Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 462
Filter
1.
Cell Mol Immunol ; 19(7): 791-804, 2022 07.
Article in English | MEDLINE | ID: mdl-35545662

ABSTRACT

Type 2 diabetes (T2D) is highly associated with obesity. However, the factors that drive the transition from excessive weight gain to glucose metabolism disruption are still uncertain and seem to revolve around systemic immune disorder. Mucosal-associated invariant T (MAIT) cells, which are innate-like T cells that recognize bacterial metabolites, have been reported to be altered in obese people and to lead to metabolic dysfunction during obesity. By studying the immunophenotypes of blood MAIT cells from a cross-sectional cohort of obese participants with/without T2D, we found an elevation in CD27-negative (CD27-) MAIT cells producing a high level of IL-17 under T2D obese conditions, which could be positively correlated with impaired glucose metabolism in obese people. We further explored microbial translocation caused by gut barrier dysfunction in obese people as a triggering factor of MAIT cell abnormalities. Specifically, accumulation of the bacterial strain Bacteroides ovatus in the peripheral blood drove IL-17-producing CD27- MAIT cell expansion and could be associated with T2D risk in obese individuals. Overall, these results suggest that an aberrant gut microbiota-immune axis in obese people may drive or exacerbate T2D. Importantly, CD27- MAIT cell subsets and Bacteroides ovatus could represent targets for novel interventional strategies. Our findings extend current knowledge regarding the clinical relevance of body mass index (BMI)-associated variation in circulating MAIT cells to reveal the role of these cells in obesity-related T2D progression and the underlying cellular mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Mucosal-Associated Invariant T Cells , Bacteroides , Cross-Sectional Studies , Glucose , Humans , Interleukin-17 , Obesity , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
2.
Front Immunol ; 13: 825619, 2022.
Article in English | MEDLINE | ID: mdl-35154145

ABSTRACT

Young children and older adults suffer from enhanced susceptibility to infections with blood-borne pathogens. An essential step towards immunity is the establishment of a splenic marginal zone (sMZ), which is immature at below 2 years of age. At approximately 5 years of age, an adult level of protection is reached but wanes again in older adults. Although the infant sMZ is thought to contain mostly naïve B cells, memory B cells are recruited to and recirculate from the sMZ throughout life, and class-switched sMZ B cells dominate in older adults. For a better resolution of naïve versus memory B-cell subset accumulation in the sMZ, we performed a single cell-based gene expression analysis of (CD21highIgMhigh) sMZ B cells among five healthy donors (age 3 to 48 years) and validated the sMZ B-cell subset composition by flow cytometry of 147 spleen biopsies (age 0 to 82 years). We identified a major sMZ B-cell subpopulation, which is abundant at birth but decreases with age. These cells lack CD27 expression but carry a weak-to-intermediate memory B-cell signature. These CD27neg sMZ B cells are either IGHV-unmutated or carry only a few IGHV mutations early in life but show average memory B-cell IGHV mutation frequencies (>3%) in adults. The activation and proliferation potential of CD27neg sMZ B cells is significantly above that of non-sMZ B cells already in children. Our study suggests that the human sMZ B-cell pool changes with age, encompassing a major population of lowly Ig-mutated CD27neg but antigen-experienced B cells early in life.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin Heavy Chains/immunology , Spleen/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Adolescent , Adult , Child , Child, Preschool , Humans , Immunoglobulin Heavy Chains/genetics , Middle Aged , Mutation , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Young Adult
3.
J Virol ; 96(5): e0205721, 2022 03 09.
Article in English | MEDLINE | ID: mdl-34985998

ABSTRACT

Reactivation of herpes simplex virus 1 (HSV-1) from latently infected neurons of the trigeminal ganglia (TG) leads to blinding recurrent herpetic disease in symptomatic (SYMP) individuals. Although the role of T cells in herpes immunity seen in asymptomatic (ASYMP) individuals is heavily explored, the role of B cells is less investigated. In the present study, we evaluated whether B cells are associated with protective immunity against recurrent ocular herpes. The frequencies of circulating HSV-specific memory B cells and of memory follicular helper T cells (CD4+ Tfh cells), which help B cells produce antibodies, were compared between HSV-1-infected SYMP and ASYMP individuals. The levels of IgG/IgA and neutralizing antibodies were compared in SYMP and ASYMP individuals. We found that (i) the ASYMP individuals had increased frequencies of HSV-specific CD19+CD27+ memory B cells, and (ii) high frequencies of HSV-specific switched IgG+CD19+CD27+ memory B cells detected in ASYMP individuals were directly proportional to high frequencies of CD45R0+CXCR5+CD4+ memory Tfh cells. However, no differences were detected in the level of HSV-specific IgG/IgA antibodies in SYMP and ASYMP individuals. Using the UV-B-induced HSV-1 reactivation mouse model, we found increased frequencies of HSV-specific antibody-secreting plasma HSV-1 gD+CD138+ B cells within the TG and circulation of ASYMP mice compared to those of SYMP mice. In contrast, no significant differences in the frequencies of B cells were found in the cornea, spleen, and bone-marrow. Our findings suggest that circulating antibody-producing HSV-specific memory B cells recruited locally to the TG may contribute to protection from symptomatic recurrent ocular herpes. IMPORTANCE Reactivation of herpes simplex virus 1 (HSV-1) from latently infected neurons of the trigeminal ganglia (TG) leads to blinding recurrent herpetic disease in symptomatic (SYMP) individuals. Although the role of T cells in herpes immunity against blinding recurrent herpetic disease is heavily explored, the role of B cells is less investigated. In the present study, we found that in both asymptomatic (ASYMP) individuals and ASYMP mice, there were increased frequencies of HSV-specific memory B cells that were directly proportional to high frequencies of memory Tfh cells. Moreover, following UV-B-induced reactivation, we found increased frequencies of HSV-specific antibody-secreting plasma B cells within the TG and circulation of ASYMP mice compared to those of SYMP mice. Our findings suggest that circulating antibody-producing HSV-specific memory B cells recruited locally to the TG may contribute to protection from recurrent ocular herpes.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Keratitis, Herpetic , Memory B Cells , Reinfection , Animals , Antigens, CD19/immunology , Immunity/immunology , Immunoglobulin A/blood , Immunoglobulin G/blood , Keratitis, Herpetic/immunology , Memory B Cells/immunology , Memory B Cells/virology , Mice , Reinfection/immunology , Reinfection/virology , Trigeminal Ganglion/virology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Virus Activation/immunology
4.
Nat Commun ; 12(1): 5446, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521844

ABSTRACT

EOMES and T-BET are related T-box transcription factors that control natural killer (NK) cell development. Here we demonstrate that EOMES and T-BET regulate largely distinct gene sets during this process. EOMES is dominantly expressed in immature NK cells and drives early lineage specification by inducing hallmark receptors and functions. By contrast, T-BET is dominant in mature NK cells, where it induces responsiveness to IL-12 and represses the cell cycle, likely through transcriptional repressors. Regardless, many genes with distinct functions are co-regulated by the two transcription factors. By generating two gene-modified mice facilitating chromatin immunoprecipitation of endogenous EOMES and T-BET, we show a strong overlap in their DNA binding targets, as well as extensive epigenetic changes during NK cell differentiation. Our data thus suggest that EOMES and T-BET may distinctly govern, via differential expression and co-factors recruitment, NK cell maturation by inserting partially overlapping epigenetic regulations.


Subject(s)
Cell Cycle/genetics , Cell Lineage/genetics , Killer Cells, Natural/immunology , T-Box Domain Proteins/genetics , Animals , Base Sequence , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , CD11b Antigen/genetics , CD11b Antigen/immunology , Cell Cycle/drug effects , Cell Cycle/immunology , Cell Differentiation , Cell Lineage/drug effects , Cell Lineage/immunology , Epigenesis, Genetic/immunology , Interleukin-12/pharmacology , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic , Protein Binding , Spleen/cytology , Spleen/immunology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/immunology , Transcription, Genetic , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
5.
J Biol Chem ; 297(4): 101102, 2021 10.
Article in English | MEDLINE | ID: mdl-34419446

ABSTRACT

CD27 is a tumor necrosis factor (TNF) receptor, which stimulates lymphocytes and promotes their differentiation upon activation by TNF ligand CD70. Activation of the CD27 receptor provides a costimulatory signal to promote T cell, B cell, and NK cell activity to facilitate antitumor and anti-infection immunity. Aberrant increased and focused expression of CD70 on many tumor cells renders CD70 an attractive therapeutic target for direct tumor killing. However, despite their use as drug targets to treat cancers, the molecular basis and atomic details of CD27 and CD70 interaction remain elusive. Here we report the crystal structure of human CD27 in complex with human CD70. Analysis of our structure shows that CD70 adopts a classical TNF ligand homotrimeric assembly to engage CD27 receptors in a 3:3 stoichiometry. By combining structural and rational mutagenesis data with reported disease-correlated mutations, we identified the key amino acid residues of CD27 and CD70 that control this interaction. We also report increased potency for plate-bound CD70 constructs compared with solution-phase ligand in a functional activity to stimulate T-cells in vitro. These findings offer new mechanistic insight into this critical costimulatory interaction.


Subject(s)
CD27 Ligand/chemistry , Multiprotein Complexes/chemistry , Tumor Necrosis Factor Receptor Superfamily, Member 7/chemistry , CD27 Ligand/genetics , CD27 Ligand/immunology , Crystallography, X-Ray , Humans , Multiprotein Complexes/genetics , Multiprotein Complexes/immunology , Protein Structure, Quaternary , T-Lymphocytes/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
6.
STAR Protoc ; 2(3): 100789, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34414379

ABSTRACT

Here, we describe the use of the artificial antigen-presenting cell (aAPC) system for the verification of T-cell epitopes. We purify and activate CD8+ T cells from blood samples from HLA-A2 that are negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CD8+ T cells are combined with peptide-loaded T2-A2 cells, which are then stained with a SARS-CoV-2-specific MHC-1 tetramer to identify specific HLA-A2-restricted T-cell epitopes. The use of aAPC and healthy donors means that only BSL2 lab conditions are needed. For details of the use and implementation of this protocol, please refer to Deng et al. (2021).


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Humans , Lymphocyte Activation
7.
J Immunol ; 207(4): 1200-1210, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34321227

ABSTRACT

Esophagogastric adenocarcinomas (EAC) are obesity-associated malignancies underpinned by severe immune dysregulation and inflammation. Our previous work indicates that NK cells migrate to EAC omentum, where they undergo phenotypic and functional alterations and apoptosis. In this study, we investigate whether such erroneous chemotaxis to omentum is paralleled by compromised NK cell infiltration of EAC patient tumor and examine the role of the inflammatory chemokine fractalkine in shaping the NK cell-mediated response. Our data show diminished NK cell frequencies in EAC tumor compared with those in the circulation and reveal that intratumoral NK cell frequencies decline as visceral obesity increases in EAC patients. Our in vitro findings demonstrate that antagonism of fractalkine receptor CX3CR1 significantly reduces NK cell migration to EAC patient-derived, omental adipose tissue-conditioned media, but not toward tumor-conditioned media. These data suggest fractalkine is a key driver of NK cell chemotaxis to omentum but has a lesser role in NK cell homing to tumor in EAC. We propose that this may offer a novel therapeutic strategy to limit NK cell depletion in the omentum of obese EAC patients, and our data suggest the optimal timing for CX3CR1 antagonism is after neoadjuvant chemoradiotherapy. Our functional studies demonstrate that fractalkine induces the conversion from CX3CR1+CD27- to CX3CR1-CD27+ NK cells and increases their IFN-γ and TNF-α production, indicative of its role in shaping the dominant NK cell phenotype in EAC omentum. This study uncovers crucial and potentially druggable pathways underpinning NK cell dysfunction in obesity-associated cancer and provides compelling insights into fractalkine's diverse biological functions.


Subject(s)
Chemokine CX3CL1/immunology , Chemotaxis/immunology , Killer Cells, Natural/immunology , Obesity/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Adenocarcinoma/immunology , Adipose Tissue/immunology , Cell Movement/immunology , Esophageal Neoplasms/immunology , Female , Humans , Inflammation/immunology , Male , Middle Aged , Phenotype , Receptors, Chemokine/immunology , Stomach Neoplasms/immunology
8.
Cancer Immunol Immunother ; 70(12): 3451-3460, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33880648

ABSTRACT

Cancer immunotherapies have generated remarkable clinical responses for some patients with advanced/metastatic disease, prompting exploration of rational combination therapies to bolster anti-tumor immunity in patients with limited response or those who experience tumor progression following an initial response to immunotherapy. In contrast to other tumor indications, objective response rates to single-agent PD-1/PD-L1 blockade in ovarian cancer are limited, suggesting a need to identify combinatorial approaches that lead to tumor regression in a setting where checkpoint blockade alone is ineffective. Using a pre-clinical model of aggressive intraperitoneal ovarian cancer, we have previously reported on a heterologous prime/boost cancer vaccine that elicits robust anti-tumor immunity, prolongs survival of tumor-bearing mice, and which is further improved when combined with checkpoint blockade. As tumor control in this model is CD8 + T cell dependent, we reasoned that the prime/boost vaccine platform could be used to explore additional treatment combinations intended to bolster the effects of CD8 + T cells. Using whole tumor transcriptomic data, we identified candidate therapeutic targets anticipated to rationally combine with prime/boost vaccination. In the context of a highly effective cancer vaccine, CD27 agonism or antibody-mediated depletion of granulocytic cells each modestly increased tumor control following vaccination, with anti-PD-1 therapy further improving treatment efficacy. These findings support the use of immunotherapies with well-defined mechanisms(s) of action as a valuable platform for identifying candidate combination approaches for further therapeutic testing in ovarian cancer.


Subject(s)
Cancer Vaccines/immunology , Immune Checkpoint Inhibitors/pharmacology , Myeloid-Derived Suppressor Cells/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Combined Modality Therapy/methods , Female , Immunotherapy/methods , Mice , Programmed Cell Death 1 Receptor/immunology
9.
Blood ; 137(23): 3225-3236, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33827115

ABSTRACT

Primary immunodeficiencies in the costimulatory molecule CD27 and its ligand, CD70, predispose for pathologies of uncontrolled Epstein-Barr virus (EBV) infection in nearly all affected patients. We demonstrate that both depletion of CD27+ cells and antibody blocking of CD27 interaction with CD70 cause uncontrolled EBV infection in mice with reconstituted human immune system components. While overall CD8+ T-cell expansion and composition are unaltered after antibody blocking of CD27, only some EBV-specific CD8+ T-cell responses, exemplified by early lytic EBV antigen BMLF1-specific CD8+ T cells, are inhibited in their proliferation and killing of EBV-transformed B cells. This suggests that CD27 is not required for all CD8+ T-cell expansions and cytotoxicity but is required for a subset of CD8+ T-cell responses that protect us from EBV pathology.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Immunity, Cellular , Phosphoproteins/immunology , Trans-Activators/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Animals , B-Lymphocytes/immunology , Cell Transformation, Viral/genetics , Cell Transformation, Viral/immunology , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Humans , Mice , Mice, Inbred NOD , Mice, Transgenic , Phosphoproteins/genetics , Trans-Activators/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
10.
Eur J Med Genet ; 64(6): 104227, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33872774

ABSTRACT

The identification of high-risk factors for the infection by SARS-CoV-2 and the negative outcome of COVID-19 is crucial. The genetic background of the host might account for individual responses to SARS-CoV-2 infection besides age and comorbidities. A list of candidate polymorphisms is needed to drive targeted screens, given the existence of frequent polymorphisms in the general population. We carried out text mining in the scientific literature to draw up a list of genes referable to the term "SARS-CoV*". We looked for frequent mutations that are likely to affect protein function in these genes. Ten genes, mostly involved in innate immunity, and thirteen common variants were identified, for some of these the involvement in COVID-19 is supported by publicly available epidemiological data. We looked for available data on the population distribution of these variants and we demonstrated that the prevalence of five of them, Arg52Cys (rs5030737), Gly54Asp (rs1800450) and Gly57Glu (rs1800451) in MBL2, Ala59Thr (rs25680) in CD27, and Val197Met (rs12329760) in TMPRSS2, correlates with the number of cases and/or deaths of COVID-19 observed in different countries. The association of the TMPRSS2 variant provides epidemiological evidence of the usefulness of transmembrane protease serine 2 inhibitors for the cure of COVID-19. The identified genetic variants represent a basis for the design of a cost-effective assay for population screening of genetic risk factors in the COVID-19 pandemic.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Genetic Predisposition to Disease , Immunity, Innate , SARS-CoV-2/pathogenicity , Data Mining , Gene Frequency , Genetic Variation , Host Microbial Interactions , Humans , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Polymorphism, Single Nucleotide , Risk Factors , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
11.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: mdl-33707314

ABSTRACT

While vaccines directed against the SARS-CoV-2 spike protein will have varying degrees of effectiveness in preventing SARS-CoV-2 infections, the severity of infection will be determined by multiple host factors including the ability of immune cells to lyse virus-infected cells. This review will discuss the complexity of both adaptive and innate immunomes and how a flow-based assay can detect up to 158 distinct cell subsets in the periphery. This assay has been employed to show the effect of age on differences in specific immune cell subsets, and the differences in the immunome between healthy donors and age-matched cancer patients. Also reviewed are the numerous soluble factors, in addition to cytokines, that may vary in the pathogenesis of SARS-CoV-2 infections and may also be employed to help define the effectiveness of a given vaccine or other antiviral agents. Various steroids have been employed in the management of autoimmune adverse events in cancer patients receiving immunotherapeutics and may be employed in the management of SARS-CoV-2 infections. The influence of steroids on multiple immune cells subsets will also be discussed.


Subject(s)
Adaptive Immunity/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Dendritic Cells/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Neoplasms/immunology , T-Lymphocytes/immunology , Age Factors , B7-H1 Antigen/immunology , CD40 Ligand/immunology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Cytokines/immunology , Disease Susceptibility , Glucocorticoids/therapeutic use , Granzymes/immunology , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunosenescence/immunology , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/immunology , Proteome , SARS-CoV-2 , Severity of Illness Index , T-Lymphocyte Subsets/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
12.
Sci Rep ; 11(1): 6276, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737613

ABSTRACT

Current treatments for cholangiocarcinoma (CCA) are largely unsuccessful due to late diagnosis at advanced stage, leading to high mortality rate. Consequently, improved therapeutic approaches are urgently needed. Chimeric antigen receptor (CAR) T cell therapy is a newly potential therapy that can recognize specific surface antigen without major histocompatibility complex (MHC) restriction. Mucin 1 (MUC1) is an attractive candidate antigen as it is highly expressed and associated with poor prognosis and survival in CCA. We, therefore, set forth to create the fourth-generation CAR (CAR4) construct containing anti-MUC1-single-chain variable fragment (scFv) and three co-stimulatory domains (CD28, CD137, and CD27) linked to CD3ζ and evaluate anti-MUC1-CAR4 T cells in CCA models. Compared to untransduced T cells, anti-MUC1-CAR4 T cells produced increased levels of TNF-α, IFN-γ and granzyme B when exposed to MUC1-expressing KKU-100 and KKU-213A CCA cells (all p < 0.05). Anti-MUC1-CAR4 T cells demonstrated specific killing activity against KKU-100 (45.88 ± 7.45%, p < 0.05) and KKU-213A cells (66.03 ± 3.14%, p < 0.001) at an effector to target ratio of 5:1, but demonstrated negligible cytolytic activity against immortal cholangiocytes. Furthermore, the anti-MUC1-CAR4 T cells could effectively disrupt KKU-213A spheroids. These activities of anti-MUC1-CAR4 T cells supports the development of this approach as an adoptive T cell therapeutic strategy for CCA.


Subject(s)
Bile Duct Neoplasms/immunology , Bile Duct Neoplasms/therapy , Cell Transplantation/methods , Cholangiocarcinoma/immunology , Cholangiocarcinoma/therapy , Immunotherapy, Adoptive/methods , Mucin-1/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , CD28 Antigens/immunology , CD3 Complex/immunology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Coculture Techniques , Cytokines/biosynthesis , HEK293 Cells , Humans , MCF-7 Cells , Mucin-1/metabolism , Receptors, Chimeric Antigen/genetics , Single-Chain Antibodies/immunology , Spheroids, Cellular/immunology , Transfection , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
13.
Clin Epigenetics ; 13(1): 29, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33541404

ABSTRACT

BACKGROUND: Pneumococcal infections are a major cause of morbidity and mortality in young children and immaturity of the immune system partly underlies poor vaccine responses seen in the young. Emerging evidence suggests a key role for epigenetics in the maturation and regulation of the immune system in health and disease. The study aimed to investigate epigenetic changes in early life and to understand the relationship between the epigenome and antigen-specific antibody responses to pneumococcal vaccination. METHODS: The epigenetic profiles from 24 healthy children were analyzed at 12 months prior to a booster dose of the 13-valent pneumococcal conjugate vaccine (PCV-13), and at 24 months of age, using the Illumina Methylation 450 K assay and assessed for differences over time and between high and low vaccine responders. RESULTS: Our analysis revealed 721 significantly differentially methylated positions between 12 and 24 months (FDR < 0.01), with significant enrichment in pathways involved in the regulation of cell-cell adhesion and T cell activation. Comparing high and low vaccine responders, we identified differentially methylated CpG sites (P value < 0.01) associated with HLA-DPB1 and IL6. CONCLUSION: These data imply that epigenetic changes that occur during early childhood may be associated with antigen-specific antibody responses to pneumococcal vaccines.


Subject(s)
Immune System/metabolism , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/genetics , Antigen-Antibody Reactions/immunology , Case-Control Studies , Cell Competition/immunology , Child, Preschool , CpG Islands/immunology , DNA Methylation , Epigenesis, Genetic , Female , HLA-DP beta-Chains/immunology , HLA-DP beta-Chains/metabolism , Humans , Immune System/immunology , Infant , Interleukin-6/immunology , Interleukin-6/metabolism , Male , Pneumococcal Infections/immunology , Pneumococcal Infections/mortality , Pneumococcal Vaccines/administration & dosage , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
14.
Methods Mol Biol ; 2270: 451-467, 2021.
Article in English | MEDLINE | ID: mdl-33479913

ABSTRACT

Transplantation is still the treatment of choice for organ failure; however, allograft induces inflammatory immune responses that require immunosuppressive treatment. The role of regulatory B cells (Bregs) in downregulating inflammation has been reported to be significant in several diseases including transplant rejection. Many reports have analyzed different B-cell subpopulations, including Bregs, in tolerant, stable, and rejecting transplant recipients as well as the influence of immunosuppressant on the frequencies and functions of the different B-cell subsets. In this chapter, the key techniques required to investigate human Breg frequencies and functions in transplant patients are discussed.


Subject(s)
B-Lymphocytes, Regulatory/immunology , B-Lymphocytes, Regulatory/transplantation , Immunophenotyping/methods , ADP-ribosyl Cyclase 1/immunology , CD24 Antigen/immunology , Cell Count , Cell Proliferation/physiology , Female , Humans , Immunosuppressive Agents , Interleukin-10/immunology , Male , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
15.
Front Immunol ; 12: 752888, 2021.
Article in English | MEDLINE | ID: mdl-35069528

ABSTRACT

Effector and regulatory functions of various leukocytes in allergic diseases have been well reported. Although the role of conventional natural killer (NK) cells has been established, information on its regulatory phenotype and function are very limited. Therefore, the objective of this study was to investigate the phenotype and inhibitory functions of transforming growth factor (TGF)-ß-producing regulatory NK (NKreg) subset in mice with MC903-induced atopic dermatitis (AD). Interestingly, the population of TGF-ß-producing NK cells in peripheral blood monocytes (PBMCs) was decreased in AD patients than in healthy subjects. The number of TGF-ß+ NK subsets was decreased in the spleen or cervical lymph node (cLN), but increased in ear tissues of mice with AD induced by MC903 than those of normal mice. We further observed that TGF-ß+ NK subsets were largely included in CD1dhiPD-L1hiCD27+ NK cell subset. We also found that numbers of ILC2s and TH2 cells were significantly decreased by adoptive transfer of CD1dhiPD-L1hiCD27+ NK subsets. Notably, the ratio of splenic Treg per TH2 was increased by the adoptive transfer of CD1dhiPD-L1hiCD27+ NK cells in mice. Taken together, our findings demonstrate that the TGF-ß-producing CD1dhiPD-L1hiCD27+ NK subset has a previously unrecognized role in suppressing TH2 immunity and ILC2 activation in AD mice, suggesting that the function of TGF-ß-producing NK subset is closely associated with the severity of AD in humans.


Subject(s)
Dermatitis, Atopic/immunology , Killer Cells, Natural/immunology , Animals , Antigens, CD1d/immunology , B7-H1 Antigen/immunology , Calcitriol/adverse effects , Calcitriol/analogs & derivatives , Calcitriol/pharmacology , Dermatitis, Atopic/chemically induced , Female , Humans , Mice , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Transforming Growth Factor beta/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
16.
Clin Immunol ; 222: 108638, 2021 01.
Article in English | MEDLINE | ID: mdl-33276124

ABSTRACT

To assess how B cell phenotype analysis correlates with antigen responses in patients with class switch recombination defects (CSRD) we quantified memory B cells by flow-cytometry and immunized CSRD patients with the neoantigen bacteriophage phiX174 (phage). CSRD patients showed uniformly absent or markedly reduced switched memory B cells (IgM-IgD-CD27+). CD40L patients had reduced CD27+ memory B cells (both non-switched and switched). In NEMO patients, results varied depending on the IKKγ gene variant. Three of four AID patients had normal percentages of CD27+ memory B cells while CD27+IgM-IgD- switched memory B cells were markedly reduced in all AID patients. Antibody response to phage was remarkably decreased with lack of memory amplification and class-switching in immunized CD40L, UNG deficient, and NEMO patients. Distinct B-cell phenotype pattern correlated with abnormal antibody responses to a T-cell dependent neoantigen, representing a powerful tool to identify CSRD patients.


Subject(s)
B-Lymphocytes/cytology , Bacteriophage phi X 174/immunology , Immunoglobulin Class Switching/genetics , Immunoglobulin Class Switching/immunology , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Adolescent , Adult , Antibody Formation/genetics , Antibody Formation/immunology , CD40 Ligand/deficiency , Child , Child, Preschool , Female , Flow Cytometry , Humans , I-kappa B Proteins/genetics , Immunization , Immunoglobulin D/immunology , Immunoglobulin M/immunology , Immunologic Deficiency Syndromes/pathology , Immunologic Memory/genetics , Immunologic Memory/immunology , Infant , Male , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
17.
Eur J Immunol ; 51(3): 721-733, 2021 03.
Article in English | MEDLINE | ID: mdl-33180337

ABSTRACT

Costimulatory signals potently promote T-cell proliferation and effector function. Agonistic antibodies targeting costimulatory receptors of the TNFR family, such as 4-1BB and CD27, have entered clinical trials in cancer patients. Currently there is limited information how costimulatory signals regulate antigen-specific but also bystander activation of human CD8 T cells. Engineered antigen presenting cells (eAPC) efficiently presenting several common viral epitopes on HLA-A2 in combination with MHC class I tetramer staining were used to investigate the impact of costimulatory signals on human CD8 T-cell responses. CD28 costimulation potently augmented the percentage and number of antigen-reactive CD8 T cells, whereas eAPC expressing 4-1BB-ligand induced bystander proliferation of CD8 T cells and massive expansion of NK cells. Moreover, the 4-1BB agonist urelumab similarly induced bystander proliferation of CD8 T cells and NK cells in a dose-dependent manner. However, the promotion of bystander CD8 T-cell responses is not a general attribute of costimulatory TNF receptor superfamily (TNFRSF) members, since CD27 signals enhanced antigen-specific CD8 T cells responses without promoting significant bystander activation. Thus, the differential effects of costimulatory signals on the activation of human bystander CD8 T cells should be taken into account when costimulatory pathways are harnessed for cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Antigen-Presenting Cells/immunology , Cell Line , Cell Line, Tumor , Cell Proliferation/physiology , Genes, MHC Class I/immunology , Humans , K562 Cells , Killer Cells, Natural/immunology , Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
18.
PLoS Pathog ; 16(12): e1009132, 2020 12.
Article in English | MEDLINE | ID: mdl-33370392

ABSTRACT

NK cells have been shown to display adaptive traits such as memory formation akin to T and B lymphocytes. Here we show that Zika virus infection induces memory like NK cells that express CD27. Strikingly, these cells exhibit stem-like features that include expansion capacity, self-renewal pathway, differentiation into effector cells, longer telomeres and gene signature associated with hematopoietic stem cell (HSC) progenitors. This subset shared transcriptional and epigenetic changes with memory CD8 T cells, stem cells and stem like T cells. These NK cells with memory and stem cell features, which we term "NK memory stem cells", demonstrated greater antiviral potential than CD27- or naïve CD27+ NK when adoptively transferred to Zika infected mice. Our results also suggest a role for the transcription factor TCF-1 in memory and stemness features of this NK subset. This study defines a unique TCF1hi CD27+ NK subset with memory capacity and stem cell features that play a role in antiviral immunity.


Subject(s)
Immunologic Memory/immunology , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Stem Cells/immunology , Zika Virus Infection/immunology , Animals , Female , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
19.
JCI Insight ; 5(22)2020 11 19.
Article in English | MEDLINE | ID: mdl-33208551

ABSTRACT

Adoptive cell therapy involves the infusion of tumor-reactive T cells into patients with cancer to provide antitumor immunity. The ex vivo expansion and differentiation of such T cells are key parameters that affect their therapeutic potential. Human T cells are presently expanded in culture through the use of anti-CD3 and anti-CD28 mAbs immobilized on beads, expressed on cells, or assembled in the context of soluble antibody complexes. Here we report the design of a small, bispecific single-chain variable fragment construct agonizing both CD3 and CD28 pathways. This soluble T cell expansion protein, termed T-CEP, activates, expands, and differentiates human T cells ex vivo at concentrations in the femtomolar range. Importantly, T-CEP promotes the preferential growth of human CD8+ T cells over the course of 12 days in comparison with methods involving immobilized anti-CD3 mAb/soluble anti-CD28 mAb or soluble anti-CD3/CD28 mAb complexes. The differentiation profile of the resulting human T cell population is also singularly affected by T-CEP, favoring the expansion of a preferred CD8+CD27+ T cell phenotype. The activity profile of T-CEP on human T cells ex vivo suggests its use in generating human T cell populations that are more suited for adoptive cell therapy.


Subject(s)
Antibodies, Monoclonal/immunology , CD28 Antigens/immunology , CD3 Complex/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Lymphocyte Activation/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Antibodies, Monoclonal/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Humans , Immunotherapy, Adoptive , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
20.
Int Immunopharmacol ; 89(Pt B): 107069, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33242709

ABSTRACT

Current treatment of cholangiocarcinoma (CCA) - a lethal bile duct cancer - is ineffective because the disease is usually diagnosed at late and advanced stage. Thus, a novel therapeutic modality is urgently required. Fourth-generation chimeric antigen receptor (CAR4) T cells was created to target CD133, a well-known cancer stem cell marker, that is highly expressed and associates with cancer progression. The anti-CD133-CAR4 T cells showed high efficacy against CD133-expressing CCA cells. Tumour cell lysis occurred in a dose- and CD133 antigen-dependent manner, and significantly higher, up to 57.59% ± 9.62 at effector to target ratio of 5:1 in a CCA cell line - KKU-213A cells, compared to mock control (p = 0.008). Similarly, significant IFN-γ (p = 0.011) and TNF-α (p = 0.002) upregulation was observed upon tumour treatment. The effectiveness of our anti-CD133-CAR4 T cells will be beneficial not only for CD133-expressing CCA, but also for other CD133-expressing tumours. This study may guide future in vivo study and clinical trials.


Subject(s)
AC133 Antigen/metabolism , Bile Duct Neoplasms/therapy , Cholangiocarcinoma/therapy , Immunotherapy, Adoptive , Neoplastic Stem Cells/metabolism , Single-Chain Antibodies/metabolism , T-Lymphocytes/metabolism , AC133 Antigen/immunology , Bile Duct Neoplasms/immunology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , CD28 Antigens/genetics , CD28 Antigens/immunology , CD28 Antigens/metabolism , CD3 Complex/genetics , CD3 Complex/immunology , CD3 Complex/metabolism , Cell Line, Tumor , Cholangiocarcinoma/immunology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Coculture Techniques , Cytotoxicity, Immunologic , Humans , Interferon-gamma/metabolism , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/pathology , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Spheroids, Cellular , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...