Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Signal ; 117: 111074, 2024 05.
Article in English | MEDLINE | ID: mdl-38309549

ABSTRACT

Translationally controlled tumor protein (TCTP) is a highly conserved multifunctional protein, which participates in many important physiological processes. Recently, the roles of TCTP in cell proliferation and apoptosis, especially its close relationship with various tumors, have attracted widespread attention. In this study, we found that the protein level of TCTP was significantly reduced in acute promyelocytic leukemia cell line NB4 transfected with retinoic acid-induced gene G (RIG-G). The RIG-G was found in our previous work as a key mediator of anti-proliferative activity in retinoid/interferon-related pathways. Here, we tried to further explore the function of TCTP in the development of acute myeloid leukemia (AML) from different levels. Our results showed that inhibiting TCTP expression could attenuate AML cells proliferation and induce apoptosis both in AML cell lines and in xenograft of NOD-SCID mice. In addition, either compared with patients in complete remission or non-leukemia patients, we detected that the expression of TCTP was generally high in the fresh bone marrow of AML patients, suggesting that there was a certain correlation between TCTP and AML disease progression. Taken together, our study revealed the role of TCTP in AML development, and provided a potential target for AML treatment.


Subject(s)
Apoptosis , Leukemia, Myeloid, Acute , Tumor Protein, Translationally-Controlled 1 , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Leukemia, Myeloid, Acute/pathology , Mice, Inbred NOD , Mice, SCID , Tretinoin , Tumor Protein, Translationally-Controlled 1/genetics , Tumor Protein, Translationally-Controlled 1/metabolism
2.
ASN Neuro ; 15: 17590914231153481, 2023.
Article in English | MEDLINE | ID: mdl-36714975

ABSTRACT

Central nervous system tumors, especially astrocytomas, are the solid neoplasms with the highest incidence and mortality rates in childhood. The diagnosis is based on histopathological characteristics, but molecular methods have been increasingly used. Translationally controlled tumor protein (TCTP) protein, encoded by the tumor protein, translationally controlled 1 (TPT1) gene, is a multifunctional protein with an important physiological role in the cell cycle. Expression of this protein has been associated with several neoplasms, including astrocytomas in adults. However, the role of this protein in pediatric astrocytomas is largely unknown. We aim to evaluate in cases of pediatric astrocytomas, the frequency of polymorphisms in the TPT1 gene and other genes associated with its molecular pathways, such as MTOR, MDM2, TP53, and CDKN1A, correlating it with protein expression and clinical variables, in formalin-fixed, paraffin-embedded (FFPE) samples. These samples were submitted to genotyping and immunohistochemistry analyses. The most revealing results refer to the MDM2 gene, rs117039649 [G/C], in which C polymorphic allele was observed only in the glioblastomas (p = .028). The CDKN1A gene, rs3176334 [T/C] presented a homozygous polymorphic genotype only in high-grade astrocytomas, when infiltrating tumors were compared (p = .039). The immunohistochemical expression of cytoplasmic MDM2 correlated with better survival rates in patients with glioblastoma (p = .018). The presence of polymorphisms in the MDM2 and CDKN1A genes, as well as a specific correlation between MDM2 expression, suggests a likely association with risk in pediatric astrocytomas. This study sought the probable role involved in the TCTP pathway, and associated proteins, in the tumorigenesis of pediatric astrocytomas, and some could have potential impact as prognostic markers in these patients.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Tumor Protein, Translationally-Controlled 1 , Child , Humans , Astrocytoma/genetics , Astrocytoma/metabolism , Astrocytoma/pathology , Brain Neoplasms/pathology , Genotype , Polymorphism, Genetic , Tumor Protein, Translationally-Controlled 1/genetics
3.
Neurochem Res ; 47(9): 2741-2756, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35622214

ABSTRACT

One of the key areas in stem cell research is the identification of factors capable of promoting the expansion of Neural Stem Cell/Progenitor Cells (NSPCs) and understanding their molecular mechanisms for future use in clinical settings. We previously identified Macrophage Migration Inhibitory Factor (MIF) as a novel factor that can support the proliferation and/or survival of NSPCs based on in vitro functional cloning strategy and revealed that MIF can support the proliferation of human brain tumor-initiating cells (BTICs). However, the detailed downstream signaling for the functions has largely remained unknown. Thus, in the present study, we newly identified translationally-controlled tumor protein-1 (TPT1), which is expressed in the ventricular zone of mouse embryonic brain, as a downstream target of MIF signaling in mouse and human NSPCs and human BTICs. Using gene manipulation (over or downregulation of TPT1) techniques including CRISPR/Cas9-mediated heterozygous gene disruption showed that TPT1 contributed to the regulation of cell proliferation/survival in mouse NSPCs, human embryonic stem cell (hESC) derived-NSPCs, human-induced pluripotent stem cells (hiPSCs) derived-NSPCs and BTICs. Furthermore, gene silencing of TPT1 caused defects in neuronal differentiation in the NSPCs in vitro. We also identified the MIF-CHD7-TPT1-SMO signaling axis in regulating hESC-NSPCs and BTICs proliferation. Intriguingly, TPT1suppressed the miR-338 gene, which targets SMO in hESC-NSPCs and BTICs. Finally, mice with implanted BTICs infected with lentivirus-TPT1 shRNA showed a longer overall survival than control. These results also open up new avenues for the development of glioma therapies based on the TPT1 signaling pathway.


Subject(s)
Macrophage Migration-Inhibitory Factors , Neoplastic Stem Cells , Neural Stem Cells , Tumor Protein, Translationally-Controlled 1 , Animals , Brain/metabolism , Cell Proliferation/physiology , Humans , Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Mice , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Neural Stem Cells/metabolism , Tumor Protein, Translationally-Controlled 1/genetics
4.
Protein Expr Purif ; 189: 105989, 2022 01.
Article in English | MEDLINE | ID: mdl-34626801

ABSTRACT

Complications related to atherosclerosis account for approximately 1 in 4 deaths in the United States and treatment has focused on lowering serum LDL-cholesterol levels with statins. However, approximately 50% of those diagnosed with atherosclerosis have blood cholesterol levels within normal parameters. Human fortilin is an anti-apoptotic protein and a factor in macrophage-mediated atherosclerosis and is hypothesized to protect inflammatory macrophages from apoptosis, leading to subsequent cardiac pathogenesis. Fortilin is unique because it provides a novel drug target for atherosclerosis that goes beyond lowering cholesterol and utilization of a solution nuclear magnetic resonance (NMR) spectroscopy, structure-based drug discovery approach requires milligram quantities of pure, bioactive, recombinant fortilin. Here, we designed expression constructs with different affinity tags and protease cleavage sites to find optimal conditions to obtain the quantity and purity of protein necessary for structure activity relationship studies. Plasmids encoding fortilin with maltose binding protein (MBP), 6-histidine (6His) and glutathione-S-transferase (GST), N- terminal affinity tags were expressed and purified from Escherichia coli (E. coli). Cleavage sites with tobacco etch virus (TEV) protease and human rhinovirus (HRV) 3C protease were assessed. Despite high levels of expression of soluble protein, the fusion constructs were resistant to proteinases without the inclusion of amino acids between the cleavage site and N-terminus. We surveyed constructs with increasing lengths of glycine/serine (GGS) linkers between the cleavage site and fortilin and found that inclusion of at least one GGS insert led to successful protease cleavage and pure fortilin with conserved binding to calcium as measured by NMR.


Subject(s)
Calcium/chemistry , Recombinant Fusion Proteins/genetics , Tumor Protein, Translationally-Controlled 1/genetics , 3C Viral Proteases/chemistry , Binding Sites , Calcium/metabolism , Cloning, Molecular , Endopeptidases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Histidine/genetics , Histidine/metabolism , Humans , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Models, Molecular , Oligopeptides/genetics , Oligopeptides/metabolism , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Solubility , Tumor Protein, Translationally-Controlled 1/chemistry , Tumor Protein, Translationally-Controlled 1/metabolism
5.
Int J Obes (Lond) ; 45(7): 1576-1587, 2021 07.
Article in English | MEDLINE | ID: mdl-33931746

ABSTRACT

BACKGROUND/OBJECTIVES: Translationally controlled tumor protein (TCTP) exhibits numerous biological functions. It has been shown to be involved in the regulation of glucose. However, its specific role in metabolism has not yet been clearly elucidated. Here, we aimed to assess the effect of TCTP overexpression on metabolic tissues and systemic energy metabolism. SUBJECTS/METHODS: We investigated whether TCTP can ameliorate the metabolic imbalance that causes obesity using TCTP-overexpressing transgenic (TCTP TG) mice. The mice were subjected to biochemical, morphological, physiological and protein expression studies to define the role of TCTP in metabolic regulation in response to normal chow diet (NCD) compared to high-fat diet (HFD) conditions, and cold environment. RESULTS: We found that TCTP TG mice show improved metabolic homeostasis under both of NCD and HFD conditions with simultaneous enhancements in glucose tolerance and insulin sensitivity. In particular, we found coincident increases in energy expenditure with significant upregulation of uncoupling protein 1 (UCP1) in the brown adipose tissue (BAT). Moreover, TCTP overexpressing mice exhibit significantly enhanced adaptive thermogenesis of BAT in response to cold exposure. CONCLUSIONS: Overexpression of TCTP ameliorated systemic metabolic homeostasis by stimulating UCP1-mediated thermogenesis in the BAT. This suggests that TCTP may function as a modulator of energy expenditure. This study suggests TCTP may serve as a therapeutic target for obesity and obesity-associated metabolic disorders including type 2 diabetes.


Subject(s)
Energy Metabolism/genetics , Obesity/metabolism , Tumor Protein, Translationally-Controlled 1/genetics , Animals , Diet, High-Fat , Insulin Resistance/genetics , Mice , Mice, Transgenic , Obesity/physiopathology , Thermogenesis/genetics
6.
Exp Mol Med ; 53(1): 67-80, 2021 01.
Article in English | MEDLINE | ID: mdl-33408335

ABSTRACT

Histamine releasing factor/translationally controlled tumor protein (HRF/TCTP) stimulates cancer progression and allergic responses, but the role of HRF/TCTP in rheumatoid arthritis (RA) remains undefined. In this study, we explored the pathogenic significance of HRF/TCTP and evaluated the therapeutic effects of HRF/TCTP blockade in RA. HRF/TCTP transgenic (TG) and knockdown (KD) mice with collagen-induced arthritis (CIA) were used to determine the experimental phenotypes of RA. HRF/TCTP levels in the sera of RA patients were measured and compared to those from patients with osteoarthritis (OA), ankylosing spondylitis, Behçet's disease, and healthy controls. HRF/TCTP expression was also assessed in the synovium and fibroblast-like synoviocytes (FLSs) obtained from RA or OA patients. Finally, we assessed the effects of HRF/TCTP and dimerized HRF/TCTP-binding peptide-2 (dTBP2), an HRF/TCTP inhibitor, in RA-FLSs and CIA mice. Our clinical, radiological, histological, and biochemical analyses indicate that inflammatory responses and joint destruction were increased in HRF/TCTP TG mice and decreased in KD mice compared to wild-type littermates. HRF/TCTP levels in the sera, synovial fluid, synovium, and FLSs were higher in patients with RA than in control groups. Serum levels of HRF/TCTP correlated well with RA disease activity. The tumor-like aggressiveness of RA-FLSs was exacerbated by HRF/TCTP stimulation and ameliorated by dTBP2 treatment. dTBP2 exerted protective and therapeutic effects in CIA mice and had no detrimental effects in a murine tuberculosis model. Our results indicate that HRF/TCTP is a novel biomarker and therapeutic target for the diagnosis and treatment of RA.


Subject(s)
Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Fibroblasts/metabolism , Synoviocytes/metabolism , Tumor Protein, Translationally-Controlled 1/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Protein Binding , Tumor Protein, Translationally-Controlled 1/antagonists & inhibitors , Tumor Protein, Translationally-Controlled 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...