophagy has a crucial role in regulating the growth, spread, and resistance to treatment in human malignancies. Hypoxia-induced regulation of autophagy can impact other mechanisms of cell death, such as apoptosis. Chemoresistance and radioresistance have become significant challenges in recent years. Hypoxia-mediated autophagy plays a crucial role in determining the response to these therapeutic treatments.


Subject(s)
Autophagy , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/metabolism , Tumor Microenvironment , Signal Transduction , Tumor Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Hypoxia , Drug Resistance, Neoplasm , Animals
12.
ACS Appl Mater Interfaces ; 16(11): 13543-13562, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38452225

ABSTRACT

We use low-molecular-weight branched polyethylenimine (PEI) to produce cytocompatible reduced graphene oxide quantum dots (rGOQD) as a photothermal agent and covalently bind it with the photosensitizer IR-820. The rGOQD/IR820 shows high photothermal conversion efficiency and produces reactive oxygen species (ROS) after irradiation with near-infrared (NIR) light for photothermal/photodynamic therapy (PTT/PDT). To improve suspension stability, rGOQD/IR820 was PEGylated by anchoring with the DSPE hydrophobic tails in DSPE-PEG-Mal, leaving the maleimide (Mal) end group for covalent binding with manganese dioxide/bovine serum albumin (MnO2/BSA) and targeting ligand cell-penetrating peptide (CPP) to synthesize rGOQD/IR820/MnO2/CPP. As MnO2 can react with intracellular hydrogen peroxide to produce oxygen for alleviating the hypoxia condition in the acidic tumor microenvironment, the efficacy of PDT could be enhanced by generating more cytotoxic ROS with NIR light. Furthermore, quercetin (Q) was loaded to rGOQD through π-π interaction, which can be released in the endosomes and act as an inhibitor of heat shock protein 70 (HSP70). This sensitizes tumor cells to thermal stress and increases the efficacy of mild-temperature PTT with NIR irradiation. By simultaneously incorporating the HSP70 inhibitor (Q) and the in situ hypoxia alleviating agent (MnO2), the rGOQD/IR820/MnO2/Q/CPP can overcome the limitation of PTT/PDT and enhance the efficacy of targeted phototherapy in vitro. From in vivo study with an orthotopic brain tumor model, rGOQD/IR820/MnO2/Q/CPP administered through tail vein injection can cross the blood-brain barrier and accumulate in the intracranial tumor, after which NIR laser light irradiation can shrink the tumor and prolong the survival times of animals by simultaneously enhancing the efficacy of PTT/PDT to treat glioblastoma.


Subject(s)
Antineoplastic Agents , Glioblastoma , Graphite , Photochemotherapy , Quantum Dots , Animals , Manganese Compounds/pharmacology , Manganese Compounds/chemistry , Glioblastoma/drug therapy , Quantum Dots/therapeutic use , Heat-Shock Proteins , Reactive Oxygen Species , Tumor Hypoxia , Oxides/pharmacology , Oxides/chemistry , Phototherapy , Hypoxia , Cell Line, Tumor , Tumor Microenvironment
13.
Eur Radiol Exp ; 8(1): 27, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38443722

ABSTRACT

BACKGROUND: Tumour hypoxia is a recognised cause of radiotherapy treatment resistance in head and neck squamous cell carcinoma (HNSCC). Current positron emission tomography-based hypoxia imaging techniques are not routinely available in many centres. We investigated if an alternative technique called oxygen-enhanced magnetic resonance imaging (OE-MRI) could be performed in HNSCC. METHODS: A volumetric OE-MRI protocol for dynamic T1 relaxation time mapping was implemented on 1.5-T clinical scanners. Participants were scanned breathing room air and during high-flow oxygen administration. Oxygen-induced changes in T1 times (ΔT1) and R2* rates (ΔR2*) were measured in malignant tissue and healthy organs. Unequal variance t-test was used. Patients were surveyed on their experience of the OE-MRI protocol. RESULTS: Fifteen patients with HNSCC (median age 59 years, range 38 to 76) and 10 non-HNSCC subjects (median age 46.5 years, range 32 to 62) were scanned; the OE-MRI acquisition took less than 10 min and was well tolerated. Fifteen histologically confirmed primary tumours and 41 malignant nodal masses were identified. Median (range) of ΔT1 times and hypoxic fraction estimates for primary tumours were -3.5% (-7.0 to -0.3%) and 30.7% (6.5 to 78.6%) respectively. Radiotherapy-responsive and radiotherapy-resistant primary tumours had mean estimated hypoxic fractions of 36.8% (95% confidence interval [CI] 17.4 to 56.2%) and 59.0% (95% CI 44.6 to 73.3%), respectively (p = 0.111). CONCLUSIONS: We present a well-tolerated implementation of dynamic, volumetric OE-MRI of the head and neck region allowing discernment of differing oxygen responses within biopsy-confirmed HNSCC. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04724096 . Registered on 26 January 2021. RELEVANCE STATEMENT: MRI of tumour hypoxia in head and neck cancer using routine clinical equipment is feasible and well tolerated and allows estimates of tumour hypoxic fractions in less than ten minutes. KEY POINTS: • Oxygen-enhanced MRI (OE-MRI) can estimate tumour hypoxic fractions in ten-minute scanning. • OE-MRI may be incorporable into routine clinical tumour imaging. • OE-MRI has the potential to predict outcomes after radiotherapy treatment.


Subject(s)
Head and Neck Neoplasms , Oxygen , Adult , Aged , Humans , Middle Aged , Head and Neck Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Tumor Hypoxia
14.
J Am Chem Soc ; 146(20): 13805-13816, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38552185

ABSTRACT

Cuproptosis, a copper-dependent cell death process, has been confirmed to further activate the immune response and mediate the immune resistance. However, hypoxic tumor microenvironment hampers cuproptosis sensitivity and suppresses the body's antitumor immune response. Herein, we have successfully immobilized and functionalized catalase (CAT) with long single-stranded DNA containing polyvalent CpG sequences through rolling circle amplification (RCA) techniques, obtaining an enzyme-cored spherical nucleic acid nanoplatform (CAT-ecSNA-Cu) to deliver copper ions for cuproptosis. The presence of long-stranded DNA-protected CAT enhances mitochondrial respiration by catalyzing the conversion of H2O2 to O2, thereby sensitizing cuproptosis. Meanwhile, increased tumor oxygenation suppresses the expression of the hypoxia-inducible factor-1 (HIF-1) protein, resulting in the alleviation of the immunosuppressive tumor microenvironment. Of note, cuproptosis induces immunogenic cell death (ICD), which facilitates dendritic cell (DC) maturation and enhances antigen presentation through polyCpG-supported Toll-like receptor 9 (TLR9) activation. Furthermore, cuproptosis-induced PD-L1 upregulation in tumor cells complements checkpoint blockers (αPD-L1), enhancing antitumor immunity. The strategy of enhancing cuproptosis-mediated antitumor immune responses by alleviating hypoxia effectively promotes the activation and proliferation of effector T cells, ultimately leading to long-term immunity against cancer.


Subject(s)
Catalase , Copper , Tumor Hypoxia , Tumor Hypoxia/drug effects , Animals , Copper/chemistry , Catalase/metabolism , Catalase/chemistry , Mice , Tumor Microenvironment/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Immunogenic Cell Death/drug effects , Dendritic Cells/immunology , Dendritic Cells/drug effects
15.
J Exp Clin Cancer Res ; 43(1): 57, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38403587

ABSTRACT

BACKGROUND: Hypoxia in solid tumors is an important source of chemoresistance that can determine poor patient prognosis. Such chemoresistance relies on the presence of cancer stem cells (CSCs), and hypoxia promotes their generation through transcriptional activation by HIF transcription factors. METHODS: We used ovarian cancer (OC) cell lines, xenograft models, OC patient samples, transcriptional databases, induced pluripotent stem cells (iPSCs) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). RESULTS: Here, we show that hypoxia induces CSC formation and chemoresistance in ovarian cancer through transcriptional activation of the PLD2 gene. Mechanistically, HIF-1α activates PLD2 transcription through hypoxia response elements, and both hypoxia and PLD2 overexpression lead to increased accessibility around stemness genes, detected by ATAC-seq, at sites bound by AP-1 transcription factors. This in turn provokes a rewiring of stemness genes, including the overexpression of SOX2, SOX9 or NOTCH1. PLD2 overexpression also leads to decreased patient survival, enhanced tumor growth and CSC formation, and increased iPSCs reprograming, confirming its role in dedifferentiation to a stem-like phenotype. Importantly, hypoxia-induced stemness is dependent on PLD2 expression, demonstrating that PLD2 is a major determinant of de-differentiation of ovarian cancer cells to stem-like cells in hypoxic conditions. Finally, we demonstrate that high PLD2 expression increases chemoresistance to cisplatin and carboplatin treatments, both in vitro and in vivo, while its pharmacological inhibition restores sensitivity. CONCLUSIONS: Altogether, our work highlights the importance of the HIF-1α-PLD2 axis for CSC generation and chemoresistance in OC and proposes an alternative treatment for patients with high PLD2 expression.


Subject(s)
Ovarian Neoplasms , Phospholipase D , Female , Humans , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Transcription Factors/metabolism , Phospholipase D/genetics , Tumor Hypoxia , Animals
16.
Curr Mol Med ; 24(5): 525-536, 2024.
Article in English | MEDLINE | ID: mdl-38310548

ABSTRACT

Hypoxia is a pathophysiological condition characterized by oxygen deficiency in tissues, which negatively affects normal biological functions. It is a typical microenvironment character of almost all solid tumours. Noncoding RNA are small functional RNA molecules that regulate gene expression at chromatin and posttranscriptional levels. Micro-RNAs (miRNAs) are a type of noncoding RNA and are ~12-22 nucleotides long that are crucial in regulating gene expression by partnering with the mRNAs of protein-coding genes. It is widely reported that miRs play an important role in various key processes and pathways during tumour formation, as well as advancement in hypoxic tumors by influencing the HIF pathway. The role of miRNAs in hypoxic tumours, namely in pancreatic, kidney, breast, lung and colorectal, are described. These miRNAs have immense potential as diagnostic and prognostic biomarkers for early cancer detection.


Subject(s)
Biomarkers, Tumor , Early Detection of Cancer , MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Neoplasms/genetics , Neoplasms/diagnosis , Neoplasms/metabolism , Early Detection of Cancer/methods , Gene Expression Regulation, Neoplastic , Animals , Tumor Hypoxia/genetics
17.
In Vivo ; 38(2): 574-586, 2024.
Article in English | MEDLINE | ID: mdl-38418132

ABSTRACT

BACKGROUND/AIM: Herein we assessed the feasibility of imaging protocols using both hypoxia-specific [18F]F-FAZA and [18F]F-FDG in bypassing the limitations derived from the non-specific findings of [18F]F-FDG PET imaging of tumor-related hypoxia. MATERIALS AND METHODS: CoCl2-generated hypoxia was induced in multidrug resistant (Pgp+) or sensitive (Pgp-) human ovarian (Pgp- A2780, Pgp+ A2780AD), and cervix carcinoma (Pgp- KB-3-1, Pgp+ KB-V-1) cell lines to establish corresponding tumor-bearing mouse models. Prior to [18F]F-FDG/[18F]F-FAZA-based MiniPET imaging, in vitro [18F]F-FDG uptake measurements and western blotting were used to verify the presence of hypoxia. RESULTS: Elevated GLUT-1, and hexokinase enzyme-II expression driven by CoCl2-induced activation of hypoxia-inducible factor-1α explains enhanced cellular [18F]F-FDG accumulation. No difference was observed in the [18F]F-FAZA accretion of Pgp+ and Pgp- tumors. Tumor-to-muscle ratios for [18F]F-FAZA measured at 110-120 min postinjection (6.2±0.1) provided the best contrasted images for the delineation of PET-oxic and PET-hypoxic intratumor regions. Although all tumors exhibited heterogenous uptake of both radiopharmaceuticals, greater differences for [18F]F-FAZA between the tracer avid and non-accumulating regions indicate its superiority over [18F]F-FDG. Spatial correlation between [18F]F-FGD and [18F]F-FAZA scans confirms that hypoxia mostly occurs in regions with highly active glucose metabolism. CONCLUSION: The addition of [18F]F-FAZA PET to [18F]F-FGD imaging may add clinical value in determining hypoxic sub-regions.


Subject(s)
Cobalt , Fluorodeoxyglucose F18 , Ovarian Neoplasms , Humans , Female , Animals , Mice , Tumor Hypoxia , Heterografts , Cell Line, Tumor , Ovarian Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals , Hypoxia/diagnostic imaging
18.
Bioorg Chem ; 144: 107161, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306826

ABSTRACT

Hypoxia, as a prevalent feature of solid tumors, is correlated with tumorigenesis, proliferation, and invasion, playing an important role in mediating the drug resistance and affecting the cancer treatment outcomes. Due to the distinct oxygen levels between tumor and normal tissues, hypoxia-targeted therapy has attracted significant attention. The hypoxia-activated compounds mainly depend on reducible organic groups including azo, nitro, N-oxides, quinones and azide as well as some redox-active metal complex that are selectively converted into active species by the increased reduction potential under tumor hypoxia. In this review, we briefly summarized our current understanding on hypoxia-activated compounds with a particular highlight on the recently developed prodrugs and fluorescent probes for tumor treatment and diagnosis. We have also discussed the challenges and perspectives of small molecule-based hypoxia-activatable prodrug for future development.


Subject(s)
Neoplasms , Prodrugs , Humans , Hypoxia/diagnosis , Hypoxia/drug therapy , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplasms/pathology , Prodrugs/pharmacology , Prodrugs/therapeutic use , Cell Hypoxia , Tumor Hypoxia , Cell Line, Tumor
19.
Methods Mol Biol ; 2755: 107-123, 2024.
Article in English | MEDLINE | ID: mdl-38319572

ABSTRACT

In vitro studies using cell culture, including three-dimensional cultures without the involvement of tumor vessels, have limitations in simulating complex intratumoral hypoxic conditions in live subjects. To generate experimental hypoxic conditions closer to those observed in humans in clinical settings, in vivo studies are necessary. In addition, visible light generated via bioluminescence and fluorescence is generally unsuitable for in vivo experiments because of low tissue penetration. Furthermore, near-infrared light (NIR), which has the highest tissue penetration among lights of different wavelengths, cannot be assessed precisely in vivo because of the difficulty in correcting tissue absorption and scatter. For in vivo quantitative analyses, imaging modalities that use high tissue-penetrating signals, such as computed tomography (CT) using X-rays, radionuclide imaging using γ-rays, and magnetic resonance imaging (MRI) using electromagnetic waves, are ideal.Therefore, as an advanced protocol for this research purpose, we provide ex vivo and in vivo methods to investigate the genetic response of multiple copies of hypoxia response elements (HREs) to tumor hypoxia in terms of intensity and intratumoral distribution using a human sodium/iodide symporter (hNIS) reporter gene and radionuclide reporter probes (radioiodine and its chemical analog Tc-99m) based on our previous research. This protocol includes cloning an hNIS reporter construct with multiple copies of HREs, establishing stable cell lines of the reporter construct, preparing a mouse subcutaneous xenograft model, and evaluating the genetic response of multiple HREs to tumor hypoxia using digital autoradiography (ARG) ex vivo and using single-photon emission computed tomography (SPECT) or positron emission tomography (PET) in vivo.


Subject(s)
Iodine Radioisotopes , Tumor Hypoxia , Humans , Animals , Mice , Tomography, X-Ray Computed , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon , Disease Models, Animal
20.
Methods Mol Biol ; 2755: 227-247, 2024.
Article in English | MEDLINE | ID: mdl-38319582

ABSTRACT

Hypoxia is a common and critical feature of solid tumors that contributes to the plasticity and heterogeneity of the cancer cells. Cancer cell populations take on a region-specific adaptation induced by hypoxia, and each cancer cell population will show different levels of sensitivity and resistance to cancer therapeutics. Therefore, a faithful recapitulation of tumor hypoxia that allows for accurate assessments of hypoxia-induced adaptations, heterogeneity, and response to therapy is needed to develop new therapeutic approaches. The existing hypoxic tumor models rely on complex fabrication methods and external gas sources that make them unfavorable for the early-stage screening of new therapeutics. Here, we demonstrate how to establish a cleanroom-free microfluidic device that supports both 2D and 3D hypoxic tumor modeling through natural cancer cell metabolism and confirm the induction of the hypoxic gradient.


Subject(s)
Hypoxia , Neoplasms , Humans , Lab-On-A-Chip Devices , Tumor Hypoxia
SELECTION OF CITATIONS
SEARCH DETAIL
...